
£ ©

PROCEEDINGS
OF THE
1994 IEEE

(MM

ctiu:4cj:ct i?U

Jenq-Neng Hwang
Elizabeth Wilson

19941209 078

NEURAL NETWORKS
FOR

SIGNAL PROCESSING IV

PROCEEDINGS
OF THE

1994
IEEE WORKSHOP

Fourth in a Series of Workshops
Organized by the IEEE Signal Processing Society

Neural Networks Technical Committee

Edited by

John Vlontzos
Jenq-Neng Hwang
Elizabeth Wilson

Published under the sponsorship of the
IEEE Signal Processing Society

in cooperation with the IEEE Neural Networks Council
with support from Intracom S.A. Greece

and co-sponsored by ARPA

or A/ _y_
■ckl H

D
u D

M
The Institute of Electrical and Electronics Engineers, Inc.

New York, NY

Robust Estimation for Radial Basis Functions
A.G. Bors and I. Pitas 105

Network Architectures

The Use of Recurrent Neural Networks for Classification
T.L. Burrows and M. Niranjan 117

Network Structures for Nonlinear Digital Filters
J.N. Lin and R. Unbehauen 126

Locally Excitatory Globally Inhibitory Oscillator Networks:Theory
and Application to Pattern Segmentation
D. Wang and D. Terman 136

A Unifying View of Some Training Algorithms for Multilayer
Perceptrons with FIR Filter Synapses
A. Back, E.A. Wan, S. Lawrence, and A. C. Tsoi 146

Spectral Feature Extraction Using Poisson Moments
■S'. Qelebi and J. Principe 155

Application of the Fuzzy Min-Max Neural Network Classifier to
Problems with Continuous and Discrete Attributes
A. Likas, K. Blekas, and A. Stajylopatis 163

Time Signal Filtering by Relative Neighborhood Graph Localized
Linear Approximation
J.A. Sorensen '' '

Classification Using Hierarchical Mixtures of Experts
S.R. Waterhouse and AJ. Robinson 177

A Hybrid Neural Network Architechture for Automatic Object
Recognition
T. Fechner and R. Tanger 187

Time Series Prediction Using Genetically Trained Wavelet Networks
A. Prochäzka and V. Sys 195

A Network Of Physiological Neurons With Differentiated Excitatory
And Inhibitory Units Possessing Pattern Recognition Capacity
E. Ventouras, M. Kitsonas, S. Hadjiagapis, N. Lkunoglu, C. Papageorgiou,
A. Rabavilas, and C. Stefanis 204

1 oqrninn Al/itll Imnprfprt Pprppntinn

A Learning Algorithm for Multi-Layer Perceptrons with Hard-Limiting
Threshold Units
R.M. Goodman andZ. Zeng 219

The Selection of Neural Models of Non-Linear Dynamical Systems
by Statistical Tests
D. Urbani, P. Roussel-Ragot, L. Personnaz, and G. Dreyfus 229

Pruning Recurrent Neural Networks for Improved Generalization
Performance
C.W. OmlinandC.L. Giles 69°

Speech Processing

Recurrent Network Automata for Speech Recognition: A Summary
of Recent Work
R. Gemello, D. Albesano, F. Mana, and R. Cancelliere 241

Acoustic Echo Cancellation for Hands-Free Telephony Using Neural
Networks
A.N. Birkett andR. A. Goubran 249

Minimum Error Training for Speech Recognition
E. McDermott andS. Katagiri 259

Connectionist Model Combination for Large Vocabulary Speech
Recognition
M.M. Hochberg, CD. Cook, S.J. Renals, andA.J. Robinson 269

Neural Tree Network/Vector Quantization Probability Estimators
for Speaker Recognition
K. Farrell, S. Kosonocky, andR. Mammone 279

Parallel Training of MLP Probability Estimators for Speech Recognition:
A Gender-Based Approach
N. Mirghafori, N. Morgan, and H. Bourlard 289

LVQ as a Feature Transformation for HMMs
K. Torkkola 2"

Autoassociator-Based Modular Architecture for Speaker Independent
Phoneme Recognition
L. Lastrucci, G Bellesi, M. Gori, and G. Soda 309

Non-linear Speech Analysis Using Recurrent Radial Basis Function
Networks
P.A. Moakes andS. W. Beet 319

Word Recognition Using a Neural Network and a Phonetically
Based DTW
Y. Malsuura, II Miyazawa, and T.E. Skinner 329

A Monolithic Speech Recognizer Based on Fully Recurrent
Neural Networks
A'. Kasper, II Reminder, D. Wolf, and II Wüst 335

Fuzzification of Formant Trajectories for Classification of CV
Utterances Using Neural Network Models
II Yegnanarayana, C C Sekhar, and S.R. Prakash 345

Minimum Error Classification of Keyword-Sequences
T. Komori and S. Katagiri 352

Hybrid Training Method for Tied Mixture Density Hidden Markov
Models Using Learning Vector Quantization and Viterbi Estimation
M. Kurimo 3^2

Image Processing

Moving Object Classification in a Domestic Environment Using
Quadratic Neural Networks
G. Lim, M. Alder, CIS. deSilva, and Y. Attikiouzel 375

Application of the HLVQ Neural Network to Hand-Written
Digit Recognition
II Solaiman and Y. Aulret 384

Ensemble Methods for Automatic Masking of Clouds in AVIRIS
Imagery
CM. Ikichmann, EE. Clothiaia, J.W. Moore, K. J. Andreann, andD. O. Lnong 394

Saddle-Node Dynamics for Edge Detection
Y.F. Wong 404

Application of SVD Networks to Multi-Object Motion-Shape
Analysis
S. Y. Kung, J.S. Taw; and M. Y. Chiu 413

Neural Networks for Robust Image Feature Classification: A
Comparative Study
S. V.R. Madiraju and CC Liu 423

Medical Imaging with Neural Networks
C.S. Patlichisand A.C. Constantinid.es 431

High Resolution Image Reconstruction Using Mean Field Annealing
T. Numnonda and M. Andrews 441

Hardware Neural Network Implementation of Tracking System
G.G. Lendaris, R.M. Pap, R.E. Saeks, C.R. Thomas, andR.M. Akita 451

Fast Image Analysis Using Kohonen Maps
D. Willett, C. Busch, and F. Seibert 461

Analysis of Satellite Imagery Using a Neural Network Based Terrain
Classifier
M.P. Perrone and M.J. Larkin ™0

Medical Applications

Neural Networks and Higher Order Spectra for Breast Cancer Detection
T\ Stathaki and A.G. Constantinides 473

Medical Diagnosis and Artificial Neural Networks: A Medical Expert
System Applied to Pulmonary Diseases
G.-P.K. Economou, C. Spriopoulos, N.M. Economopoulos, N. Charokopos,
D. Lymberopoulos, M. Spiliopoulou, E. Haralambopulu, and C.E.Goutis 482

Modeling of Glaucoma Induced Changes in the Retina and Neural
Net Assisted Diagnosis
S. von Spreckelsen, P. Grumstup, J. Johnsen, andL.K. Hansen 490

Toward Improving Excercise ECG for Detecting Ischemic Heart
Disease with Recurrent and Feedforward Neural Nets
G. Dorffner, E. Leitgeb, andH. Koller 499

Towards Semen Quality Assessment Using Neural Networks
C. Linneberg, P. Salomon, C. Svarer, L.K. Hansen, and J. Meyrowitsch 509

Use of Neural Networks in Detection of Ischemic Episodes from
ECG Leads
N. Maglaveras, T. Stamkopoulos, C. Pappas, and M. Strintzis 51H

EEG Signal Analysis Using a Multi-Layer Perceptron with Linear
Preprocessing
S.A. Mylonas andRA. Comley 671

Adaptive Processing And Communication

A Neural Network Trained with the Extended Kaiman Algorithm
Used for the Equalization of a Binary Communication Channel
M. Birgmeier

Neural-Net Based Receiver Structures for Single- and Multi-Amplitude
Signals in Interference Channels
IX P. Bourns, P. T. Mathiopoulos, and D. Makrakis 535

A Hybrid Digital Computer-Hopfield Neural Network CDMA Detector
for Real-Time Multi-User Demodulation
G.I. Kcchriotis and E.S. Manolakos 545

A Hopfield Network Based Adaptation Algorithm for Phased Antenna
Arrays
M. Alberti 555

Blind Deconvolution of Signals Using a Complex Recurrent Network
A. D. Back and A. C. Tsoi 565

Improving the Resolution of a Sensor Array Pattern by Neural Networks
C. Bracco, S. Marcos, and M. Benidir 573

Other Applications

Sensitivity Analysis on Neural Networks for Meteorological
Variable Forecasting
J. Castellanos, A. Pazos,./. Rios, andJ.L. Zafra 587

Continuous-Time Nonlinear Signal Processing: A Neural Network
Based Approach for Gray Box Identification
R Rico-Martinez, IS. Anderson, and IG. Kevrekidis '. 596

A Quantitative Study of Evoked Potential Estimation Using a
Feedforward Neural Network
A. Dumitras, A.T.Murgan, and V. Lazarescu 606

Neural Estimation of Kinetic Rate Constants from Dynamic Pet-Scans
T. Fog, LII. Nielsen, LK. Hansen, S. Holm, I. Law, C. Svarer, and O. Paulson 616

Auditory Stream Segregation Based on Oscillatory Correlation
D. Wang 624

Application of Neural Networks for Sensor Performance Improvement
S. Poopalasingam, C.R. Reeves, and N.C. Sleele 633

NeuroDevice - Neural Network Device Modelling Interface for VLSI Design
P. Ojala, J. Saarinen, and K. Kaski 641

Encoding Pyramids by Labeling RAAM
S. Lonardi, A. Sperduti, and A. Starita 651

Reconstructed Dynamics and Chaotic Signal Modeling
J.M. Kuo andJ.C. Principe 661

A Neural Network Scheme for Earthquake Prediction Based on the
Seismic Electric Signals
S. Lakkos, A. Hadjiprocopis, R. Comley, and P. Smith 681

Neural-Network Based Classification of Laser-Doppler Flowmetry Signals
KG. Panagiotidis, A. Delopoulos andS.D. Kollias 709

Author Index 721

Preface

This book contains papers presented at the Fourth IEEE Workshop on
Neural Networks for Signal Processing (NNSP'94) at the Porto Hydra
Resort Hotel, Ermioni, Greece on September 6 - 8, 1994.

The Workshop, sponsored by the Neural Network Technical Committee of
the IEEE Signal Processing Society, in cooperation with the IEEE Neural
Network Council and with co-sponsorship from ARPA and Intracom S.A.
Greece, is designed to serve as a regular forum for researchers from
universities and industry who are interested in interdisciplinary research on
neural networks for signal processing applications. In the present scope, the
workshop encompasses up-to-date research results in several key areas,
including learning algorithms, network architectures, speech processing,
image processing, adaptive signal processing, medical signal processing,
and other applications. The Conference Proceedings is crafted to be an
archival reference in the rapidly growing field of Neural Networks for
Signal Processing.

Our deep appreciation is extended to Dr. Leon Bottou of Neuristique Inc.,
Paris, France; Dr. Dan Hammerstrom of Adaptive Solution Inc., Beaverton'
Oregon; Dr Kazuo Asakawa of Fujitsu Laboratories Ltd., Kawasaki, Japan;
and Professor Andreas S. Weigend of University of Colorado, Boulder,'
Colorado; for their insightful plenary talks and invited presentations. Thanks
to Dr. Gary Kuhn of Siemens Corporate Research, Princeton, New Jersey,
for organizing a wonderful evening panel discussion on "Neural Networks
for Industrial Applications". Our sincere thanks go to all the authors for their
timely contributions, to all the members of the Program Committee for the
outstanding and high-quality program, and to Dr. Demetris Kalivas, the
Finance and Registration Chair. We are very pleased to acknowledge
Professor Yu-Hen Hu, the Neural Networks Technical Committee Chair of
IEEE SP Society, Professor Sun-Yuan Kung for catalyzing ARPA and other
sponsorships, and Dr. Barbara Yoon for her continued enthusiasm and
support in this emerging cross-disciplinary field. Our special gratitudes go
to Ms. Elizabeth Lustig of University of Washington and Mrs. Myra Sourlou
of Intracom S. A. whose organization assistances to the Workshop have
been invaluable.

John Vlontzos, Intracom
Jenq-Neng Hwang, University of Washington
Elizabeth Wilson, Raytheon Company

Learning Algorithms

A NOVEL UNSUPERVISED COMPETITIVE
LEARNING RULE WITH LEARNING

RATE ADAPTATION FOR NOISE
CANCELLING AND SIGNAL SEPARATION

Marc M. Van Hulle
Laboratorium voor Neuro- en Psychofysiologie

K.U. Leuven
Campus Gasthuisberg

Herestraat
B-3000 Leuven, BELGIUM

Tel.: + 32 16 34 59 61
Fax: + 32 16 34 59 93

E-mail: marc.@neuro.kuleiiven.ac.be

Abstract— A new ANN-based approach to adaptive noise can-
celling and separating slow-varying signals is introduced. The net-
work's weights are continuously modified using a fast nnsupervised
competitive learning rule, called Fast Boundary Adaptation Ride
or FB AR, performing adaptive scalar quantization of the input sig-
nal. The rule maximizes information-theoretic entropy and yields
a non-parametric model of the input probability density function.
Contrary to classic uusupervised competitive learning, our system
adapts its own learning rate, and hence does not require a "cooling
scheme." Furthermore, contrary to most of the other noise can-
celling approaches, our system does not require a priori knowledge
or an explicit model of the joint noise and signal characteristics.

INTRODUCTION

Signal separation and noise cancelling are widely researched topics in signal
processing since their application increases the performance of e.g. pattern
recognition in speech and image processing. Signals received by microphones
and antennas typically comprise unknown mixtures of several signal sources.
Sensors often are multisensitive: the signal provided by a sensor can be an
unknown superposition of signals emitted in its neighborhood. In addition,
sensors are noisy and their characteristics may change over time. A major
field of applications are the so-called smart sensors. In these sensors, an inte-
grated microcomputer is used for performing dynamic correction of changes
in sensor characteristics and in environmental conditions [1].

Signal separation was introduced in the Artificial Neural Network (ANN)
field by Herault and co-workers [2,3]. They proposed a fully connected re-

0-7803-2026-3/94 $4.00 © 1994 IEEE 3

cursive ANN in which the weights are adapted so as to model the mixture
process. Their method performs a blind separation of sources by assuming
that they are statistically independent; it is also assumed that the transfor-
mation matrix describing the linear mixture is invertable. The separation
relies on the computation of higher-order statistical moments in order to
achieve signal independence. Hence, their method is not suited for separating
slow-varying signals such as signal drift. Furthermore, it requires a separate
filtering stage to obtain zero mean estimates of the reconstructed signals.

Noise cancelling is another prime application of signal processing research.
The signals received by an actual system are often corrupted by additive
noise. In most cases, the noise is non-stationary and of an arbitrary proba-
bility density function (p.d.f.) type. Furthermore, since the source signal is
non-stationary, the signal-to-noise ratio changes momentarily. Kaiman filter-
ing [4] is a well known procedure for noise cancelling, however, the dynamics
of the source signal must be linear d'aussian and a priori known. Several
attempts have been undertaken in order to overcome these limitations (e.g.
[5]) but they often lead to complicated solutions. W id row and his co-workers
were among the first to introduce adaptive filtering into the ANN field. They
developed an adaptive filter system for noise cancelling [6] that is very similar
to a single ADALINE-unit but without the threshold. The system requires
a separate noise channel containing noise that is correlated with the noise
added to the signal; the filter weights are adapted so as to minimize the
power of the reconstructed signal. Recently, other ANN-based approaches
have emerged and used e.g. for speech enhancement purposes: a multilayer
perccptron is trained using samples of noisy speech at its input and clean
speech at its output [7,8]. In another proposal, not the speech sample itself
is input but a set of parameters obtained from (classical) statistical speech
and noise models [9]: the network is trained to perform nonlinear spectral
estimation by representing the shape of the distribution of speech and noise
spectral parameters. The estimated spectral magnitude of the clean speech
signal is then combined with the phase of the noisy speech to produce a clean
signal estimate by means of overlap-and-add resynthesis -a computationally
heavy procedure.

In this article, we propose an ANN-based system for performing signal sep-
aration and noise cancelling of slow-varying signals. The weights are modified
"on line" using a fast, unsupervised competitive learning rule maximizing
information-theoretic entropy. The rule, called Fast Boundary Adaptation
Rule or FBAR [10,11], performs adaptive scalar quantization and yields a
non-parametric model of the input p.d.f. by its N quantization levels. Con-
trary to the aforementioned approaches, our system operates in an unsuper-
vised mode and hence, does not require a priori knowledge or an explicit
model of the (joint) noise and signal characteristics. Furthermore, contrary
to other ANN-based approaches, our system does not require a training mode
or a "cooling scheme." Instead it uses two FBAR-based ANNs: one adaptive
and another non-adaptive. The latter is used as a reference for adapting
the former. Both ANNs are identical and differ only in their learning rates.
Finally, since our method does not rely on filtering, it is ideally suited for
separating slow-varying signals such as sensor drift and 1// noise sources.

FAST BOUNDARY ADAPTATION RULE

An TV-point scalar quantizer can be considered a function which maps a
scalar-valued input signal x into one of TV quantization levels ?yi,»/2, ••-,2/JV-
The quantizer is specified by the values of these quantization levels and the TV
disjoint quantization intervals fli, ß2, •••, ß/v- An adaptive scalar quantizer
is intended to capitalize on the structure underlying the input signal distri-
bution p(x) with a minimal overall distortion due to quantization. Many
distortion measures have been proposed in literature [12] but the most com-
monly used are the mean squared error (MSE) distortion and the mean
absolute error (MAE) distortion:

MAE = Y^ / *-Vi IPOO
rf*> 0)

with ar,_i and x,- the boundary points of interval ß,-, and with x0 = —oo and
xw = oo for an unbounded p.d.f. p(x). In case of high-resolution quantiza-
tion, TV is very large and the quantization interval lengths are small so that
p(x) is roughly constant over the individual intervals. Hence, p(x) m pi in
interval /?,,-, and p,- = p(ft,-)/A,-, with p(/?.,•) the probability of x 6 Ä; and
with A,- = x.i — Xi-\ the size of interval /?.,• = [x,-_i, x,); if x0 is infinite, then
Ri = (xQ,xi). Suppose that with probability nearly one, x takes on values
in a finite interval [a, 6), hence, eq. (1) can be approximated as:

MAE « Y, H(M f' | x - m | dx, (2)

with x0 = a and XN = 6. Under the high-resolution assumption, the centroid
of each interval can be approximated by its midpoint ?/,■ « x'~'2

r' and
substituted for in eq. (2). The necessary condition for minimizing MAE in
the high-resolution case is then obtained by taking the derivatives of the
substituted equation with respect to the a;,'s and setting them equal to zero:

p(/V,) = p(/?j+1), i = l,...,TV-l. (3)

The latter implies a maximization of the information-theoretic entropy:

N

' = -$>(fy) logiP{Rj), (4)
i=i

irrespective of the type of input p.d.f.

The necessary condition eq. (3) is realized by our Boundary Adaptation
Rule (BAR) as follows. Assume that at time step t, x € Rj. We then modify
R.j by increasing a.'j_i and decreasing x.j, or in the general case:

Ax.j = i)(ActRj+1 - AclRi), j = 1,..., TV - 1, (5)

with i] the learning rate, a positive scalar, and with Actnj the code member-
ship function of interval Ry.

A . i \ / 1 if« € Äj
AclRi(x)=\ 0 if*£ß-

defined with respect to the boundary points at the previous time step. The
proof of convergence towards equiprobable quantization intervals is given in
[11]. At convergence, the expected noise intensity of the boundary points
equals i)2jj- The speed of convergence, in case the p.d.f. is bounded and
the boundary points are initialized outside its range, is on the order of

^(yv(N-i))-

The fastest rule, called Fast BAR or FBAR, is found by updating all
boundary points each time an input, is presented:

^=^^-1^1 J=l «-'• (6)
Jt=j+1 J k-\ J

At convergence, the expected noise intensity of the boundary points equals
if ,N]_ •■)•, and thus for j = N/2 with N even, ty2;^?; the convergence speed
is now on the order of O(jf^). Hence, contrary to BAR, average boundary
point dynamics and noise intensities are approximatively independent of N
if i) increases proportionally with A'. Or, for the same N and ?;, FBAR
is N times faster than BAR. Previously, the quantization performance of
FBAR was assessed and compared with that of five popular unsupervised
competitive learning rules and that of the standard Lloyd I algorithm [10].

NOISE CANCELLING AND SIGNAL SEPARATION

In this article we will limit ourselves to the suppression of zero-mean additive
noise, in which case the input signal can be written as:

x[t] = s[t] + d[l] (7)

where s[t] denotes the signal and d[l] the noise. The aim is to reconstruct s[t]

from noisy observations x[t] by separating its estimate s[t] from the estimated

noise contribution d[l]. This way, noise cancelling is considered here to be
a limiting case of signal separation. This will be done by estimating the
possibly non-stationary p.d.f. of d[l] with FBAR, and using this information
for subtracting d[l] from a:[/]. Hence, noise cancelling will be performed in
the signal magnitude domain, based on p.d.f. estimation instead of spectral
magnitude estimation as in the classical case. The basic assumption is that
the p.d.f. of s varies on a slower time-scale than that of d; the validity of this
assumption will be assessed in this section.

Before further elaborating on our application, we first show the perfor-
mance of FBAR in estimating non-stationary p.r/./.s in general. Consider
the speech example in Fig. 1 (top left); the signal originates from TIM IT,
a popular speech database. The signal is quantized with N = 32 intervals
(5 bit quantizer) with 7/ = 0.02. We observe that the boundary point traces
shown in Fig. 1 (top right) seem to keep track of the speech signal by per-
forming only a single update of the boundary points per time step. The
corresponding codebook utilization {p{Act[(i) | 1 < ;' < k) is shown in the
bottom part of Fig. 1: it shows that, notwithstanding the signal is highly
non-stationary, the necessary condition eq. (3) is satisfied on average.

2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

30

index i

Figure 1: Top left : Example speech signal comprising a silence, a consonant
and two vowels (i.e. the word /she/). Time units are expressed in 0.625
milliseconds. Top right: Temporal evolution of boundary points using FBAR
with i) = 0.02. Bottom : Codebook utilization.

The previous p.d./.-estimation property of FBAR can now be used in sev-
eral ways, the simplest being the subtraction of the estimated p.d.f. median
from x. Indeed, since FBAR provides us with an estimate of the p.d.f. using
equiprobable quantization intervals, the trace of boundary point xj±, with

2

N even, represents the trace of the p.d.f. median. Now since it is assumed
that the p.d.f. of s[t] varies slower than that of d[t], the estimated p.d.f.
approximates that of r/[/] and hence, the trace of its median provides us with

the desired estimate s[t]. We will now verify this assumption with a syn-
thetic, signal comprising Gaussian white noise, with zero mean and standard
deviation 0.1, added to a sampled sine wave of magnitude 0.5 and frequency
10 p00 Hz. The noise cancelling performance is assessed by calculating the

MSE distortion between s[t] and s[t] on the last 10,000 samples, and plot-

Figure 2: Noise cancelling performance of FBAR on (iaussian white noise added
to a sine wave. Top left : MSE distortion plotted as a function of /,, for 7; = 0.1
(thick line) and adaptive (thin line). Vertical bars represent standard deviations.
Top right : Evolution of iiadaptive ** a function of time for f, = 0 (thin line) and
100 (thick line). Bottom : Example of noise cancelling in case of /.. = 50.

ting the calculated MSE as a function of/.,. The result is shown in the top
left portion of Fig. 2 (thick line) for i) = 0.1 and N = 8. We observe that
for /, = 0.001 to 10, the MSE is almost the same and that starting from
/, = 10 it rises sharply. In the former case, the error is due to the switching
nature of FBAR; in the latter case, the sharp increasing error is clue to the
fact that the basic assumption, the negligible influence of the signal's p.d.f.,
fails and FBAR looses track of the exact evolution of s (though the result
may still be proportional to the clean signal). Note that the MSE between

.1 and s and between d and d are identical, as is easily verified. Hence the
results in Fig. 2 (top left) also show the performance in estimating d. Now
since ('iaussian white noise was used for d, we conclude that FBAR is not
a filtering procedure, and hence due to this feature, we conjecture that it is
ideally suited for separating slow-varying signals.

LEARNING RATE ADAPTATION IN
UNSUPERVISED COMPETITIVE LEARNING

One obvious way to circumvent the aforementioned shortcomings, is to make
7] adaptive: for low /,,, i) should decease so as to produce a low quantization
error; for high /,, 77 should increase in order to keep track of the. signal as
much as possible. At first sight, this seems unfeasible in an unsupervised
learning setting. However we can use some valuable a priori information:
FBAR is aimed at producing an equiprobable codebook utilization. Hence,
any divergence from this can be detected and used for adjusting /;. The
codebook utilization at time / can be estimated by the codebook utilization
in the last T time steps using a moving average estimate:

T

CIJ = {p(ActR„t,T) = £ ^T ' l ~ l~ N]- (8)

The problem is then reduced to interpreting a given divergence in
equiprobable codebook utilization in terms of a change in ?;. A robust,
yet simple solution is to use two FBAR quantizers running in parallel on
the same input signal x: one with a fixed learning rate called preference,
and another with a variable learning rate, called i)adaptive- The first one is
used as a reference against which the learning rate of the second is adapted.
As a measure of divergence in codebook utilization, the MAE between the
present codebook utilization and an equiprobable one is taken. The MAE is
determined for both the reference and the adapted quantizers: MAEq(CU),
with q £ {reference, adapted). The procedure for modifying i)adaPtive is as
follows:

If \1}adaptive ^ preference)

if {MAEadavttve(CU) > MAEreference{CU))

decrease i)aday>tive\
else

increase i}adaptive',

else

if (MAEadaptiveiCU) > MAEreJerence(CU))

increase i]adaptivel
else

decrease i]adaptive',

The actual update is done with a leaky integrator equation:

1)adaptive{t] = ai)adaptive[t - 1] + (1 - n)l]base (9)

with a a constant and ijbase equal to 0.001 in case ijadaptive is to decrease,
and 1.0 in the opposite case. In order to obtain robust estimates, i)adaptive
is adapted only if the abovementioned conditions on MAE also hold for the
previous two time steps.

As an example, consider again the previous synthetic signal. We take
Vrejerence = 0.3, a = 0.9999 and T = 256. Every simulation was repeated
20 times. The average result is shown in the top left part of Fig. 2 (thin
line). We observe that the residual MSE is dramatically decreased for low
f,. The evolution of i)adaptive for a typical run is shown in the top right part
of Fig. 2 for /, = 0 (thin line) and 100 (thick line). We see that i)adaPtive
for /, = 0 at first increases (the starting value = 0.05) and then gradually
decreases to a low value. The first increase is interesting since it is used for
rapidly positioning the boundary points within about 1,000 time steps. The
evolution in case of/, = 100 shows a fast increase in i]adaPtive- The maximum
range in average i}adaptive thus achieved equals more than 20 times the lowest
average. The bottom part of Fig. 2 shows a sample of the original signal x
(thin line), the sine wave s (thin line) and its estimate s (thick line). In the
case of /, = 0, the MSE value equals 1.1 ~4 and the signal-to-noise ratio
19.6 dB on average. This can be further improved by increasing T, e.g. for
T = 1024 we obtain 29.4 dB, but then the MSE performance for higher fs

values decreases: since the adaptive quantizer then considers both the d and
s signals as belonging to the same p.d.f., inference, "cools down" to a low
value for all cases. On the other hand, in case signal separation is not the
issue, it also signifies that this property can be used as an automatic "cooling
scheme" for adjusting the learning rate over time.

Finally, we have re-applied the previous scheme on the signal shown in
Fig. 1 (top left). Note that the role of noise and signal are now reversed.
The MSE of the reconstructed speech signal equals 1.8 10~3 for /, = 0,
2.8 10-3 for /, = 1, 5.9 10"3 for /, = 10, and 9.0 10~2 for /, = 100. The
clean speech signal variance equals 1.9 10__.

DISCUSSION

In this contribution, a fast unsupervised competitive learning rule was intro-
duced for cancelling additive noise and seperating slow-varying signals. The
rule called FBAR performs scalar quantization and yields a non-parametric,
model of the input p.d.f. by maximizing the information-theoretic entropy of
the quantizer's codebook. We believe that entropy maximization offers four
important advantages: 1) By maximizing entropy, the network's weights es-
timate medians rather than means and the former are well-known to be less
sensitive to input signal outliers. 2) The maximum entropy principle often
serves as a criterion to select a priori probability distributions when little or
nothing is known: for a given amount of data, the distribution which best
describes our knowledge is the one that maximizes information-theoretic en-
tropy, subject to the given evidence as constraints. 3) Entropy maximization
has been succesfully applied to obtain an optimal mapping of continuous onto
discrete random variables [13]. 4) Since entropy maximization corresponds
to an equiprobable quantization, the desired (optimal) result is known in
advance. As a result of the latter, we were able to increase the rule's perfor-
mance by using two identical configurations, one with a fixed and another
with a variable learning rate. The first was used as a reference for adapting
the second. This way, an explicit "cooling scheme" was not needed.

10

ACKNOWLEDGEMENT

The author is a postdoctoral researcher of the Belgian National Fund for
Scientific Research.

REFERENCES

[I] D. Esteve, F. Baillieu and G. Delapierre, "Integrated Silicon-based sensors:
basic research activities in France," Sensors and Actuators A, vol. 33, pp.
1-4, 1992.

[2] J. Herault, C. Jutten and B. Ans, "Detection de grandeurs primitives dans un
message composite par une architecture de calcul neuromimetique en appren-
tissage non supervise," Proc. Xeme Collogue GRETSI, Nice, France, 1985,
pp. 1017-1022.

[3] C. Jutten and J. Herault, "Analog implementation of a permanent unsuper-
vised learning algorithm," Neurocomputing, Editors: F. Fogelman and J.
Herault, NATO ASI Series, 1990, vol. F 68, pp. 145-152.

[4] R.E. Kaiman, "A new approach to linear filtering and prediction problems,"
Trans. ASME, J. Basic Eng-, vol. 82, pp. 35-45, 1960.

[5] M. Ohta and E. Uchino, "A design for a general digital filter for state estima-
tion of an arbitrary stochastic sound system," J. Acoust. Soc. Am., vol. 80,
pp. 804-812, 1986.

[6] B. Widrow and S.D. Stearns, Adaptive signal processing, Englewood Cliffs,
NJ: Prentice-Hall, 1985.

[7] M. Trompf, R. Richter, H. Eckhardt and H. Hackbarth, "Combination of
Distortion-Robust Feature Extraction and Neural Noise Reduction For ASR,"
Proc. EUROSPEECH 93, Berlin, Germany, 1993, pp. 21-23.

[8] S. Tamura, "An analysis of a Noise Reduction Neural Network," Proc.
Int. Conf. Acoust. Speech Signal Processing, 1989, pp. 2001-2004.

[9] F. Xie and D. Van Compernolle, "A family of MLP based nonlinear spectral
estimators for noise reduction," submitted.

[10] M.M. Van Hulle and D. Martinez, "On an unsupervised learning rule for scalar
guantization following the maximum entropy principle," Neural Computation,
vol. 5, pp. 939-953, 1993.

[II] M.M. Van Hulle and D. Martinez, "On a novel unsupervised competitive
learning algorithm for scalar guantization," IEEE Trans, on Neural Networks,
vol. 5 (3), in press.

[12] J. Makhoul, S. Roucos and H. Gish, "Vector guantization in speech coding,"
Proc. of the IEEE, vol. 73, pp. 1551-1588, 1985.

[13] I. Grabec, "Self-Organization of Neurons Described by the Maximum-Entropy
Principle," Biol. Cybern., vol. 63, pp. 403-409, 1990.

11

A STATISTICAL INFERENCE BASED GROWTH
CRITERION FOR THE RBF NETWORK

Visakan Kadirkamanathan
Department of Automatic Control & Systems Engineering
University of Sheffield
P.O.Box 600, Mappin Street, Sheffield SI 4DU, UK
visakan@acse .Sheffield .ac .uk

Abstract. In this paper, a growth criterion is derived using statis-
tical inference for model sufficiency. This criterion is developed for
recursive estimation or sequential learning with neural networks. A
growing Gaussian Radial Basis Function (GaRBF) network trained
by the extended Kaiman Filter (EKF) algorithm on-line, named In-
cremental Network is developed. Incremental Network is similar to
the resource allocating network (RAN). The criterion for growth is
based on the network prediction error and the expected uncertainty
in the network output. The criterion is computed within the EKF
estimation and hence no additional computations are required. This
is in contrast to the need for search in the RAN formulation. The
Incremental network performance on a function interpolation prob-
lem is shown to be superior in convergence speed and approximation
accuracy than the RAN networks and a fixed size RBF network.

INTRODUCTION

Feedforward artificial neural networks (ANNs) are a class of models that may
be used to model some unknown system or process having an unambiguous
input - output mapping. The network size, often measured by the number
of hidden units in a single hidden layer network, reflects the capacity of the
network to approximate an arbitrary function. The problem is therefore to
estimate the network parameters and its size.

The need for determining the optimal architecture or network size is due to
the conflicting feature of the modelling task. Firstly, a sufficiently complex
or large model is needed to ensure that the network is capable of providing
an adequate approximation to the underlying process generating the obser-
vations. Secondly, an unnecessarily large model will suffer from 'over-fitting'
where the network reproduces the observations but will perform poorly to
unseen data.

0-7803-2026-3/94 $4.00 © 1994 IEEE 12

Finding the suitable network size for a given problem invariably involves a
search over all possible sizes, a computationally exhaustive process consider-
ing the training times involved for each of the networks. In general, a trial
and error approach is adopted in finding the suitable network size and the
search is terminated as soon as a satisfactory performance is achieved.

Theoretical tools such as Decision theory have been used to determine an
approximate rule of thumb in choosing the network size for learning a given
number of observations [Baum & Haussler, 1989]. Recently, Bayesian statis-
tics has provided a general framework or procedure, namely Bayesian model
comparison for determining the most probable network among those inves-
tigated [MacKay, 1992]. For all the above procedures, the data must be
available en-bloc and rely on the arbitrary selection of appropriate sizes for
investigation. A form of limited search over different network sizes combined
with model selection based on Minimum Description Length (MDL) was also
developed [Smyth, 1991]. The task of finding the optimal network size is even
more difficult in a recursive or sequential estimation problem.

These observations have led to investigations into dynamic architecture net-
works, where, instead of searching over different size networks, a network is
constructed as part of the training procedure. The two approaches of network
construction are

• Choose a large network and prune it by deleting units, eg. Skeletoniza-
tion [Mozer & Smolensky, 1989], optimal brain damage [LeCun, Denker
& Solla, 1990], weight elimination [Weigend, Rumelhart & Huberman,
1991].

• Choose a small network and grow it by adding units, eg. Cascade cor-
relation [Fahlman & Lebierre, 1990], resource allocating network [Platt,
1991].

The growth criteria in most of these approaches are based on heuristics, such
as the increase or decrease in the approximation error by addition or deletion
of units. In optimal brain damage [LeCun et al.,1990], however, the deletion
of the units are based on the Hessian of the error surface with respect to the
network parameters. Except the RAN, all the other networks require all data
to be available together.

In this paper, we provide a criterion for growth based on the statistical in-
ference of model sufficiency. The notion of model sufficiency is that "the
model with given size is deemed to be sufficient if the prediction error on the
data is within a certain level of confidence exhibited by the network". For
example, if the uncertainty in the network parameters are high, the network
may exhibit large prediction errors which are within the expectations of the
network and hence no new units will be added. The estimation is carried out
using the extended Kaiman filter (EKF) which also provides an estimate for
the network uncertainty.

13

THE GROWTH CRITERION

Consider an interpolation problem where for the input - output observation
set {(x„, yn)\n -1 N},xne$tM and yn € ft,

yn = /.(xn) + 77 (1)

where 77 is a zero mean Gaussian noise with variance a\t and /«(.) is the
underlying function. Let the network chosen to approximate the underlying
function provide an input - output mapping described by /(x; p), where p is
the vector consisting of network parameters being adapted.

For a trained network where the parameter p has been estimated along with
its error covariance matrix, the network output uncertainty can be deter-
mined. The measure of uncertainty is the variance of the network output,
given by,

<rv
a(x) = Var[/(x;p)] (2)

Under Gaussian assumptions, the network output can be described by the
Gaussian probability distribution with mean /(x;p) and variance <r?(x).

If the network used to interpolate the underlying function is of sufficient
size, under Gaussian assumptions, we would expect the interpolation error
or the prediction error to lie within a bound determined by the network
uncertainty and noise variance for a certain percent of the data, with a certain
level of confidence. The null hypothesis for the statistical inference of model
sufficiency is stated as follows:

Ho : -T=FJ^L=== = . ^ < za for a% of data (3)
y/Var\f{x;p) + rj\ ^rg(x) + a*,

where za is the value of the ^-statistic at a% level of significance and e is
the prediction error for the observation (x,y), given by,

e = y- /(x;p) (4)

If the condition for Tio is violated, the null hypothesis that the model is
sufficient is rejected. The rejection implies that the network complexity must
be increased to match the complexity of the underlying function, and hence a
new unit or basis function is added to the model. The addition of a new unit
increases the complexity of the network so that its capacity to be a sufficient
model is increased. Note that a criteria for pruning the network has also
been suggested from statistical inference, based on the estimated parameter
uncertainties [Buntine & Weigend, 1992].

RECURSIVE ESTIMATION

Recursive estimation (sequential or on-line learning) with ANNs requires a
posterior estimate of the underlying function to be obtained from its prior
estimate and the current or new input - output observation. For a network
of fixed number of parameters being adapted, this becomes a problem of
estimating the parameters recursively. Recursive parameter estimation fits
into the Bayesian statistical framework naturally.

14

Consider the Gaussian radial basis function (GaRBF) network whose input
- output mapping is given by,

K

/(*; P) = 2 «»*»(*; «*) = bTw (5)
*=1

IT where w = [u»i,..., wjc]T are the linear coefficients, b = [..., 6fc(x; uj.),.
are the K basis functions constructed at the hidden layer and u*. =
[uki,...,ukM]T is the ifeth RBF unit centre. The basis functions are
parametrised through ufc. In general, the output of an ANN can be writ-
ten as a linear combination of a set of basis functions as given in (5). The
basis functions in the GaRBF network have the form,

&fc(x;ujb) = exp |-^l|x - ufc||
2| (6)

en
= yn - /(xn; Pn-i) = Vn - b^

wn = w„_i +e„kn

Ry = [Än+b^Pn-lbn]

k„ = Ä^lPn-lb»

Pn = [i-knb^]p„_i + g0i

If we choose to adapt only the linear coefficients w, under Gaussian assump-
tions, the prior and posterior probability distributions for w can be described
by Gaussian distribution. Let the prior be a distribution with mean wn-i
and covariance matrix P"^, the posterior with mean wn and covariance ma-
trix P"1 and the likelihood distribution for the observation y be with mean
b£w„_i and variance Ä» = *',■ where bn = [..., bk(xn;uk)..]

T. Applying
Bayes' theorem, expressions for wn and Pn

: can be obtained. This is in fact
the Kaiman filter algorithm [Candy, 1986], where,

(7)
(8)

(9)

(10)

(11)

where Q0 Js a scalar that allows a small random variation to the parameters
being adapted. This random walk model allows the parameters to continue
adapting to new observations. The subscripts (n) and (n - 1) denote the
posterior and prior estimates respectively. The vector kn is the Kaiman gain.

The matrix P represents the uncertainty in the estimated parameters while
Ry reflects the uncertainty in the expected output for the given input obser-
vation, ie.,

Ry = Var[f(x;p) + v] (12)
The growth criterion proposed in the last section has to be modified for
the recursive or sequential estimation problem, where there is access to only
the current observation. The model is deemed sufficient "if the prediction
error on the new observation is within that expected by the network with a
certain level of confidence", so that sufficiency is determined from the current
observation alone. Substituting for the output uncertainty from (12), the null
hypothesis of model sufficiency is now:

Ho : J^= < za (13)

15

The terms en and Ry are computed as part of the Kaiman filter estimation
algorithm and hence there is no computational overhead in testing for model
sufficiency.

The estimation and growth criterion of the model with nonlinearly appear-
ing coefficients, such as uk in the GaRBF network, can be extended where
estimation is carried out by the extended Kaiman filter (EKF) algorithm and
model sufficiency tested similarly. The only difference in the computation
is the replacing of w and bn by p and the vector dn respectively, where
dn = Vp/(xn;p) is the gradient of /(.) with respect to p evaluated with
Pn-i- This is equivalent to approximating the probability distributions to be
Gaussian around the estimates.

THE INCREMENTAL NETWORK

The growth criterion developed above is independent of the model structure,
even though it was demonstrated on the GaRBF network, and hence is appli-
cable to any type of model. Now, the question of what type of basis function
to be added, if the model is deemed insufficient, has to be addressed. In a
block estimation environment there will be no restriction on the type of basis
function. However, in a recursive estimation problem, the addition must be
a localised basis function, which while ensuring localisation of the current
observation is also nearly orthogonal to the existing basis functions. It was
shown that GaRBF functions, specifically the basis functions allocated by
the RAN, was observed to exhibit these properties [Kadirkamanathan 1991;
Kadirkamanathan & Niranjan 1993].

The network based on the statistical inference growth criterion and the RAN
basis function allocation, is named Incremental Network (IncNet). The In-
cNet incorporates the advantages of using EKF for near optimal estimation
and the growth criterion that detects model insufficiency. It is essentially a
Gaussian RBF network whose coefficients (w), unit means (uk) and variances
(rjb) are estimated. When the model sufficiency null hypothesis is rejected for
the nth observation, thenew (Ä"+ l)th basis function allocated is a Gaussian
RBF, whose parameters are assigned as follows (similar to RAN):

*>K+I = en ujc+i = xn rK+1 = r0 (14)

with r0 being an appropriate constant. The EKF estimation algorithm has
to be modified to accommodate the increase in parameters. The parameter
vector pn simply tags the new parameters to the existing ones,

Pn=[Pn-i,wK+1,u%c+1,rK+1] (15)
and the parameter error covariance matrix becomes,

Pn = n
Pn-1 0
0 Pol (16)

where P0 is an estimate of the uncertainty in the initial values assigned to
the parameters and I is an identity matrix of dimension (M + 2) x (M + 2),
where M is the dimensionality of the input space.

Its operation can be summarised as follows:

16

• Given (xi, yi), Choose the first basis function with parameters lüi = j/i,
ui = xi, ri = ro and Po = Pol with dimensionality (M + 2) x (Af + 2).

• For each data (xn,yn), n = 2,..., iV, use EKF estimation to determine
Ry = d^Pn_idn + Rn. Also determine the predicted error en = yn —
/(x„;p„_i).

- If |e„| < zay/R^, continue with EKF estimation to determine pn

and Pn.
- If |en| > zas/R^, add a new hidden unit with tujr+i = en, UJC+I =

xn, fK+i = ro and the dimensionality of Pn_i is increased by M + 2
rows and columns with diagonal elements of Po and 0 elsewhere. The
EKF estimation is then applied to determine the posterior pn.

The difference between the IncNet and the RAN is mainly in the growth
criterion. The RAN decides to add a new unit based on the novelty of the
current pattern [Platt, 1991]. The novelty is determined by the two criteria:
|en| > emin and ||xn — uo|| > en> where emi„ is a measure of the desired
accuracy, uo the nearest Gaussian centre to xn and en is decreased with time
allowing the network to form finer and finer approximation. Finding the
nearest Gaussian centre involves a search which adds to the computational
overhead.

IncNet on the other hand, adds a new unit if the prediction error is not
within the statistical expected bounds. As a result, new units are added
only if the existing parameters have been estimated with high confidence
and the network complexity is not sufficient to make the errors sufficiently
small. Unlike in the RAN, the IncNet growth criterion on the prediction error
bound begins at a high value and decreases with training and increases after
the addition of new basis functions. A new unit will also be added if the
observations do not contribute to the basis functions keeping bn sufficiently
small, ensuring a novelty detection similar to the RAN's second criterion.

The RAN also uses LMS algorithm to adapt the parameters when a new unit
is not added. The convergence of RAN can be increased by the use EKF, this
extended network referred to as RAN-EKF. [Kadirkamanathan & Niranjan
1993]. Note that we can choose to adapt either only the linear coefficients
w or the parameters p = [w,..., uj,,...] for the IncNet depending upon the
application.

EXPERIMENTAL RESULTS

The performance of the incremental network (IncNet) was compared to the
different forms of the resource allocating network, namely the RAN [Platt,
1991] and RAN-EKF [Kadirkamanathan 1991]. The problem chosen for the
investigation is the Hermite function interpolation problem given in [MacKay,
1992], where the underlying function generating the observations are

/♦(*) = 1.1(1 -x + 2x2)exp{-|x2} (17)

The training data comprises of 40 observations generated randomly in the
interval [-4,-1-4]. During training, the samples were presented one by one

17

and repeated for 20 cycles. The test data contains 200 observations sampled
uniformly in the same interval. The accuracy of the approximation achieved
by the networks were measured by the root mean square error (RMSE) over
the test data. Noise was added only to the training data. For details of the
network parameters and training algorithms for RAN and RAN-EKF, refer
to [Kadirkamanathan & Niranjan, 1993]; The IncNet parameters for the EKF
algorithm are the same as for RAN-EKF with za = 2, r0 = 1.0.

In the first experiment, the RAN, RAN-EKF and the IncNet were trained
on a noisy data and their on-line performance are shown in Figure 1. The
results clearly show the fast convergence achieved by the IncNet while RAN-
EKF converged faster than the RAN. This is to be expected since RAN uses
the LMS adaptation which is computationally simpler in comparison to the
RAN-EKF which uses the computationally complex EKF algorithm. Note
also that the growth pattern for the RANs differed significantly from that of
IncNet.

In order to investigate the robustness of the incremental network, varying
levels of Gaussian noise were added to the training data, where the noise
variance was increased from 0.0001 to 0.1. Since RAN-EKF performs better
than the RAN, the RAN was not used in this second set of experiments. A
fixed size Gaussian radial basis function (GaRBF) network of 16 hidden units
was used in these tests to evaluate the advantages of using growing networks.
This GaRBF network was trained using the EKF algorithm and is denoted
by RBF-EKF.

Figure 2(a) shows the network sizes achieved by the networks with increasing
noise variance while Figure 2(b) shows the network approximation error in
finding the underlying function. The results clearly demonstrate the supe-
rior performance of the IncNet over the RAN-EKF which in turn performed
better than the fixed size RBF-EKF. The IncNet formed fewer units while
achieving the best approximation amongst the networks. It should be noted
that with high level of noise, the IncNet and RAN-EKF parameters (R„, and
emin respectively) should be modified accordingly, but was not done in the
experiments - hence the relatively poor results at high noise. The results
however demonstrate that to some degree, an overestimation of the noise
level is unlikely to affect the final network size for IncNet and RAN-EKF.

CONCLUSIONS

A growth criterion has been developed from statistical inference of model
sufficiency. Its application to the recursive estimation or on-line modelling
problem led to the development of the Incremental Network. This Gaussian
radial basis function network is similar to the RAN in allocation of new units
and to its extension RAN-EKF in using the extended Kaiman filter algorithm.
The growth criterion however is different for IncNet.

Performance on a function interpolation problem demonstrated the ability of
the Incremental Network to form compact network with good approximation.
It is evident from the experimental results that the Incremental Network was
able to use its basis functions effectively, whereas the RAN failed to use

18

the statistical information and hence assigned more basis functions than was
needed. The approximation error was also higher for RAN. The comparison
with RBF-EKF of 16 units also show that the growing networks provide a
better approximation while determining the appropriate complexity.

Acknowledgements

The author is grateful for the support of the Engineering and Physical Sci-
ences Research Council (EPSRC) of UK under the grant GR/J46661.

References

[1] Baum E., & Haussler D., "What size net gives valid generalization",
Neural Computation, Vol.1, No.l, 1989.

[2] Buntine W.L., & Weigend A.S., "Bayesian backpropagation", Complex
Systems, Vol.2 pp 321-355, 1992.

[3] Candy J.V., "Signal processing: The model based approach", McGraw-
Hill, New York, 1986.

[4] Fahlman S.E., & Lebiere C, "The cascade-correlation architecture", In
Touretzky D.S. (ed.), Neural Information Processing Systems 2, Morgan
Kaufmann, CA: San Mateo, 1990.

[5] LeCun Y., Denker S. & Solla S.A., "Optimal brain damage", In Touret-
zky D.S. (ed.), Neural Information Processing Systems 2, Morgan Kauf-
mann, CA: San Mateo, 1990.

[6] MacKay D.J.C., "Bayesian interpolation", Neural Computation, Vol. 4,
No.3, pp. 415-447, 1992.

[7] Mozer M.C., & Smolensky.P, "Skeletonization: A technique for trimming
the fat from a network via relevance assignment", In Touretzky D.S.
(ed.), Neural Information Processing Systems 1, Morgan Kaufmann, CA:
San Mateo, 1989.

[8] Kadirkamanathan V., Sequential learning in artificial neural networks,
PhD Thesis, Cambridge University Engineering Department, 1991.

[9] Kadirkamanathan V. & Niranjan M., "A function estimation approach
to sequential learning with neural networks", Neural Computation, Vol.
5, pp 954-975, 1993.

[10] Platt J., "Resource allocating network for function interpolation", Neural
Computation, Vol. 3, No. 2, pp.213-225, 1991.

[11] Smyth P., "On stochastic complexity and admissible models for neural
network classifiers", In Lippmann R., Moody J., Touretzky D.S. (eds.),
Neural Information Processing Systems 3, Morgan Kaufmann, CA: San
Mateo, 1991.

[12] Weigend A.S., Rumelhart D.E. & Huberman B., "Generalization by
weight elimination with application to forecasting", In Lippmann R.P.,
Moody J. & Touretzky D.S. (eds.), Neural Information Processing Sys-
tems 3, Morgan Kaufmann, CA: San Mateo, 1991.

19

(a) Network size (hidden units) Vs Time

10

UJ
CO
5
DC

10

IN

i"V-

' V,

(b) RMS Approximation Error Vs Time

"HI
i"1

'.!
<.
u;,k'..l

 IncNet

 RAN-EKF

 RAN

100 200 300 400
Time

500 600 700 800

Figure 1: On-line performance of INet, RAN-EKF, RAN: (a) Growth Pattern
(b) Approximation Error.

20

(a) Network size (hidden units) Vs Noise Variance
30

25-

o-o IncNet

x-x RAN-EKF

- RBF-EKF

10 10- 10'
Noise Variance

(b) RMS Approximation Error Vs Noise Variance

o-o IncNet

x-x RAN-EKF

- RBF-EKF

Noise Variance

Figure 2: The effect of noise on the network sizes and approximation accu-
racy for INet, RAN-EKF, RBF-EKF: (a) Growth Pattern (b) Approximation
Error.

21

NEURAL NETWORK INVERSION
TECHNIQUES FOR EM TRAINING AND

TESTING OF INCOMPLETE DATA

Jenq-Neng Hwang, Chien-Jen Wang

Information Processing Laboratory
Dept. of Electrical Engr., FT-10

University of Washington
Seattle, WA 98195, USA

Tel: (206) 685-1603, Fax: (206) 543-3842
e-mail: hwang@ee.washington.edu

Abstract

The expectation-maximization (EM) algorithm is a suc-
cessful statistical approach for maximum likelihood estima-
tion of incomplete-data problems. The performance of an
EM algorithm highly depends on assumptions made about
the probability density function (commonly, the multivari-
ate Gaussian) of the multivariate data. When the EM algo-
rithm is used for classification applications, it is commonly
done by replacing the missing values based on the estimated
probability density function of the same class for getting the
maximum likelihood labeling without jointly considering the
discrimination among classes. In this paper, we propose an
EM procedure based on a neural network inversion technique
for improving the training accuracy using incomplete data
sets and the classification accuracy in testing new incomplete
data. Our approach relaxes the assumption made about the
probability density function, and more importantly, the miss-
ing value replacements take into account of the discrimination
among classes.

0-7803-2026-3/94 $4.00 © 1994 IEEE 22

1 Introduction
Real-world regression and classification tasks may involve high dimensional
data sets with arbitrary patterns of missing elements. Take for examples, in
remote sensing applications, there has been a large set of satellite brightness
measurement data (e.g., SSMI remote sensing measurements) with their cor-
responding experimentally measured geophysical parameters (ground-truth
data) being available [1], Unfortunately, a lot of these ground-truth data
have one or several missing elements and thus make them infeasible for use
as valid training data in regressing the nonlinear function of the scattering
environment. Another example of such an incomplete data set is the "heart-
disease" data set from the UCI machine learning database where 920 records
in total are available for 5 categories of heart diseases with 14 attributes each.
There are only 299 of the records are complete, the others have one or several
missing attribute values (11% of all values are missing).

The expectation-maximization (EM) algorithm is a very general itera-
tive algorithm for maximum likelihood (ML) estimation in incomplete-data
problem [2, 9]. Given the observed elements x(°) of an incomplete datum
x = [x(°),x(m)], the EM algorithm acquires the missing elements x(m) by

1. estimating the distribution parameters 8 (e.g., the mean vector and
the covariance matrix) of the presumed multivariate probability density
function P(x\6) based on the set of complete multivariate data {x}
(and/or the available observed elements of the incomplete data); then

2. conditioned on the estimated distribution parameters 6, replacing the
missing elements with conditional expectation values x(m) = .E[x'm'|

x(°),ö]; further

3. combining the originally complete and the newly completed data to
reestimate the distribution parameters 6; and then

4. replacing the missing elements with new conditional expectation values
based on the newly reestimated distribution parameters,

and so forth, iterating until convergence.
The performance of an EM algorithm highly depends on assumptions

made about P(x|0) (commonly, the multivariate Gaussian) of the multivariate
data. To relax this critical performance sensitivity to the presumed distribu-
tion, multivariate mixture Gaussian formulations have also been proposed as
a more general model-free estimation of density function for EM applications
[7,4].

When the EM algorithm is used for classification applications, where
the training/testing data to be trained/classified contain missing elements,
it is commonly done by replacing the missing elements based on the esti-
mated probability density function P(x\0k) of the same class, say fc-th, to

23

get the maximum likelihood labeling without jointly considering the discrim-
ination among classes. More specifically, in the training phase, the missing
elements of an incomplete datum with the known class are replaced based
on the reestimated distribution parameters 0i_ of the corresponding class.
These two processes iterate until convergence and the distribution functions
{P(x|öfc), k = 1,2,..., K} can thus be used directly in a maximum likelihood
(ML) classification framework. If a deterministic classification framework is
preferred, then the converged and missing-element replaced incomplete data
as well as the originally complete data can be used to train a deterministic
classifier (e.g., a neural network) for future classification. The above proce-
dure (either for a probabilistic or deterministic classifier) is called in our paper
as EM training with incomplete data. After a classifier is built and ready for
testing, the new inputs might contain missing elements. In this case, we no
longer reestimate the distribution parameters during the process of replacing
the missing elements. We simply test the hypothesis of the incomplete data
being created from one of the distribution functions (i.e., one of the classes)
and replace the missing elements based on the corresponding distribution
functions. This procedure is entitled as EM testing with incomplete data
in our paper. Note that in the above discussions, the EM training/testing
procedures seldom consider the interactions of data among different classes
in either reestimating the distribution parameters or replacing the missing
elements.

In this paper, we propose the EM training and the EM testing procedures
based on a neural network inversion technique for improving the training
accuracy using incomplete data and the classification accuracy in testing new
incomplete data. A similar approach based on exhaustive search of missing
values instead of our proposed systematic network inversion method has been
proposed [12]. Our approach alleviates the great sensitivity of the classifier
performance to the assumption made about the probability density function,
and more importantly, the missing value replacements take into account of the
data interaction (discrimination) among different classes. Section 2 will give
a brief review of the neural network inversion technique and its relationship
to the maximum a posterior (MAP) estimation of the missing elements. The
application of the proposed EM training and EM testing procedures to the
classification of IRIS data is presented in Section 3. Finally, in Section 5, the
concluding remarks are given.

2 Network Inversion of an MLP

The forward system dynamics in the retrieving phase of an X-layer feedfor-
ward multilayer perceptron (MLP) can be described by the following iterative

24

equations (for 1 < i < Ni+i, 0 < / < L — 1):

N, N,

i = i ;'=o

Oi(l + l) = /(iü(/+l)) (1)

where a,j(l) (uj(l)) denotes the activation value (net input) of the jth neuron
at the Ith layer; 6j(l) (or wi0{l)) denotes the bias of the jth neuron at the Ith

layer; WiAl) denotes the weight value linked between the ith neuron at the Ith

layer and the jth neuron at the (/— l)th layer; and / is the nonlinear activation
function (usually sigmoid). The inputs x are denoted as {aj(0),Vj}, and the
outputs y are denoted as {oi(L),Vi}.

2.1 Back-Propagation Network Learning

The learning phase of an MLP uses the back propagation learning rule, an
iterative gradient descent algorithm designed to minimize the mean squared
error E between the the desired target vector {U} and the actual output
vector {oi(L)} [11]:

dE
«y(0«=««(0-'iä^ (2)

where

NL , NL

2

1 NL NL

E = E({Wij(l)}, {Oi(0)}) = « £ ft - <L)f = - £ (U - yi)
2. (3)

t=i

2.2 Network Inversion of an MLP

The inversion of a network will generate the input vector x = {oj(0)} that
can produce a desired output vector. By taking advantage of the duality
between the weights and the input activation values in minimizing the mean
squared error E (see Equation (3)), the iterative gradient descent algorithm
can again be applied to obtain the desired input vector x [8, 5].

dE dE
Oj(0)^aj(0)-^^^ = xj-^—, V* (4)

The idea is similar to the back-propagation algorithm, where the error sig-
nals are propagated back to tell the weights the manner in which to change in
order to decrease the output error. The inversion algorithm back-propagates
the error signals to the input layer to update the activation values of input
units so that the output error is decreased. In order to avoid the input acti-
vation values, {o,(0)}, from growing without limits, a small modification of

25

the updating rule was usually made;

dE
„,.(<»<= „,.(<»-„ 5^, V* (5)

where Uj(0) = /-1(a;(0)) is a "pseudo" net input created to allow flexible
gradient descent search without limiting the dynamic ranges (e.g., usually we

assume 0 < o,-(0) < 1).

2.3 Maximum A Posterior (MAP) Classifier Training

In a classification application, it is normally assumed that the input vector,
x £ Hn, belongs to one of K classes, Ck, 1 < k < K. The main objective
of a classification task is to decide to which of the K classes the vector x
belongs. The decision can be made based on some forms of deterministic
discriminant function, e.g., the Euclidean distance measure. A more general
decision rule is based on the probabilistic decision, such as the maximum,
a ■posteriori (MAP) approach which guarantees the minimum classification
error. In a MAP approach, for each of the classes one requires to estimate
the posterior probability, P(Ck\x), which is usually computed via the Bayes'

rule:

P(C*|x) = P(X'pffiC° « P(*\Ck)P(Ck) (6)

where P(x\Ck) is the conditional distribution (also known as likelihood) and
P(Ck) is the a priori probability of the class Ck.

Since P{Ck) is relatively easier to compute, most conventional pattern
recognition literatures have been focusing on the research of estimating the
likelihood P(x\Ck). On the other hand, when an MLP is used for this classifi-
cation task, there is usually an input layer of n neurons corresponding to the
n-dimensional input vector x, one or two layers of "appropriately chosen" hid-
den neurons, and one output layer of K neurons with each one representative
of one of the K different classes (e.g., the desired binary output vector for 1st
class is t = [1,0,0,...,0], for 2nd class is t = [0,1,0,..., 0], etc.). It has been
shown that the continuous-valued output activations y = (2/1,2/2, ••■> VK) of
an MLP trained by the standard back-propagation learning, which minimizes
the mean squared error (MSE) between the actual outputs y and the desired
binary targets t, can be directly interpreted as a least squares estimate of the
posterior probabilities {P(C*|x), k = 1,...,K} [10, 13].

2.4 Maximum A Posterior Estimation of Missing Ele-
ments from Network Inversion

In a neural network based classification task, to find the missing elements
x(m), given the observed elements x(°> and the hypothesized class Ck of
the incomplete data x, the network inversion algorithm can be applied in

26

a straightforward manner. Basically, we perform the gradient descent search

on the missing elements x(m) = {as!- }:

J.m) (»0

ox)- '

while keeping the observed elements x(°) intact during the iterative inversion

of the missing elements {E:- }•
It is interesting to note that simply performing the iterative inversion

of the missing elements maximizes the posterior classification probability
P(Cfc|x) = ,P(CJfc|x(m),x'0',)I but not actually maximizing the posterior prob-
ability of estimating the missing elements P(x(m)|x(°), Cj.). More specifically,
it can be easily shown by Bayes rule that

P(x(m)|x(°),CJt) aP(Ci|x(m),x(o)) P(x<m)|x(°>). (8)

Therefore, the iterative inversion search can be regarded as a MAP search of
the missing elements x^m> under the approximate assumption that P(x(m)|x'0')
is uniform. On the other hand, the standard EM algorithm finds the con-
ditional expectation values E[x^m'\x^°',Ck] for the missing elements. In the
case of the Gaussian distribution, this replacement can be regarded as being
estimated via a maximum likelihood (ML) criterion.

A more correct MAP approach to the estimation of x(m' would be the
maximization of the product term of Eq. (8), where an adequate and differ-
entiable formulation of P(x(m'|x(°)) is required.

3 EM Testing and Training via Network In-
version

We used in our simulations the IRIS data set [3], the best known database
in pattern recognition literature, which contains 3 classes of 50 4-dimensional
instances each, and each class refers to a type of IRIS plant.

3.1 EM Testing of IRIS Data

We trained an one-hidden layer MLP (4 inputs, 2 hidden units, and 3 outputs)
with 90 IRIS complete training data (30 data for each class). The accuracy of
this network reached 98.3% after 1000 sweeps of training when tested on the
remaining 60 complete data (20 data for each class). Based on the trained
neural network, we then tested on data with missing elements of size one or
two created from these 60 complete data. To have a statistically significant
testing, "all" possible missing patterns were generated. For examples, in case
of one missing element, we generated 240 data (4 possible missing patterns
for each testing data); while in case of two missing elements, we generated
360 data (6 possible patterns for each testing data).

27

Classification Accuracy Standard EM Inversion EM

No Missing (60 data) 98.3 % 98.3 %
One Missing (240 data) 96.5 % 96.5 %
Two Missing (360 data) 83.0 % 86.0 %

Table 1: Comparative simulation results (percentages of classification accu-
racy) for IRIS data classification using EM testing.

Two approaches were used in the comparative studies for EM testing. The
first one is the standard EM testing, where the missing elements were replaced
by the conditional expectations .Z?[x(m'|x(0', C*] of all three classes k = 1, 2, 3.
The joint data distributions P(x|Ct) are assumed to be single-mode Gaussian
distributed (it is also possible to use mixture Gaussian distribution [4] or
more sophisticated nonparametric density estimator, e.g., projection pursuit
density [6]), i.e.,

P(x|Ct) = P(x(m\x(°)|Ct) = N(ßk, SO, k = 1,2,3, (9)

where the mean vector pi and covariance matrix Sjt were pre-estimated based
on the 30 complete training data for k-th class (no further reestimations based
on the incomplete data were done).

After the missing elements were replaced, we then tested the newly com-
pleted data for classification. In our simulations, we sent the data to the
trained neural network to perform a maximum a posterior (MAP) classi-
fication, i.e., selecting the one with largest output activation value yt =
P(Cjfc|x(m),x(0'). We could also send this newly completed data to the pre-
estimated density function (e.g., Gaussian distribution) for an ML classifica-
tion, selecting the one with largest likelihood P(x^m\ x'°'|C^).

The second approach was based on the proposed neural network inversion
technique to obtain the estimation of the missing elements (see Eq. (7)). After
the inversion process converged, trained neural network directly reported the
classification posterior probabilities y* = P(Ck\xSm\ x(°)) for each individual
class.

The comparative performance of these two approaches is shown in Table
1. Note that, our proposed inversion EM achieves better performance when
two missing elements are present. For one missing element case, due to the
highly separated class distribution of IRIS data, both methods can recover the
missing elements and perform the correct classification without difficulties.

3.2 EM Training of IRIS Data

For the EM training, we started with training an one-hidden layer MLP (4
inputs, 2 hidden units, and 3 outputs) with 30 IRIS complete training data (10

28

data for each class). This partially trained neural network was supplemented
in training by additional 30 incomplete data (also 10 data for each class) with
one or two missing elements of random pattern for each data.

Two approaches were again used in the comparative studies for EM train-
ing. The first one is the standard EM training, where the missing elements
were "iteratively" replaced by the conditional expectations 2?[x(m)|x(°), Cj]
of its own class Ck- The distribution parameters 0jt, k = 1,2,3, were also
iteratively updated based on the originally 30 complete data and the newly
completed 30 incomplete data. We again assume the joint data distributions
of 3 classes are single-mode Gaussian distributed as given in Eq. (9). After
the iterative replacements of the missing elements (of 30 incomplete data)
converged, we combined this set with the originally complete data to retrain

the neural network.
The second approach was based on the proposed neural network inversion

technique to iteratively obtain the estimation of the missing elements (see Eq.
(7)), starting from the neural network trained with only 30 complete data.
After the inversion replacements of the missing elements (of 30 incomplete
data), we then combined this set with the originally complete data set to
retrain the neural network (in our case, 10 training sweeps were tried each
round). Based on the retrained neural network, another round of inversion
replacements of the missing elements was carried out, and another round of
neural network training was then be performed. This process iterated (usually
10 to 20 rounds) until convergence.

The comparative performance of these two approaches for 90 independent
and "complete" testing data is shown in Table 2. The reported classification
accuracy was computed based on the average over 10 trials using different
random missing patterns. Note that both EM training methods (standard
and inversion) with one missing element can achieve the same performance
94.4% achieved when using 60 complete data without any missing element,
and the performance is better than trained with only 30 complete data alone

88.6%.
Interesting enough to see that the inversion EM training slightly outper-

forms the standard EM with two missing elements, and both of them achieve
better performance achieved when using 60 complete data without any miss-
ing element. This is possibly due to the outlier suppression capability of EM
procedures, which replace the (noisy) missing elements with clean conditional
expectations or network inversion values.

4 Conclusion

We propose EM training and testing procedures based on a neural network
inversion technique. Our approach relaxes the assumption made about the
probability density function, and more importantly, the missing value re-
placements take into account of the discrimination among classes. Simula-

29

Classification Accuracy Standard EM Inversion EM

60 complete 94.4 % 94.4 %

30 complete and
30 incomplete (missing one) 94.4 % 94.4 %

30 complete and
30 incomplete (missing two) 94.8 % 95.6 %

Table 2: Comparative simulation results (percentages of classification accu-
racy) for IRIS data classification using EM training.

tion results for classifying the IRIS data indicate the potential superiority of
the inversion EM over the standard EM. Simulations of the proposed inver-
sion EM is to be tested on a larger set of heart-attack data to be classified.
Comparison with mixture Gaussian joint distribution and more exact MAP
estimation of the missing elements will be carried in the near future.

References
[1] D. T. Davis, Z. Chen, L. Tsang, J. N. Hwang, and A.T.C. Chang. Re-

trieval of snow parameters by iterative inversion of a neural network.
IEEE Trans, on GeoScience and Remote Sensing, 31(4):842-852, July

1993.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. J. Royal Statistical Society

Series B, 39:1-38, 1977.

[3] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis,

Wiley, New York, 1973.

[4] Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete
data via an EM approach. In Proceedings of Advances in Neural Infor-
mation Processing Systems 6, J. D. Cowan, G. Teasuro and J. Alspector
(eds.), Morgan Kaufmann Publisher, San Francisco CA, 1994.

[5] J. N. Hwang and C.H. Chan. Iterative constrained inversion and its ap-
plications. 24th. Conf. on Information Systems and Sciences, Princeton,

pp. 754-759, March 1990.

[6] J. N. Hwang, S. R. Lay and A. Lippman. Nonparämetric multivariate
density estimation: a comparative study. To appear in IEEE Trans, on
Signal Processing, October 1994 (in press).

30

[7] B. H. Juang. Maximum-likelihood estimation for mixture multivari-
ate stochastic observations of Markov chain. AT&T Technical Journal,
64(6):1235-1249, July-August 1985.

[8] A. Linden and J. Kindermann. Inversion of multilayer nets. In Proc.
Int'l Joint Conf. on Neural Networks, II 425-430, Washington D.C., June

1989.

[9] R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data.

Wiley, New York, 1987.

[10] M. D. Richard and R. P. Lippmann. Neural network classifiers estimate
Bayesian a posterior probabilities. Neural Computation, 3(4):461-483,

1991.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning inter-
nal representations by error propagation. Parallel Distributed Processing
(PDP): Exploration in the Microstructure of Cognition, Vol. 1, Chapter
8, pp. 318-362. MIT Press, Cambridge, Massachusetts, 1986.

[12] M.L. Southcott and R.E. Bogner. Classification of incomplete data using
neural networks. In Proceedings of the Fourth Australian Conference on
Neural Networks (ACNN '93).

[13] E. Yair and A. Gersha. Maximum a posterior decision as evaluation of
class probabilities by Boltzmann perceptron classifiers. Proceedings of
the IEEE, 78(10):1620-1628, October 1990.

31

OSA — A TOPOLOGICAL ALGORITHM FOR
CONSTRUCTING TWO-LAYER NEURAL NETWORKS

Fabio Massimo Frattale Mascioli Giuseppe Martinelli

INFO-COM Dept. - University of Rome
Via Eudossiana, 18; 00184 Roma - ITALY

Tel: + 39-6-44585488/9; Fax: + 39-6-4873300
e-mail: mascioli@infocom.ing.uniromal.it

Abstract— In this paper we present a constructive training algorithm for
supervised neural networks: OSA (Oil-Spot Algorithm). It builds a two-layer
neural network by involving successively binary examples. Its main learning
rule, based on topological theorems on the cuts of a binary hypercube, is
discussed. A convenient treatment of real-valued data is possible by means of a
suitable real-to-binary codification. For binary target functions that have
efficient halfspace union representations, the constructed networks result
optimized in terms of number of neurons with respect to other constructive
algorithms, as shown.

INTRODUCTION

Constructive training algorithms for supervised neural networks [1-10, 14-1<J]
have been recently proposed in technical literature to circumvent the well-
known problems of Back-Propagation, and related approaches (critical choice a
priori of the architecture, local minima in the utilized gradient descent
techniques and computational cost). In the case of two-class problems, several of
them are based on the idea of trying to classify, at each step, as many example
of one class as possible, keeping all the examples of the other class correctly
classified. Also in the present case we apply this approach. However, with
respect to the algorithms proposed in technical literature, we will mainly rely
on graph theory solutions rather than learning in the usual neural sense (i.e.,
using local information and a simple learning rule). Namely, OSA (Oil-Spot
Algorithm) is a constructive algorithm characterized by directly controlling the
separating hyperplanes of the decision region. This result is obtained by relying
on a topological approach, based on the representation of the mapping onto the
binary hypercube of the input space and on the application of a learning rule
derived by topological theorems. Our method yields the separating
hyperplanes, taking account of both the training set and a smoothing
generalization rule for covering the unspecified part of the mapping.
Consequently, the separating hyperplanes are strictly related to the mapping of
interest and they are introduced, as necessary, step-by-step under the strategy of
separating at each step the maximum number of vertices. Therefore, the number
of neurons, which coincides with that of these hyperplanes, is optimized.
However, it is important to point out that this optimization only holds for

0-7803-2026-3/94 $4.00 €5 1994 IEEE 32

target functions that have efficient (small) halfspace union representations (a
counter-example is the Parity function) [10].

DEFINITIONS AND ARCHITECTURE OF THE NEURAL NETWORK

Representation of the Mapping onto the Binary Hypercube

The problem of interest is described by a training set of M examples Pr

(r=l,2,..,M). The r-th example Pr is an input-output pair identified by N values

Xi(r)={0,l} (i=l,2,..,N) of the input variables and the corresponding desired
output or={0,l}. The mapping is therefore represented in the input space by an

N-dimensional binary hypercube CN={(Xi,X2,..,XN)e (0,1}N), whose vertex Vr

(which correspond to example Pr) is labelled with the value of the r-th desired
output or. From a topological point of view, CN is a connected graph where the
nodes correspond to the vertices and the arcs to the edges. We assume that the
training set has no internal conflicts (different outputs for the same input). Since

CN has 2N vertices and in general M<2N, M vertices of CN will be labelled

with a value '0' ('negative') or '1' ('positive'), while the remaining 2^-M ones
will be 'd' ('don't care') vertices.

Classification of the Hypercube Edges

A vertex Vr is represented by a vector having as components the N coordinates
Vr(i)={0,l} (i=l,2,..,N). An edge of CN is the closed line segment joining two
contiguous vertices Va and Vb, whose coordinates differ by only one component.
The orientation of the edge from Va to Vb (Va->Vb), that can be either positive
or negative, is measured by:

v,*=i[v»(o-v,«-)].
(=1

Two edges are parallel if the corresponding pairs of vertices differ by the same
component. Two parallel edges are congruent if their orientation coincides. We
classify the edges of CN in nine types. The edge of type 1 joins a '0' vertex to a 1'
vertex; we denote it by '0-»l'. Similarly: 'd-»l', '1->1', 'l->0', l->d', 'd-H>0',
'0->d', '0-»0' and 'd->d' are respectively types 2, 3, 4, 5, 6, 7, 8 and 9.

On the Positive Cuts of the Hypercube

An entirely specified mapping is represented by a complete Boolean function
/:BN->{0,1}. In this case all the vertices of CN are labelled with '0' or 1'. When
a neural network is able to solve the given mapping, we define its decision region
to be DR={XeBN//(X)=l(. DR corresponds in the hypercube CN to the set of
positive vertices. Usually, the given training set specifies only partially the

mapping, i.e. 2N-M vertices of CN are labelled with 'd'. Let V=V+UV"UVd be
33

the set of hypercube vertices, with V+, V and V" respectively the set of
positive, negative and don't care vertices (thus, the cardinality of the set V is

equal to 2^ and that of the set V+UV" to M). We define a positive cut of CN to

be a subset of V+UV", which can be strictly separated by a hyperplane from its
complement, i.e. the set of the remaining vertices. The previous hyperplane is
the boundary of the cut. Let us call boundary edges those connecting vertices of
the positive cut to vertices of its complement. We remark that type 3 ('1—>1')
and type 8 ('0—>0') can never be boundary edges. Each positive cut is therefore a
binary halfspace region that contains only positive or don't care vertices.
Topologically, it is a connected subgraph of Cj\f.

Implementation of a Generalized Decision Region with a Two-Layer Net

The union of all the positive cuts regarding a mapping defines a topological
region that contains all the positive, several don't care, but none negative
vertices of Cjsj. We will denote this region as the generalized decision region

GDR = {Xe ßN//(X)=l or d), since it incorporates don't care vertices as a
consequence of the adopted generalization rule.

Figure 1:
Architecture of the two-layer feedforward neural network.

We consider a single hidden layer feedforward net, where all neurons are
perceptron-like units (see fig. 1). There is a direct correspondence between
hidden neurons and hypercube cuts. In fact, each hidden neuron implements a
decision region that is the halfspace WX+O>0, where W is the vector of
connection weights, © the threshold and X the input vector. The boundary of this

34

halfspace is the hyperplane WX+0=O. The single neuron of the second layer has
the task of grouping the halfspace regions of the hidden neurons by an OR
operation, in order to form the desired topological region. Therefore, the neural
network implements the GDR if its hidden neurons realize all the positive cuts
required by the mapping.

RATIONALE OF THE OIL-SPOT ALGORITHM

The goal of the algorithm we propose is to determine all the positive cuts
(halfspaces) which constitute the generalized decision for the given problem.
For achieving this result the algorithm mainly relies on four topological
theorems on the cuts of a binary hypercube: Lemmas 1, 2 and 3 of ref. [11] and
Lemma 7 of ref. [12]. Lemma 1 states that a boundary hyperplane can be always
relocated in order to remove a vertex from a halfspace to include it in the
complementary one. Lemmas 2 and 3 yield the conditions which guarantee for a
set S of vertices the existence of a hyperplane HP which separates it from its
complement CS. Lemma 7 has been utilized in the study of the decision regions of
multilayer perceptrons and resumes the previous Lemmas. In summary, it states
that any two parallel edges which cross a boundary hyperplane must do so in
the same direction.

The described Lemmas give us the possibility to draw up the learning rule
which is the basis of the oil-spot algorithm. It is constituted by two conditions:

1) All the vertices in a halfspace S must be the nodes of a connected subgraph of

CN-
2) Any two parallel boundary edges of S must be congruent.

Y.: 011 a

Vv:001
b

V. : 111 a.
V : 110

P : 101

(a)

V :010 V.: Oil a

V :100

Vv:001

y : 100

Figure 2:
The vertices of C3 marked with black dots correspond to T vertices,
the others to '0'. In this case all the boundary edges in figure are of type
1.
(a) It is possible to determine a positive cut which contains all the four
1' vertices.
(b) A halfspace that contains all the four 1' vertices does not exist.

35

Let us comment this rule with two intuitive graphical examples, where we
want to determine if some vertices of a cube C3 are contained in a positive cut S
(see fig. 2).

In the first case (fig. 2.a) the halfspace which contains the vertices Vc, Ve, Vg
and Vh can be strictly separated. In fact, they lie in a connected subgraph of C3
and the three pairs of parallel boundary edges (Vd->Vn and Va^>Ve; Vf->Vn

and Va->VC; Vd->VC and Vf-»Ve) are congruents (Vdh = Vae=100;
Vfh=Vac=010; and Vdc=Vfe=-001).

In the second case (fig. 2.b), instead, a hyperplane that separates Va, Ve, Vg

and Vh does not exist, because the two parallel boundary edges Vf->Vn and
Vc->Va are not congruents (in fact: Vfh=010 and Vca=-010).

THE OIL-SPOT ALGORITHM (OSA)

Procedure for Determining a Positive Cut

A convenient strategy for determining a positive cut is to construct step-by-step
a set of vertices, initially composed by only one positive vertex, controlling that
the growth meets the two basic conditions of the learning rule.

Step 1. We choose a vertex with label '1' which will be denoted as a candidate
vertex. It can form with the contiguous vertices three types of edges which are
oriented towards the considered candidate. More precisely: type 1, type 2 and
type 3 edges ('0-41', 'd->l', and '1-41'). We call critical edges those of type 1
('0-»l'). The critical edges can be only boundary edges, i.e. there cannot be
critical edges inside a positive cut. If the chosen vertex has only '0' contiguous
vertices, we can directly conclude that there exists a positive cut containing only
it (in fact, a hyperplane that strictly separates a single vertex of a hypercube
always exists).

Step 2. In agreement with the first basic condition, we add to the previous
vertex a further contiguous one with label T. The new candidate vertex is also
characterized by three types of critical edges. When a critical edge of the new
candidate is parallel to a previously considered one, the two edges must be
congruent in agreement with the second basic condition. Only in this case the new
candidate is accepted as a member of the set we are determining, otherwise it
must be rejected. Since the rejected candidates must remain outside the set,
during a positive cut determination we relabel them with '0'.

Step 3. Excluding the vertices already visited, we repeat recursively Step 2. In
this way, the candidates propagate as an "oil-spot".

Step 4. The oil-spot propagation terminates when all the last considered
candidates have only '0' or rejected contiguous vertices. The output of the entire
process is the set S which meets the two basic conditions.

36

Adopted Generalization Rule

It consists in considering as '1' all the 'd' vertices which have at least a
contiguous one with label T, so that the unspecified part of the mapping results
as smooth as possible.

From a Positive Cut to a Hidden Neuron

The coefficients of the linear equation representing the hyperplane HP which
separates S from CS can be determined by a geometrical method. We consider a
system of coordinates with their origin at the center Co of the hypercube Q\f.
Let Q be the unknown vector with the origin in Co and orthogonal to HP. Q is
characterized by being as close as possible to the vertices in S and as far as
possible from the remaining vertices. Consequently, Q is the centroid of the
vertices in S. The connection weights of the k-th hidden neuron to be determined,
coincident with the coefficients of the hyperplane HP, are therefore given by:

Wik=[?vi(lHi(0)]ß i=l,2,..,N; (1)
where Ä-i(y) is the number of vertices in S which have the i-th component equal
to y (y={0,l}) and ß is an arbitrary positive constant. The last parameter to be
determined is the threshold 0 of the neuron. This quantity is characterized by
the property that the neuron must go "on" when the input corresponds to one of
the vertices of S and "off" otherwise. If the quantity entering the activation
function of the neuron when the input corresponds to the vertex Vr is:

the previous condition requires:
zr>©k when Vre S
zr<G>k otherwise.

Since the set S can be separated by a hyperplane, it is sufficient to choose:

Sk = min (z r) - -mini W ik | ®
Vr*S 2 i

Rarely it happens that some vertices of S lie on HP together with some
vertices of CS. For these vertices it results zr=0]<, consequently they are not
strictly separated by HP. In this case OSA removes them from S and considers
them as not visited. The resulting S' is properly a positive cut.

Network Construction

In general (nonlinear problem), after the construction of the first neuron several
"1" vertices of C^ do not belong to the determined positive cut (rejected or not
yet visited). In that case, starting from them, OSA repeats the construction of
further hidden neurons until all the "1" vertices are enclosed in a positive cut. At
the end of the constructive process, OSA adds the second layer neuron that

37

implements the OR operation (i.e., the output neuron). We remark that, given
the same problem, if we change the first candidate vertex OSA constructs a
different network. We have experimented by simulations that, in these cases,
the number of hidden neurons is slightly affected.

Network Robustness

Since during the successive determinations of positive cuts only the first
candidate must be not visited, a vertex can belong to more than one cut (i.e., an
example can be satisfied by more than one neuron).

Convergence to Zero-Errors

The determination of positive cuts terminates only when all the T vertices
are visited, i.e. when all the given examples are satisfied.

Computational Cost

OSA considers as "1" the minority output in the training set. Therefore, the
number of "1" is at the most M/2. The main operations of OSA are visits in a
graph and algebraic additions (no multiplications). In the worst case, for
determining a positive cut, the number of operations is NOPw =(M/2)(N-
l)((M/2)-l). In practice, the number of operations for each constructed neuron is
much less than NOPw- In the case of small halfspace unions, OSA constructs
optimal size networks, hence the total computational cost can be considered
polynomial.

APPLICATIONS AND COMPARISONS

4-Cube Cuts. The problem to be solved regards the 4-cube non-isomorphic cuts
[11] (fig. 3). For all the topological configurations that can be strictly separated
by one hyperplane, OSA constructs a single-neuron network.

"t=!*

^i=3>.

^J
(a) (b)

Figure 3:
An example of two non-isomorphic cuts of the 4-cube.

38

Random Boolean Functions. In this case the problem to be solved regards a
Boolean function of 6 variables; we have generated at random 100 Boolean
functions of this type. As expected, a single hidden layer network is always
sufficient. The average number of hidden neurons found is 8.02+1.98, which is
quite close to the one obtained by Marchand et al. [6] (7.28±0.82) and
significantly better than the results presented in ref. [14] (20.5+3.9) and [15]
(about 18 units in 4 layers).

Parity Functions. In the case of Parity functions (tested from N=2 to N=8), OSA

constructs networks with 2v^~l) hidden neurons. This result is in agreement with
the well-known property which states that an exponential number of neurons is
required by networks based on halfspace unions for solving Parity.

Circular Region. The problem regards in this case the approximation of a
circular region of 12 pixels inside a 6x6 grid (36 pixels). The X-Y coordinates of
each cell are preliminarly converted from real to binary notations; therefore the
inputs are 6. OSA constructs a neural network with only 4 hidden neurons,
simpler than that obtained with other algorithms, as for instance the BLTA [8].

Twin spirals. The twin spirals problem (separating 194 pixels from two
interlocking spirals, see fig. 4.a) is an extremely hard problem for algorithms of
the Back-Propagation family to solve [13]. By means of OSA we obtain a
solution with 44 hidden neurons. We preliminarly transform the real-valued
input data into binary form by a suitable codification, which preserve the
neighborhood of data (i.e., two pixels which are contiguous in the real input
space are coded into two contiguous vertices of the N-cube). The number of inputs
is consequently 16 instead of 2. The resulting decision region is shown in fig. 4.b.
It is satisfactory. The time required for building the network (with a 486-based
computer) is less than ten seconds. We note that a solution of the same problem
with Upstart [2] and Cascade-Correlation [4] requires about ten minutes of
elaboration time in the same conditions. Finally, we remark that the only other
solution to twin spirals using a single hidden layer architecture, that we are
aware of, requires 50 hidden units [16].

(a) (b)
Figure 4:

(a) The twin spirals problem training set (194 pixels in a 32x32 grid);
(b) The resulting decision region obtained with a 44 hidden neuron net.

39

CONCLUSIONS

OSA is characterized by a learning rule which relies on a topological
approach. It operates with binary data directly in the input space (binary
hypercube). A suitable codification, that preserves the contiguity of data, can be
adopted with good results in real-valued problems. As illustrated in
simulations, the constructed nets are often simpler than those obtained with
other methods. It is moreover important to note that OSA does not need of
specific parameters to set or stopping criterion to use during training. Finally, we
remark that in simulations the elaboration time required by the algorithm
turned out to be lower than we expected. Further work in progress regards the use
of the algorithm to more significant examples related with actual applications
and its extension to the multiple output case.

Acknowledgements. This work was supported by MURST and CNR. The
authors thank F. Cerra, F. Cincioni, A. Rizzi, and A. Sommella for software
simulations.

40

REFERENCES

[1] J. Nadal: "Study of a growth algorithm for neural networks", Int. T. Neural
Syst.. Vol. 1, 1989, pp. 55-59.

[2] M. Frean: "The upstart algorithm: a method for constructing and training
feedforward neural networks", Neural Computation. Vol. 2, 1990, pp 198-
209.

[3] G. Martinelli, L. Prina Ricotti, S. Ragazzini, and F.M. Mascioli: "A
pyramidal delayed perceptron", IEEE Trans, on CAS. Vol. 37, 1990, pp. 1176-
1181.

[4] S.E. Fahlman, C. Lebiere: "The cascade-correlation learning architecture", in
Adv. in Neur. Inf. Proc. Syst. 2. D.S. Touretzky, Los Altos, Morgan-
Kaufmann, 1990, pp. 524-532.

[5] E. Baum: "On learning a union of halfspaces", I. Complexity. Vol. 6,1990 pp
67-101.

[6] M. Marchand, M. Golea, and P. Rujän: 'A convergence theorem for sequential
learning in two-layer perceptrons", Europhysics Letters. Vol. 11, 1990, pp
487-492.

[7] G. Martinelli and F.M. Mascioli: "Cascade perceptron", IEE Electronics
Letters. Vol. 28, 1992, pp. 947-949.

[8] D.L. Gray and A.N. Michel: "A training algorithm for binary feedforward
neural networks", IEEE Trans, on Neural Networks. Vol. 3,1992, pp. 176-194.

[9] G. Martinelli, F.M. Mascioli, and G. Bei: "Cascade neural network for binary
mapping", IEEE Trans, on Neural Networks. Vol. 4,1993, pp. 148-150.

[10] M. Marchand and M. Golea: "On learning simple neural concepts: from
halfspaces intersections to neural decision lists", Network: computation in
neural systems. Vol. 4,1993, pp. 67-89.

[11] M.R. Emamy-Khansary: "On the cuts and cut number of the 4-cube", L
Combinatorial Theory. Series A, Vol. 41, 1986, pp. 221-227.

[12] G. J. Gibson and C. F. N. Cowan: "On the decision regions of multilayer
perceptrons", Proc. of the IEEF. Vol. 78, No. 10, 1990, pp. 1590-1594.

[13] K.J. Lang and M.J. Witbrock: "Learning to tell two spirals apart", Proc. of the
1988 Connectionist Models Summer School. Morgan Kaufmann, 1988.

[14] M. Golea and M. Marchand: "A growth algorithm for neural network
decision trees", Europhys Lett.. 12, 1990, pp. 205-210.

[15] M. Mezard and J.P. Nadal: "Learning in feedforward layered networks: the
tiling algorithm", I. Phys. A. 22, 1989, pp. 2191-2203.

[16] E.B. Baum and K.J. Lang: "Constructing hidden units using examples and
queries", NIPS3. 1990, pp. 904-910.

41

GENERALIZATION PERFORMANCE OF
REGULARIZED NEURAL NETWORK

MODELS

Jan Larsen and Lars Kai Hansen
The Computational Neural Network Center

Electronics Institute, Building 349
Technical University of Denmark

DK-2800 Lyngby, Denmark

Abstract. Architecture optimization is a fundamental problem of
neural network modeling. The optimal architecture is defined as
the one which minimizes the generalization error. This paper ad-
dresses estimation of the generalization performance of regular-
ized, complete neural network models. Regularization normally
improves the generalization performance by restricting the model
complexity. A formula for the optimal weight decay regularize!- is
derived. A regularized model may be characterized by an effective
number of weights (parameters); however, it is demonstrated that
no simple definition is possible. A novel estimator of the average
generalization error (called FPER) is suggested and compared to
the Final Prediction Error (FPE) and Generalized Prediction Er-
ror (GPE) estimators. In addition, comparative numerical studies
demonstrate the qualities of the suggested estimator.

INTRODUCTION

One of the fundamental problems involved in design of neural network mod-
els is architecture optimization aiming at high generalization performance. In
this paper the generalization measure is defined as the average generalization
error, i.e., the expected squared error averaged over all possible training sets
of size TV, with TV being the number of training samples. The average gener-
alization error, T, can be decomposed into three additive components [2], [8]:
r = cr2 + MSME + WFP, viz. the inherent noise variance, the mean square
model error, and the weight fluctuation penalty1. The inherent noise variance
is caused by noise on the data which - per definition - cannot be modeled.

'The MSME and the WFP arc related to the squared bias and the variance,
respectively. See [2] for a definition of bias and variance.

0-7803-2026-3/94 $4.00 © 1994 IEEE 42

Presence of MSME reflects the lack of modeling capability of the neural net-
work for modeling the current data, i.e., the network is an incomplete model
of the data generating system. Finally, the WFP reflects the increase in av-
erage generalization error caused by fluctuations in the estimated weights,
which stem from the fact that the weights are estimated from a given finite
training set.

Architecture optimization can be viewed as a bias/variance trade off [2],
[11] or equivalents a MSME/WFP trade off: The MSME is reduced when
increasing the network complexity2 while the WFP typically3 increases. The
literature provides a variety of methods for performing this trade off, in-
cluding architecture pruning and growing schemes, as well as regularization

techniques.

TRAINING AND GENERALIZATION

Consider modeling the data generating system:

y(k)=g(x(k))+e(k) (1)

where k is the discrete time index, y(k) is the scalar output signal, g(-) con-
stitutes a nonlinear mapping of the p-dimensional input signal x(k) (column
vector), and e(k) is an inherent noise signal.

Assumption 1 The input signal x(k) is assumed to be a strongly mixing4

strictly stationary sequence and the inherent noise e(k) is assumed to be a
strictly stationary sequence independent on the input, white, with zero mean,

and finite variance, cr^.

The neural network model of the system in Eq. (1) is given by

y(k)=f(x(k);w) + e(k;w) (2)

where f(-;w) defines the mapping of the neural network parameterized by
the m-dimensional weight vector w, and e(k;w) is the error signal.

Assumption 2 The model is assumed complete [8, Def. 6.3], i.e., there
exists a true weight vector, w°, so as to

\fx : f(x;w°) = g(x) (3)

In general, only little a priori knowledge of the data generating system is
available, i.e., most neural network models are incomplete, which result in
non-zero mean square model error. However, a multi-layer perceptron neural

2This statement is only true for nested families of network architectures. More-
over, MSME may remain unchanged when adding irrelevant complexity.

3It should be emphasized that it is possible to give simple examples where the
WFP actually decreases when adding extra complexity [8, Ch. 6.3.4].

4Loosely speaking, i.e., the dependence of x(fc) and x(k + r) vanishes as |r| —► oo.

43

network with many hidden neurons is capable of approximating a large class of
functions, thus MSME may be small relative to a~ + WFP, and the model may
be regarded as quasi-complele. When dealing with cases where the complete
model assumption is dubious, it is suggested to estimate the generalization
performance by using the GEN estimator [7], [8].

Define the training set of Ar samples by T = {x(k); y(k)}, k = 1, 2, • • •, N.
The model is estimated by minimizing a cost function being the sum of the
usual mean square cost and a weight decay regularizer5:

CN{W) = SN(w) + wTRw (4)

where SN(w) = N'1 ^=1 e2(k;w) = A^1 ^=] [y(k) - f(x(k);w)f is the
mean square cost and R is a ??? x m symmetric, positive semidefinite regu-
larization matrix. Standard weight decay regularization is obtained by using
R — KI, where K > 0 is the weight decay parameter and I the identity ma-
trix. The presented theory is not restricted to the chosen cost function, thus
analogous results can be obtained when e.g., using log-likelihood cost func-
tions and more general rcgularizers, r(w;n), where ?'(•) is a regularization
function parameterized by K.

The weights of the estimated model are denoted the eslimated iveights,

i.e.,
w = arg minCV(u)) (5)

w

Also define the expected cost function:

C(w) = E {CN(w)} = E {e2{w)} + wTRw (6)

where E{-} denotes expectation w.r.t. the joint input-output probability den-
sity function. Under mild regularity conditions (see e.g., [8, Ch. 5], [12])
limAf-^co CJV(IV) = C(w), and the estimated weight vector w becomes a con-
sistent estimate (A^ —> oo) of the optimal weight vector: w* = arg min^ C(w).
Since the model is assumed complete w* is identical to w° when omitting
regularization. However, regularization imposes a bias of the optimal weights
towards 0.

The generalization error of the estimated model is defined as the expected
squared error on an test sample, [:r;j/], independent on the training samples,
i.e.,

G(w) = E {e2(w)} = E {[}/ - f{x- w)f) (7)

It turns out (see e.g., the discussion in [8, Sec. 6.3.2]) that G(w) is not neces-
sarily a reliable measure of the model quality since it depends on the actual
training set through w. In addition, it is not possible to obtain estimates
of G(w) without perfect knowledge of the joint input-output distribution.
Hence, the appropriate model quality measure is the average generalization

error, e.g., [8], [11]:
r = ET {G(w)} (8)

sT denotes the transpose operator.

44

where Er{-} denotes expectation over all training sets with N samples. That
is, averaging is w.r.t. fluctuation in w due to different training sets. Define
Tx = {x(k)} and % = {e(k)}. As the noise and the input are assumed
independent, the expectation w.r.t. T is carried out as6:

ET{G} = ETX{ETAG\TX}}} (9)

ESTIMATING THE AVERAGE GENERALIZATION ERROR

The objective of this presentation is to obtain an estimate of T defined in
Eq. (8) calculated in terms of quantities derived from the estimated model.
From a statistical point of view it is possible to set different quality require-
ments on the estimator. Here the following requirements are made:

Definition 1 The estimator starched for, T, is required to be consistent, and
unbiased to order 1/N, i.e., T —> T as N —»■ oo, and ET{T} = T + o(l/N),
where o(-) is the order function.

The basic tool for deriving an estimator are second order Taylor series ex-
pansions of the average training and generalization errors, as follows:

ET{SN(w)} » ET {SN{W
0
)} + ET\

dS"(™°} At
I dw

+Er{AwTHN(w")Aw} (10)

ET{G(w)} « ET {G(W°)} + ET (9GK) Aw\
{ dw J

+ET {AW
T
H(W°)AW} (11)

where Aw is the weight fluctuation Aw = w — w°, HN(W) is the Hessian
matrix of the mean square cost function, i.e.,

1 rfi <? I \ 1 _^_
HN{W)

= 2 dwdZ =N^ ^ W)^T^ w) ~ *(*■> w)<k'w) (12)

k=i

defining tj) as the instantaneous gradient vector of the model output, if)(k;w) =
df(x(k);w) I dw. Finally, # is the second derivative matrix of the model out-
put, #(&; w) = dij)(k; w)/dwT. Similarly, H(w) is the Hessian matrix of the
generalization error, given by

H{W) = \Wh^ = E{^{w)i,T{w)-^{w)e{w)} (13)

In order to ensure the validity of the Taylor series approximations it is required
that Aw is sufficiently small. As mentioned above w is a consistent estimate

6Note that expectation over the training set, T = {x(k);y(k)}, equals expecta-
tion over input and inherent noise samples, cf. the model definition Eq. (2).

45

of io*; however, w* does not. collapse onto w° unless R — 0. Consequently,
it is expected that the Taylor series are valid for sufficiently large N and
sufficiently small R.

The appendix below provides a brief evaluation of the individual terms of
Eq. (10), (11). The result is: For N > 2mi - m2,

ET{SN(w)} = ^(l-2"V?"2)+M' + °(1/yV) (14)

T = a'i(l + ^)+M + o(l/N) (15)

where ni\, m2 defines two different effective number of weighis :

mi = tr [Hiw^J-^w0)] , m2 = tr [H(W
0
)J-

1
(W

0
)H{W°)J-

1
(W

0
)} (16)

J(w) = H(w) + R is the Hessian matrix of the expected cost function which
is assumed to be invertible, and tr[-] is the trace operator.

M' = (w°)T RJ-\w°) (H(W°) + ~2Kl^K2) J-H™°)Rw° (17)

with K\, K> being 4th order moments, as shown by8:

Kx = E{(W,
T
-H) J-

1
(W

T
-H)} (18)

K2 = ^{(^V'T-H)j-1fTJ-1(^T-H)} (19)

M equals M' except that the term K\ is absent. In general, M and M' are
negligible compared to the remaining terms in Eq. (14), (15) when 1) using a
rcgularization matrix close to the optimal setting Eq. (24), and when 2) the
signal-to-noise ratio, V{g(x)}/a'^, is reasonable large.

Neglecting M, M' and eliminating of in Eq. (14), (15) leads to:

f = 7V
0
+m

|
2 ET {SN(W)} , N > 2mi - m2 (20)

N — 2mi -f m2

which is unbiased to o(\/N). Notice that elimination of cr'j introduces terms
proportional to TV--7, j > 1. This seems inconsistent; however, for practical
purposes the form is convenient since T typically is an underestimate of T
on the average. In the case of a complete linear model which is estimated
without regularization [3] and [8, Theorem 6.10] support this statement.

The suggested estimator may be viewed as an extension of the classical
FPE estimator [1], FPE = ET{SN(w)}(N + m)/(N - m), in which the

7If. is easily shown that m\ > mo > 0 thus 2r7i! — m2 > 0. Moreover,
1) mi = 77(2 = m. for R = 0 and H(w°) non-singular, and 2) mi — 0, rri2 —>■ 0 as

||R|| ^ oo.
8Ki, K2 are of order one, and limited by assumption. Further note that all

involved quantities are evaluated at w°.

46

number of weights m is replaced by the different effective number of weights,
m2 and 2m\ — m2. Moreover, the estimator can be interpreted as a special
version9 of the GPE estimator [10], [11] where the inherent noise variance is
estimated by: of = Er {Sjy(w)} N/(N — 2m\ + 1712)- In order to construct
a T-estimator from observable quantities, estimation of the noise variance is
indeed important. This problem is not directly addressed in [10], [11]. The
estimator suggested in [10] reads: of = Er {SN(W)} N/(N — mi), which
obviously differs from the one derived from Eq. (14). In conclusion - as
suggested in [9], [11] - it is not possible to define a single quantity mi which
expresses the effective number of weights in the model, since of should be
estimated from 2mi — m.2 rather than mi effective weights.

For practical purposes the quantities in Eq. (20) are estimated from ob-
served quantities. An unbiased o(l/N) estimator within the second order
Taylor series expansion Eq. (10), (11) is the the Final Prediction Error esti-
mator for Regularized models, as shown by:

FPER = Ar
N

nt TO2 ~ SN(w), N>2fh1- m2 (21)
N — 2mi + m2

where

mi = tr [jBTjv(*&)J^1(«i)] , m2 = tr [HN(w)J^(w)HN(w)J^(w)] (22)

and JN(W) = HN(W) + R is the Hessian matrix of the cost function which
is assumed to be invertible.

OPTIMIZING THE WEIGHT DECAY REGULARIZATION PA-
RAMETER

For simplicity, consider simple weight decay regularization, i.e., R= KI where
K is the weight decay parameter. As mentioned in the introduction, trading
off weight fluctuation penalty (WFP) and mean square model error (MSME)
leads to an optimal setting of K. In [6] this problem was addressed for linear
models and the following may be viewed as an extension of this work.

Inspecting Eq. (15) it turns out that10 M = MSME and WFP = <r^m2/N.
The optimal value, K0pt, is found by solving:

dWFP dMSME n

^- + -l^- = 0 (23)

As expected, limjv->oo WFP = 0, since it measures the contribution due
to a finite training set. Consequently, in order to reach the minimal aver-
age generalization error r = of the restriction limjv-foo MSME = 0 should
be met. The «-dependence of the individual elements of K\ is (A; + K)"

1

9Notice that this coincidence is based on various important assumptions, e.g.,
the model being complete and the negligibleness of M.

10Notice when determining an optimal n, M is not neglected in Eq. (15).

47

where A; is the i'th eigenvalue of H(w°). For K2 the element dependence is:

n?-i(^i»+K)-1- *n summary, M is a sum of addends which «-dependence are

given by: K
2
 Y\Li(Xir + «)_ V G {2, 3, 4}. That is, to fulfill the requirement

limTv-K» MSME = 0, limjv-oo « = 0 should be imposed. The solution to
Eq. (23) can therefore be expressed as: nopt = n'opJN + o(l/N). Expanding
the addends of Eq. (23) to first order in K and \/N and solving for K gives:

«- = f, -l"X\ -+°(1/'v) ,24)
•<v (ur) lfT(u; jw

where iT+(w0) is the Moore-Penrose pseudo inverse. Suppose the eigenvalues
of2f(w)°)obey: Ai > • ■ • > An > 0 and A; = 0, Vi G [n+l;m]. The associated
eigenvectors are assembled (as column vectors) in the matrix Q. The pseudo
inverse then reads: H+(w°)i = Q diagfAj;1, • • •, A"1, 0, • • •, 0] QT.

Notice two facts concerning Kopt: First, it is proportional to the inherent
noise variance. If no noise is present WFP = 0, thus one should not introduce
MSME by employing a non-zero n. Secondly, Kopt is inversely proportional
to the length of the optimal weight vector weighted by the elements of the
Moore-Penrose pseudo inverse Hessian matrix. This is due to the fact that

we regularize against the zero weight vector.
Since the optimal weights w° are unknown, it is impossible to calculate

Kopt directly; however, in [4] adaptive regularization is studied for a linear
one-dimensional model, and [5] presents an adaptive regularization scheme
for the purpose of designing compact time series models. In addition, it is
possible to show that the average generalization error is reduced when using

0 < K < 2Kopt.

NUMERICAL EXPERIMENTS

To substantiate the qualities of the suggested FPER estimator Eq. (21), nu-
merical comparisons with the FPE and GPE estimators11,

FPE = ^^SN(w) GPE = ^±^SN(w) (25)
N — m N -mi

is - for convenience - performed for a linear model. The linear data generating
system (dimension m = 15) is given by:

y(k) = xT (k)w° + e{k) (26)

where x(k) is an i.i.d. Gaussian distributed sequence with zero mean and, the
elements of H - E{xxT} are selected randomly, resulting in an eigenvalue-
spread approx. equal to 900. The optimal weights are drawn independently
from a standard Gaussian distribution. The inherent noise is a Gaussian

11 As regards the GPE estimator, the noise variance estimation suggested in [10]
is employed.

48

zero mean, i.i.d. sequence which is independent of the input with variance

of = 0.25■ EUxT(k)w°)2\ = 0.25 ■(w°)THw0. That is, the signal-to-noise
ratio equals approx. 6 dB.

Q = 2.4T04 independent training sets of size N in the interval [15; 35] were
randomly generated, and the weights of the associated model were estimated
using a simple weight decay regularizer with K = 2/£opt-

The "true" average generalization error was estimated by To — (G(w))
where (•) denotes the average w.r.t. the Q training sets, and

G(w) = E {[e + xT (ID
0
 - £)]2} = a] + (w° - w)T H (w° - w) (27)

The quality of the estimators12, f (T) G {FPER, FPE, GPE), is quantified
by three different measures:

r(T) - rG

NB = r^T2 TG
 • 100% NRMSE = -L: _ '- . 100% (28)

TG TG

n (f) = (fi (|f (T) - f G| - |fP^(T) - f G|)) (29)

iV5 is the normalized bias, NRMSE is the normalized root mean square error,
and n is the probability that FPER is closer to the true estimate, TQ, than
another estimator, T. Here fi(-) denotes the step function. Fig. 1 shows
plots of the considered measures. NB of FPER is smallest for all training
set sizes; however, as the training set size approaches infinity all estimates
becomes identical as K0pt —+ 0. For N = 35 NB(FPER) is approx. half the
NB(GPE). The NRMSE's of and GPE are approx. identical, thus one could
claim that the normalized bias improvement of FPER relative to GPE is lost
at increased variance13. However, the probability that FPER is closer than
GPE to the true T is around 0.65; consequently, FPER should be preferred
to GPE. FPE shows extremely bad performance in all figures and moreover,
FPE is negative, possibly infinite when TV < 15.

CONCLUSION

This paper presented an consistent and o(l/JV) unbiased estimator of the av-
erage generalization error for a complete neural network model, called FPER.
The network is trained by using a cost function which is the sum of the mean
square error and a quadratic regularization term. The estimator may be
viewed as an extension of the FPE and GPE estimators [1], [10]. It turns out
that the complexity reduction obtained by using regularization is expressed
in terms of two distinct effective number of weights, unlike defining a single

12Notice, the dependence on the particular training set, T, is emphasized.
13 That is, mean square error the minus squared bias.

49

100

15 20 25 30
Training Set Size, N

10 15 20 25 30
Training Set Size, N

1

0.9

C 0.8

0.7

0.6

FPER vY FPE

FPER vs. GF

10 15 20 25 30
Training Set Size, N

15 20 25 30
Training Set Size, N

Figure T. Comparison of FPE, GPE and FPER. The FPE curves are not calculated
for N < 15, and the upper panels are cutoff at +100%. The bottom right panel
shows the average effective number of weights (mi), (T7?2) as well as 2(mi) — (rri2 }.
quantity reflecting the effective number of weights, as suggested in [9], [11].
Moreover, an expression for the optimal weight decay parameter is presented
and discussed. The potential of the FPER estimator was demonstrated by
comparative numerical studies.

ACKNOWLEDGMENTS

This work was supported by the Danish Natural Science and Technical Re-
search Councils through the Computational Neural Network Center.

APPENDIX

Evaluation of the terms in Eq. (10), (11) is based on two observations: First,
8CN{W) j dw = 0 since w minimizes CK(W). A first order Taylor series
expansion of öCN(W) j dw reads14:

dCN(w°) d2CN(w°)

dw
+

dwd
Aw = 0

w '
(30)

14 Expanding beyond first order result in 3rd and higher order derivatives of the
cost function which already are assumed to be negligible.

50

Subsequently, a few algebraic manipulations result in:

N

Aw = J^iw0) ±-Y,Tl>(k;W°)s(k)-Rw°
N
k

(31)

where JN(W°) is the non-singular Hessian matrix of the cost function.
The second observation is an expansion of the inverse Hessian obtained

by repeatedly using the matrix inversion lemma [8, App. A,B]. The result

is: Jjr1 (w0) = J~\wO) - A^1 • J-^w^OJ-^w") + ■■■ , where 0 =
HN(w°)-H(w°).

REFERENCES

[1] H. Akaike, "Fitting Autoregressive Models for Prediction," Annals of
the Institute of Statistical Mathematics, vol. 21, pp. 243-247, 1969.

[2] S. Geman, E. Bienenstock fc R. Doursat, "Neural Networks and the
Bias/Variance Dilemma," Neural Computation, vol. 4, pp. 1-58, 1992.

[3] L.K. Hansen, "Stochastic Linear Learning: Exact Test and Training Error
Averages," Neural Networks, vol. 6, pp. 393-396, 1993.

[4] L.K. Hansen fc C.E. Rasmussen, "Pruning from Adaptive Regulariza-
tion," Preprint Electronics Institute, The Technical University of Denmark,
1993. Accepted for publication in Neural Computation.

[5] L.K. Hansen, C.E. Rasmussen, C. Svarer, & J. Larsen, "Adaptive Regulariza-
tion," in Proceedings of the 1994 IEEE NNSP Workshop.

[6] A. Krogh & J.A. Hertz, "A Simple Weight Decay Can Improve Generaliza-
tion," in J.E. Moody, S.J. Hanson, R.P. Lippmann (eds.) Advances in Neu-
ral Information Processing Systems 4, Proceedings of the 1991 Conference,
San Mateo, California: Morgan Kaufmann Publishers, 1992, pp. 950-957.

[7] J. Larsen, "A Generalization Error Estimate for Nonlinear Systems," in S.Y.
Kung, F. Fallside, J. Aa. S0rensen & CA. Kamm (eds.) Neural Networks for
Signal Processing 2: Proceedings of the 1992 IEEE-SP Workshop,
Piscataway, New Jersey: IEEE, 1992, pp. 29-38.

[8] J. Larsen, Design of Neural Network Filters, Ph.D. Thesis, Electronics Insti-
tute, The Technical University of Denmark, March 1993.

[9] D. MacKay, "A Practical Bayesian Framework for Backprop Networks,"
Neural Computation, vol. 4, pp. 448-472, 1992.

[10] J. Moody, "Note on Generalization, Regularization, and Architecture Selection
in Nonlinear Learning Systems," in B.H. Juang, S.Y. Kung & CA. Kamm
(eds.) Proceedings of the first IEEE Workshop on Neural Networks for Signal
Processing, Piscataway, New Jersey: IEEE, 1991, pp. 1-10.

[11] J. Moody, "The Effective Number of Parameters: An Analysis of Gen-
eralization and Regularization in Nonlinear Learning Systems," in J.E.
Moody, S.J. Hanson, R.P. Lippmann (eds.) Advances in Neural Information
Processing Systems 4, Proceedings of the 1991 Conference, San Mateo, Cali-
fornia: Morgan Kaufmann Publishers, 1992, pp. 847-854.

[12] H. White, "Consequences and Detection of Misspecified Nonlinear Regression
Models," Journal of the American Statistical Association, vol. 76, no. 374, pp.
419-433, June 1981.

51

AN APPLICATION OF IMPORTANCE-BASED FEATURE
EXTRACTION IN REINFORCEMENT LEARNING

David J. Finton
Computer Sciences Department

University of Wisconsin-Madison
Madison, WI 53706

Yu Hen Hu
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
Madison, WI 53706

Abstract—The sparse feedback in reinforcement learning problems
makes feature extraction difficult. We present importance-based
feature extraction, which guides a bottom-up self-organization of
feature detectors according to top-down information as to the im-
portance of the features; we define importance in terms of the
reinforcement values expected as a result of taking different ac-
tions when a feature is recognized. We illustrate these ideas in
terms of the pole-balancing task and a learning system which com-
bines bottom-up tuning with a distributed version of Q-learning;
adding importance-based feature extraction to the detector tuning
resulted in faster learning.

INTRODUCTION

In reinforcement learning problems the feedback is simply a scalar value
which may be delayed in time. This reinforcement signal reflects the success
or failure of the entire system after it has performed some sequence of actions.
Hence the reinforcement signal does not assign credit or blame to any one
action (the temporal credit assignment problem), or to any particular node
or system element (the structural credit assignment problem).

Since the reinforcement feedback is not an error signal for individual system
elements, it gives little guidance for feature extraction, the on-line develop-
ment of the system's input representation. Acting properly depends on both
identifying the current context as well as selecting an action appropriate to
that context, but the scalar feedback signal does not indicate which of these
processes is at fault. It does not indicate whether the system should tune
its feature detectors, or the weights placed on the outputs of those feature
detectors, or both.

0-7803-2026-3/94 $4.00 © 1994 IEEE 52

IMPORTANCE-BASED FEATURE
EXTRACTION

We consider reinforcement learning as the composition of two subproblems:
feature extraction and "action learning" (correlating the success of actions
with their context). Our approach is to solve these two subproblems with
modules which are separate but loosely-coupled. The feature extraction mod-
ule tunes detectors by a kind of competitive learning, and the performance
module learns the value of the system actions in terms of the emerging fea-
ture detectors. A unique feature of our approach is that the detector tuning
is guided by information from the performance module regarding the "im-
portance" of the detectors.

We define "important" features to be those which enable the system to rec-
ognize situations where one action is preferable over another. One action is
preferable over another if it is likely to lead to better reinforcement than the
other. If the system is designed to model the input space, all areas of the
space may be equally important. In contrast, if the learning task is a control
task, then the only important features are those which distinguish between
contexts that require different behaviors. Therefore, important areas of fea-
ture space are those for which the values of the system's actions differ greatly.
Regions of feature space for which the system's actions have the same values
are unimportant, no matter how frequently these regions are encountered.

In many domains the important features will occur frequently, so that feature
extraction based on frequency will act much like importance-based feature
extraction. But when there are important features which are infrequently
seen or frequent features which are unimportant, importance-based feature
extraction will enable the system to focus on the features which it needs to
guide its behavior. Therefore we expect that importance-based feature ex-
traction will outperform frequency-based feature extraction when frequency
is not a reliable indicator of importance.

THE LEARNING SYSTEM

The learning system receives four inputs which indicate the system state: the
position and velocity of the cart on its track, and the angular displacement
and velocity of the pole. The system monitors the highest and lowest values
of these inputs and automatically scales them; the result is that each input
appears to the detectors to have the same size range. The scaled inputs
feed into a layer of feature detector nodes, which in turn feed into a layer of
effector nodes which represent system actions.

In the detector layer, the system enables the N detectors closest to the current
input, and normalizes their outputs; the remaining detectors are set to 0. The

53

effector nodes simply calculate a weighted sum of the feature detectors. The
winning effector triggers the associated system action, unless the effector
values are very close, in which case the choice is made randomly.

The detectors are tuned by moving the "closest" detector toward the current
point in input space. Our system is unique in defining "closest" according
to a rule which combines the Euclidean distance and the importance of the
detector. This results in a kind of importance-based feature extraction, but
ordinary frequency-based feature extraction results as a special case when the
importance parameter is set to 0. For the pole-balancing problem we define
importance according to the difference between the two effector weights for
a given detector. If these weights arc equal, the detector contributes equally
to the effector nodes for "push left" and "push right." Such a detector is
judged "unimportant" because it has no influence on the system's behav-
ior; therefore, our system gives precedence to retuning these unimportant
detectors.

The weights between the detectors and effectors are then updated by a fuzzy
version of Q-learning [9], In our system, the output value of an effector
represents a Q-value: the predicted reinforcement for taking that action from
the current system state. Therefore, an important detector is one which
predicts very different reinforcement values according to which effector node
activates. Such detectors are valuable because they detect features which are
directly relevant to choosing the best action in order to satisfy system goals.

The following sections describe the components of the system in greater de-
tail.

Input Scaling and Detector Initialization

The learning system automatically compensates for the fact that the inputs
have different ranges. During the first learning trial the system acts randomly
and limits its learning to finding the extreme values of its input components.
As learning progresses, the system updates these values so it can scale each
input accordingly. The scaling factor used in the detector's distance calcula-
tions is ßk = 2/(highk — lowk), where highk and lou'k are the extreme values
seen for input component x^.

The feature detectors are initialized as a lattice within the hypercube
[—0.1,0.1] , where M = 4 is the dimensionality of our feature space for
the pole-balancing problem.

54

Feature Detection Module

Each detector node, i, computes its Euclidean distance to the current input
vector according to

e-disti= J^^liPk - xk)2

Here x = {x1,x2, x3, x4) is the vector of system inputs, and c = (clt c2, c3, c4)
is the center for detector i. (ik is the scaling parameter described above for
input component k.

The output of each detector is simply the reciprocal of this Euclidean dis-
tance, truncated to the range [0, 1000000]. The system then inhibits all but
the top N detectors, and scales their output values so that the sum of their
squared values is normalized to unity.

The tuning rule for detector i depends on the importance of i, as well as
detector i's closeness to the current input vector. We define importance in
terms of the weights witl and w;,2, which are the weights from detector i to
the effector nodes for "push left" and "push right," respectively. Thus

impi = 0.5 | Witi - Wj-,2 |

which is in the range [0, 1], since wtj is in [-1,1]. We define closeness in terms
of the Euclidean distance and the importance:

closei = e.disU(l + A imp,-),

with the importance factor A > 0. Note that with A = 0, the system just
tunes the closest detector according to the Euclidean distance; we call this
frequency-based feature extraction.

Then detector i's center is tuned by

i _ j (1 - a)c' + ax if closet = minfc{closek}
c — 1 c* otherwise

The idea of frequency-based feature extraction can be expressed in differ-
ent ways, but an advantage of the simple tuning rule used here is that it
allows direct comparison of importance-based and frequency-based feature
extraction by simply changing the value of the parameter A.

We used N = 10 in our simulations, producing a fuzzy representation of
classification. Note that N = 1 causes the feature representation to be a
partition of disjoint regions.

55

Effector Module

Each effector value represents a distributed version of a Q-value:

effj(t) = Yiu>ij(t)deti(t)
i

where eß) is the output value of effector j, deti(i) is the output value of
detector /, and «),-/(<) is the weight on the link between i and j.

The system evaluates its state according to two quantities:

goodness(1) — max{e/ffc(tf)}

r(t.) = reinforcement from environment at time /

The weights «•,■,■ from detectors to the winning effector j are updated as
follows:

_ / «-WO + lMeti(t)(r(t + 1) " goodmss(l)) if i- ^ 0
Wij(1+\) - | ^^ + ji(let.(t)(. g00dn,ss{t + 1) - (joodncss(t)) otherwise

where - £ [0. 1] is a discount factor. The weights to the other effectors are
not updated. Note that this algorithm may be regarded as a fuzzy version
of Q-learning. Indeed, if the input representation is a partition (i.e., exactly
one detector is active for each input, state), the predicted values, effk, are

exactly those of Q-learning.

POLE BALANCING

The pole balancing task has been studied by Barto, Sutton and Anderson
[3], Anderson [1] and others. The task involves a wheeled cart on a track,
with a pole hinged to the top of the cart. At each time step (0.02 second
interval) the controller must decide whether the cart should apply a force to
the left or to the right, in order to keep the pole balanced vertically. The
trial is judged a failure when the pole falls too far (> 12 degrees) to either
the left or the right, or when the cart falls off the track (cart position, in
meters, outside the range [-2.4,2.4]). The controller's input consists of five
values: the four system state variables described above, and a reinforcement
signal of-1 when a trial fails. The output of the controller is a binary value
indicating a push on the cart either to the left or to the right.

RESULTS

We implemented the pole and cart dynamics according to the equations given
in [2], The criterion for a successful run was learning to keep the pole balanced
for a trial of 100000 steps, which represents slightly more than half an hour of

56

10 20 30 40 50 60 70 80 90 100

Figure 1: Number of trials vs. lambda

balancing in real-time. For each experiment, we made 15 runs with different
random initialization seeds. In the first experiment, we set the value of
the importance parameter, A, to 1.0 (importance-based feature extraction).
All the runs were successful, with an average of 458 failed trials until the
successful trial; the standard deviation was 260 trials. The second experiment
was set up like the first, but with A = 0 (frequency-based feature extraction).
Results were similar; all runs converged after an average of 537 trials, with a
standard deviation of 188 trials.

For our second set of experiments we modified the simulation to initialize the
pole to a six degree tilt, with the direction of tilt chosen randomly. Otherwise
the experiments were set up exactly as before. Figure 1 shows the perfor-
mance of the system as a function of the parameter A. The solid line plots
the average number of trials that were needed to meet the success criterion
for each value of A; the dotted lines indicate one standard deviation above
and below the average. We note that with A = 0 the system took nearly
twice as long to learn to satisfy the success criterion as it did for A = 1.0.

Figure 2 shows the final distribution of the detectors in (cart position, pole
angle) space after two successful runs. The detector set on the left used
frequency-based tuning, and the set on the right used importance-based tun-
ing. We observed that our importance-based tuning created a fairly even
spread of detectors through the feature space, while the frequency-based fea-
ture extraction (A = 0) resulted in more clustering of the detectors about the
extreme values of the inputs. As a result, the system may have had more
difficulty achieving a tight control of the cart, because the detectors were
optimized for states close to failure. A possible explanation for this effect is

57

Figure 2: Distribution of detectors in (cart position, pole angle) space. The
left figure shows the detector set after a successful run using frequency-based
tuning. The right figure shows the detector set after a successful run using
importance-based feature extraction.

o %o
«to Oo
^o

o Oo o 0

3°° o°° °

3 °
Sb°f8 0

i^° °SP 0

«> o ^o
8»™' %

%*»*• % °
« °o 0 o 8

02 o ° o ° o ° °
0 0° °

e 0 0

U 1

Of

0 o ° 0

0 0 0 £ oog 0 o °«=8

0

-0 1

«P0

O

° °o °oc8 „
°„ „• o °

ooo „ °
0 0 0 ° o o

O O D

%

0

<

0

o a

-0 2

0 25

°o ? o o0 ° °

-2 -1 0 1 2 3

that small pole angles can be important but are not very frequent at first,
since the system is failing often. Frequency-based feature extraction methods
aim to cluster detectors according to the probability density function of the
system inputs, so they may be led to give undue attention to detecting these

failure points.

Our system performed input scaling, feature extraction and action learn-
ing on-line, and successfully learned the pole-balancing task. We feel that
our results show the promise of combining importance-based feature extrac-
tion with temporal-difference methods such, as Q-learning. In our system,
importance-based feature extraction resulted in lower learning times. These
results are for the simplest type of importance-based tuning, which simply
selects detectors based on their importance. We are currently extending
these ideas to algorithms which actively tune detectors to regions of greater

importance to the system.

RELATED WORK

Most research in reinforcement learning explores feature extraction either
purely in terms of the top-down feedback, or totally as a result of bottom-up
self-organization. Importance-based feature extraction combines elements of
both approaches. We propose that feature extraction be done by a bottom-
up competitive interaction among feature detectors, but that it be guided by
top-down information as to the importance of the features.

Barto, Sutton and Anderson [3], Sutton [7] and others have constructed learn-
ing systems composed of a critic module and an action module; the critic
module learns to predict the reinforcement feedback, and the action mod-
ule learns to perform the task based on feedback from the critic module.

58

Our approach differs from theirs by separating feature learning from action
learning, since we feel that feature extraction is a separate problem, which
requires additional information. Anderson [1] reports results for a similar sys-
tem which used back propagation to learn features in the pole-balancing task.
This system required around 5000 failed trials before the feature detectors
emerged, with learning proceeding quickly after that point. In comparison,
our importance-based feature extraction system never took more than 1000
failures to reach a successful trial in the original pole problem. Whereas An-
derson's back-propagation system tuned features according to the top-down
feedback, our system merely uses top-down information to guide a bottom-up
competitive learning which tunes the detectors. Our position is that detector
tuning requires optimization of some kind of importance measure, which is
absent in typical gradient-descent tuning.

Holdaway [4] used competitive learning for feature extraction, but for a su-
pervised learning task. His feature extraction module was trained off-line and
used Kohonen's SOM [5], which produces a feature set based on the frequency
of the input data points. We note that a similar kind of frequency-based fea-
ture extraction is a special case of our algorithm, obtained by setting the
importance parameter, A, to 0; however, this differs from Kohonen's SOM
by not decreasing the learning rate or tuning window with time, since our
system is designed to be able to continuously adapt to changing conditions.
Wang and Hanson's tuning rule [8] is similar to ours, but uses a "win-rate"
parameter instead of our importance parameter. Their aim is to make the
detector set correspond more closely to the probability density function of
the inputs by equalizing the winning rates of the detectors. In contrast, our
aim is to make the detectors relevant to the system's actions and goals by
retuning those detectors which are unimportant.

CONCLUSION
We feel that constructing good input representations is one of the impor-
tant problems in neural network learning. A common approach is to use
top-down feedback with gradient-descent to produce feature detectors in a
hidden layer of nodes. This strategy works poorly for reinforcement learning
problems because of their sparse, delayed feedback signals. Our work suggests
that combining top-down feedback with bottom-up self-organization may be
a more effective technique for feature extraction in reinforcement learning,
when the effect is to guide feature extraction by the importance of features,
rather than by their frequency. The simplicity of our model shows that such
mechanisms need not be complex in order to be effective. We conclude that
importance-based feature extraction is a promising basis for further studies
in reinforcement learning.

59

REFERENCES

[1] C. W. Anderson, "Strategy learning with multilayer connectionist repre-
sentations," in Proceedings of the Fourth International Workshop on Machine
Learning, 1987, pp. 103-114.

[2] C. W. Anderson and W. T. Miller, III, "A challenging set of control
problems," in W. T. Miller, III, Ft. S. Sutton and P. S. Werbos, editors,
Neural Networks for Control, Cambridge, MA: MIT Press, 1990, Appendix.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson, "Neuronlike adaptive el-
ements that can solve difficult learning control problems," IEEE Transactions
on Systems, Man, and Cybernetics, vol. SMC-13,no. 5, pp. 834-846, Septem-
ber 1983.

[4] R. M. Holdaway, "Enhancing supervised learning algorithms via self-
organization," in Proceedings of the International Joint Conference on Neural
Networks, 1989, pp. 523-529.

[5] T. Kohonen, "Self-organized formation of topologically correct feature
maps," Biological Cybernetics, vol. 43, pp. 59-69, 1982.

[6] D. E. Rumelhart and D. Zipser, "Feature discovery by competitive learn-
ing," in D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing, vol. 1, Cambridge, MA: MIT Press, 1986, ch. 5, pp. 151-193.

[7] R. S. Sutton, Temporal Credit Assignment in Reinforcement Learning,
Ph.D. thesis, University of Massachusetts,-Amherst, Massachusetts, 1984.

[8] L. Z. Wang and J. V. Hanson, "Competitivelearning and winning-weighted
competition for optimal vector quantizer design," in C. A. Kamm, G. M.
Kuhn, B. Yoon, R. Chellappa and S. Y. Kung, editors, Neural Networks for
Signal Processing III: Proceedings of the 1993 IEEE Workshop, IEEE Press,
1993, pp. 50-59.

[9] C. J. C. II. Watkins, Learning From Delayed Rewards, Ph.D. thesis, Cam-
bridge University, Cambridge, England, 1989.

60

Multilayer Perceptron
Design Algorithm

Elizabeth Wilson Donald W. Tufts
Raytheon Company Kelley Annex
Equipment Division EE Department
1001 Boston Post Road University of Rhode Island
Marlboro, MA 01752 Kingston, RI 02881
bwilson @ sud.2.ed.ray.com tufts @ ele.uri.edu
Phone: (508)490-1769
Fax: (508)490-3007

May 1994

Abstract

This paper describes a design algorithm that has been developed to
calculate the number of hidden nodes required and compute a good set of
starting weights for the Multilayer Perceptron (MLP). There are significant
advantages to being able to calculate the number of hidden nodes required.
The proper choice of the number of hidden nodes results in shorter training
times, better generalization, and simpler computations in implementation.

This method is then used to design an efficient, effective MLP for multiple-
class decision using these simplified binary-decision neural networks. The
resulting algorithmic structure has an efficient pipelined implementation.
Simulations describe the application of the design algorithm and parametric
classification of a transient signal. A modified wavelet feature
representation is introduced as an input to the neural networks associated
with arrival time discrimination.

1 Introduction

Neural networks have been used to solve a number of difficult problems and these
networks arc particularly useful when the statistics associated with a mapping of
received inputs to a desired output are not completely known and/or are nonlinear.
The Multilayer Perceptron (MLP) yields a simple feedforward network that
accomplishes this mapping.

Although a popular method for training the MLP, the backpropagation algorithm [1]
is often criticized for the length of time it takes to converge (if it converges) and the
potential for settling into a local instead of global minimum. There have been a
number of techniques proposed to improve the backpropagation algorithm by
optimizing parameters, speeding up the gradient descent, pruning unnecessary
weights, and using clustering algorithms to define the structure.

0-7803-2026-3/94 $4.00 © 1994 IEEE 61

The general mapping formulas in the literature generally lead to more nodes than
necessary and longer training times. The structure of the network is critical to
successful implementation, but often the number of hidden nodes in an MLP is
chosen arbitrarily and modified by trial and error. Too few nodes do not properly
characterize the mapping and make convergence difficult. Too many nodes will
improve performance on the training set but will reduce the ability of the network to
generalize to new examples [2J. The design method described here computes the
number of hidden nodes required and the starting weights.

2. MLP Design Algorithm

2.1 Using Singular Value Decomposition (SVD) for Design

Let us consider the transformation from an input vector to the set of the hidden-layer
node outputs as an approximate projection from the input space onto a subspace.
From this point of view one suspects that the SVD can provide some insight into a
better starting point for weights in Multilayer Perccptron learning algorithms.
Reference |3l describes the motivation for using the SVD and the development of a
test statistic [4] to consider the binary classification of a signal vector between two
subspaccs in the presence of white Gaussian noise. The hypotheses arc:

H]: Signal present in S: S + N (signal subspace)
H(j: Noise only A: N (alternate subspace)

The Generalized Likelihood Ratio Test can be written as

tl^l ~ tl^l < ^ (1)
energy in S energy in A threshold
 „ ■

teat statistic

where Ps is the projection operator for S and PA is the projection operator for A.

This test statistic is characterized in terms of the covariancc matrices corresponding to
the signal subspace (represented by R$) and the alternative subspace (RA) and the
likelihood ratio test is written as

test statisticT threshold

(2)

62

We use the following S VD of the covariancc matrix product

RA"1RS = UXVT (3)

where U is a unitary matrix and X is the diagonal matrix of singular values of

RA
_1

RS- The test statistic is then written as a sum

T = X»i>|2 (4)

where d; are the diagonal elements of X and ujj the jth column of UT. This
representation of the GLRT provides a useful tool for designing and training the MLP
and computing a starling point for the weights.

2.2 Calculating the Number of Hidden Nodes

If the input-to-hidden-layer weights are viewed as approximately performing the same
projection operation, the same covariancc matrices can be used:

Rs = E [SST]

RA = E [AAT] (5)

where S is a matrix composed of only examples from the Hj class and A is a matrix
composed of the Ho class patterns.

The SVD of the correlation matrix product:

RA"1RS = UXVT (6)

yields a diagonal matrix X. Modeling the falloff of the singular values as a simple
exponential curve allows us to determine a representative time constant by taking the
natural log and rearranging terms. This value is approximately the number of hidden
nodes (N) required. Regardless of the technique used, the rank N of X can be taken to
be the necessary number of hidden nodes. The rank N is less than K where K is the
dimension of the input and the size of the R square matrices).

This procedure has been successful for a class of problems where there is a single
output node. For the binary hypothesis test, the form of the likelihood ratio shows
that only this one output node is needed. With the input layer defined by the input
data, the hidden nodes calculated above, and the specification of one output, the

architecture is now defined.

63

Neural Netwo* ROC: 2MB
1

0.9

—i i,—•*• i 1 1— i i \ 1

0.8

07 .<-''

9 0.6
.0

/

| 0.5 • 1 /
3
°« 0.4 1/ « Competed Starting Weights

0.3
f — » Random Starting Weights

0.2 -/

0.1 j
0 1 1 1 i i i i i_... i

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 O.C 0.09 0.1

P (false alami)

Figure 1: Improved Performance Using Design Algorithm

2.3 Computing the Starting Weights

If only the I'irsl N diagonal elements of X are used, then only the first N columns of U
arc relevant. Therefore, the matrix U in the SVD result (6) directly reveals the
starting values for the input to hidden weights. Because U is a K x K square matrix,
taking the first N columns results in the weight matrix W (IH), which is K x N as
required:

W (IH): [U] u2 ... uN] (7)

The likelihood test statistic can be used to define starting weights from the hidden
layer to the one output node. Using the diagonal elements of I, these starting values
arc:

w(H0) = Idj

l=j

which produces a matrix W (H()) that is N x 1 as desired.

(8)

64

neural network

•

ir

fk

input
data

spectrum

neural network

 *
•

^Sfi~^ »

if "I-

fdl

3u
JiVm-mm

■ ~}T n

$r -

1 *T _

□

■4B f=8F

fs3

ir..r.

Bö

j^s— f=7F

f=6F (S
fed'-5"

= 4F

^-1 f=3F

M I »l^"
f=2F

,- f=lF

Figure 2: Multistage Implementation for Transient Frequency
Feature Extraction

3. Transient Binary Classification Example

For the first binary classification example [5,6] we test for the presence of a signal
component is a prescribed cell in the time-frequency sub-region.

The training set X contains examples of the time-frequency phase sampling and is
separated into an S matrix comprised of the H] cases and an A matrix with the HQ

examples. Computing the covariance matrix product and performing the SVD
described in Equation 6 and the calculations described in the algorithm yields a value
of 4 for the number of hidden nodes. The first 4 columns of U are utilized as the
starting weights from the input to hidden layers. The first 3 singular values are
converted as shown in Equation 8 to the starting weights from the hidden layer to the
output mode.

The same problem was addressed with the original training set and random weights.
A network of the same size would not converge using the PDP software package [7].
Weights were added and eventually another layer was added. After extensive
attempts at training an MLP the best performance was realized with a network with
two hidden layers (6 nodes in the first hidden layer and 4 nodes in the second). Using
fewer layers with fewer nodes in each layer yielded better performance.

65

Figure 3: Multistage Implementation for t=1 and f=7 Example

The test blocks are applied to both networks and the false alarm, miss, correct HO, and
correct HI rates arc computed. Figure l shows the resulting ROC curves plotting
PFA versus PD for the random start case (dashed line) and the design algorithm case
(solid line). The performance has been improved significantly and the network now
has fewer hidden nodes.

4 Extension to Multiple Classes

A multistage structure is constructed to cascade binary neural networks [8]. This
allows the use of smaller and simpler networks which provide for more efficient
training and implementation. The pipeline architecture with parallel computations is
conducive to a VLSI implementation. The design goal is to be able to train with
examples that only contain one signal, but use the architecture to resolve the
components of multiple signals.

The coarse stage is responsible for detecting the presence of a signal in a relatively
large portion of the Time-Frequency space and transforming the input data into a
more desirable form for further processing. This transformation includes the
calculation of the various wavelet representations of the input signal at successive
resolutions and their corresponding spectral components.

In the fine stages, only those networks associated with a detection in the coarse stage
arc implemented. If multiple signals are identified at the coarse stage, all of the
necessary regions will be processed further. If a coarse region is classified as having
no signal, no further operations will be performed on that area.

66

ftroti Carat fclT.fclF

Baa« Carat t=ST, f=2F

I 0-M

»NainlNtwwk Resulti

- s 95* Gn&knx tamil

* Neurtl Nerwwk Raufti

«95%Corffc«*bkivil

10 12 14 U 18 30 22 24

S"^J to N«e Rit»

10 12 14 16 18 20 22 24

Sipul lo Harne Brio

Figure 4: One Signal Performance

For both the time and frequency decision, quadrature mirror fillers are used to
represent the signal in the form of the Mallat wavelet transform implementation [9].
This technique has been chosen as a means of reducing the input feature size (and
therefore the network sizes) from stage to stage. The filtering also removes many of
the unwanted regions of the time-frequency region making the network training and
implementation easier and allowing for the analysis of multiple signals with the same
networks that were trained with examples of one signal. In addition, for the arrival
time discrimination, the modified wavelet representation makes use of the property
that the onset of the transient will line up across different scales [10,11]. The
development of the modified wavelet feature vector is described in reference [3].

The implementation of the multistage architecture for the frequency feature extraction
is shown in Figure 2. The first stages split the frequency band into two parts based on
the network computation of the spectrum of the input signal. If a signal component is
detected, the next stages uses the next resolution as its input features. Because of the
decimation at each stage of the wavelet packet generation, the networks at each stage
are smaller. Each network is trained separately, but the smaller network are easier to
train. Also, the smaller networks use fewer weights and therefore simplify the
computation during implementation. An example of the multistage implementation
for t = IT and f = 7F is shown in Figure 3. Random seeds are chosen to ensure that
the test examples are different than the training examples. Test results for two of the
64 cells are shown in Figure 4.

Where the network is shown to generalize for different signal to noise ratios. The
percent correct results for the two cases described at 21 dB are plotted for 24, 18, 15,
12 and 9 dB SNR levels. The dotted lines represent the 95% confidence intervals for
these measurements. The performance degrades as expected at lower SNR levels, but
as in the simple case the neural networks are only presented with examples having 21
dB SNR and generalize for the other cases.

67

References

[1] D.E. Rumclhart, J.L. McClelland, and the PDP Research Group, Parallel
Distributed Processing, Explorations in the Microstructure of Cognition,
Volume I: Foundations, MIT Press: Cambridge, MA, 1989.

[2] E. Lcvcn, N. Tishby, and S.A. Solla, "A Statistical Approach to Learning
and Generalization in Layered Neural Networks," Proceedings of the IEEE
Vol. 78, No. 10, October 1990, pp. 1568-1574.

[3] E. Wilson and D.W. Tufts, "Neural Network Design Algorithm and
Multistage Structure," submitted to IEEE Transactions on Neural Networks
8/9.3.

[4] R.N. McDonough, " A Canonical Form of the Likelihood Detector for
Gaussian Random Vectors," Journal of the Acoustical Society of America
Vol.49, 1971, pp. 402-406.

1.5.) E. Wilson, S. Umcsh and D.W. Tufts, "Resolving the Components of
Transient Signals Using Neural Network and Subspacc Inhibition Filter
Algorithm," Proceedings of the IEEE International Joint Conference on
Neural Networks, Vol. 4, 1992, pp. 283-288.

[61 E. Wilson, S. Umcsh and D.W. Tufts, " Designing a Neural Network
Structure for Transient Detection Using the Subspace Inhibition Filter
Algorithm," Proceedings of the IEEE Oceans Conference, Newport RI Vol
1, 1992, pp. 120-125.

17] J.L. McClelland and D.E. Rumclhart, Explorations in Parallel Distributed
Processing: A Handbook of Models, Programs, and Exercises MIT Press-
Cambridge, MA, 1988.

18] E. Wilson, S. Umcsh and D.W. Tufts, "Multistage Neural Network Structure
lor Transient Detection and Feature Extraction," Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing Vol
1, 1993, pp. 489-492. ' '

[9] S.G. Mallat, "A Theory for Multircsolution Signal Decomposition: The
Wavelet Representation," IEEE Transaction on Pattern Analysis and
Machine Intelligence, Vol. II, No. 7, July 1989, pp. 674-693.

[10] S. Mallat and S. Zhong, "Wavelet Transform Maxima and Multiscale
Edges," in Wavelets and their-Applications, ed. M.B. Ruskai, et al Jones and
Barlctl: Boston, 1992, pp. 67-104.

Ill] S. Mallat and S. Zhong, "Characterization of Signals from Multiscale
Edges," IEEE Transaction on Pattern Analysis and Machine Intelligence
Vol. 11, No. 7, July 1989, pp. 710-732.

68

MIXTURE DENSITY ESTIMATION
VIA EM ALGORITHM

WITH DETERMINISTIC ANNEALING

tJNaonori UEDA fRyohei NAKANO

fNTT Communication Science Laboratories

Hikaridai Seika-cho Soraku-gun Kyoto 619-02 Japan

{Purdue University, Electrical Engineering Dept., PO.Box-29,
West Lafayette IN 47907 USA

Tel: 1-317-494-3378 Fax: 1-317-494-6440
E-mail: ueda@ecn.purdue.edu

Abstract- We present a new approach for the problem of estimating
the parameters which determine a mixture density. The approach
utilizes the principle of maximum entropy and statistical mechanics analogy.
The EM process which is well known as a maximum likelihood esti-
mation method is reformulated as the minimization problem of ther-
modynamic free energy. Unlike stochastic relaxation or simulated
annealing, the minimization is deterministically performed. Moreover,
the derived algorithm, unlike the conventional EM algorithm, can
estimate the parameters free of initial parameter values.

INTRODUCTION

Finite mixture densities consist of a mixture of finite component densities and
mixing proportions. Such densities appear as fundamental models in areas of
statistical pattern recognition and classification [1][2]. In particular, Gaussian
mixture model plays an important role in continuous density Hidden Markov
Models [3]. The method of maximum likelihood has been regarded as the best
approach for parameter estimation problems during the past three decades.
However, for mixture density problems, likelihood equations become nonlinear
and therfore we can not obtain an analytical solution. In other words, we
should seek an approximate solution by an iterative procedure.

Dempster, Laird and Rubin proposed an iterative procedure, called EM
algorithm, to numerically approximate maximum likelihood estimates [4]. The
EM algorithm has been applied to a wide variety of mixture problems because
of its advantage of reliable global convergence, low cost per iteration, economy
of storage and ease of programming [5]. However, since maximum likelihood
equations for mixture models usually have multiple roots, the EM algorithm
suffers from a local maxima problem. Namely, the algorithm is highly sensitive
to the initial parameter values. Indeed, the EM algorithm should be applied

0-7803-2026-3/94 $4.00 © 1994 IEEE 69

from a wide choice of starting values according to some ad hoc criterion.

The local maxima problem is one of the important issues in the mixture
density problem. Nevertheless, as far as the information from our literature
survey, no published paper has explicitly given a technique for this problem.
Although several algorithms for approximating maximum likelihood estimates
have recently been found in Neural Networks [6] [7] [8], they do not deal with
this problem.

To overcome the problem, we adopt the principles of statistical mechanics.
By using the principle of maximum entropy, the thermodynamic free energy
is defined as an effective cost function depending on the temperature. The
maximization of log-likelihood is done by minimizing the cost function. Un-
like stochastic relaxation (or simulated annealing) [9], where random search is
performed on the given energy surface, this cost function is deterministically
optimized at each temperature.

Recently, such deterministic annealing has been adopted by several re-
searchers [10][11][12]. However, in these studies, the formulation is not for the
mixture density estimation problem, but for vector quantization or cluster-
ing design problem. In this paper, we first propose a deterministic annealing
variant of the EM algorithm for the mixture density estimation problem.

THEORY OF MIXTURE DENSITY ESTIMATION

In this section, as the basis of our annealing EM approach, we will briefly
explain the theory of the EM algorithm for the mixture density estimation.

Mixture Density Models

A parametric family of finite mixture densities consists of a finite given
number, say C, of components, u>i,---,uc, in some proportions ai,---,ac,
respectively, where

c

]T}a,- = l and a, > 0 for t = 1,.. .,C. (1)

Therefore, the probability density function (pdf) of a finite mixture is repre-
sented as:

c
P(*|ö) = S«,p(*k,Ö,), x = {xu...,xd)t £Rd, (2)

t=i

where p(x\wi,6i) is the conditional pdf corresponding to the component w,.
The vector, G = (au • • •, ac, 0\, ■ • •, 6^)*, consists of unknown parameters as-
sociated with the parametric forms adopted for these C component densities
(t denotes vector transpose). For example, in the particular case of multivari-
ate Gaussian component densities, 0, consists of a mean vector /i, and the
elements of the covariance matrix 27,.

70

Maximum Likelihood Estimation via EM Algorithm

In maximum likelihood estimation, the unknown parameter 0 is estimated
so that the log-likelihood (the natural logarithm of the likelihood) of the mix-
ture pdf of (2), given by

L(6>) = 5>gp(*|6>), (3)
x

is maximized by using a set X of observable samples drawn independently
according to the probability p(x\0). Accordingly, an estimate of 0 can be
obtained as a solution of the likelihood equation given by

dL(0)/d0 = 0 (4)

Unfortunately in mixture models, likelihood equations are usually nonlinear,
which means that the general analytical solution of the log-likelihood equation
does hot exist.

In a mixture density estimation problem, an observed sample x is incom-
plete because the information w,- which indicates the component from which
the sample originates is unobservable. The EM algorithm for the mixture den-
sity estimation problem is best regarded as a specialization of the general EM
algorithm for obtaining maximum likelihood estimates from incomplete data.
Let Lc(0) denote the complete data log-likelihood. In the mixture density
given in (2), we can specify the complete log-likelihood as:

Le(0) = \ogaip(x\ui,0i). (5)

Note that in this context, the original log-likelihood, L(0), is referred to as
the incomplete data log-likelihood.

For given X — {x\, •• ■, x^}, the purpose of the EM algorithm is to max-
imize the incomplete data log-likelihood L(0) by using the complete data
log-likelihood Lc{0). In the EM algorithm, the parameter 0 is iteratively
estimated by using two steps, E (for Expectation) and M (for Maximization).
The E-step computes the conditional expectation of the complete data log-
likelihood given X, 0^-k\

Q(6>,6><*>) = E{Le(0)\X,0^}

= ££^l*,®(fc))iog«,p(*k,0,)- (6)
X i

In this equation, 0^k' is an estimate value of the parameters at the ib-th
iteration. The M-step maximizes this Q(0,0^k') function with respect to 0
to estimate the new parameter value 0^ +1':

6>(*+1) = argmaxQ(0,0^). (7)
0

The above two steps are repeatedly performed until a certain convergence cri-
terion is met. From the maximization in the M-step, the following constraints

71

are derived [3]:

X

YlP(ui*,0?))^ogp(x\Ui,8i) = 0. (9)
SB

An increase in Q implies an increase in the incomplete data log-likelihood.
Hence the incomplete data log-likelihood (or the original log-likelihood L(G))
is monotonically increased, that is, L(©^t+1^) > L(G^), which means that
L(0(k') converges to a local maximum.

P(ui\x,0\k') denotes a the posterior probability that x belongs to the i-
th component w,- and plays an important role on calculating Q-function. In
the mixture density problem, recall that we cannot obtain the information
from which component the observed data originates. We must estimate the
missing information according to the posterior probability. However, since the
posterior probability is calculated by the Bayes rule as

p<u,-\» a^\ - aJ*)p(a!k.glt)) (XQ\

its reliability highly depends on the parameters a) ',6\ ', and goes back to

<*i ,&i • Therefore, the performance of the EM algorithm is sensitive to an
initial parameter value 0^°\ It is, in general, extremely difficult to set a good
initial parameter value and hence, the EM algorithm will be often trapped by
local maxima.

DETERMINISTIC ANNEALING APPROACH

In this section, we present a new approach for attempting global maximiza-
tion of the complete data log-likelifood in the EM process.

Statistical Mechanics Formulation

Let P(x G w») be the probability that x comes from the component w,.
Using P(x G w,), we rewrite —Q-function as follows:

J5 = £5>(*ew,-)/e0r,fl,-), (11)
X i

where lc(x,8i) = -log atp(x |WJ,0,). (12)

Note that /c(a;, 6i) is equivalent to —Lc{0) and is always nonnegative. Clearly,

(—E) is also the expectation of the complete data log-likelihood. However, it
is different from Q in that the expectation is taken with respect to P(x G w,)

instead of P(u>,-|x,0[fc)). Therefore, if P(x G w.) = P(wi\x,e\k)), then the
maximization of Q is equivalent to the minimization of E.

72

Since originally we do not have a priori knowledge about P(x Go;,), we
apply the principle of maximum entropy to specify the probability. That is,
P(x G u>i) may be obtained by maximizing the entropy, H, given by

=-££>(*€".) log P(*Gw,), (13)
X i

with respect to P under constraints

£p(xew,-)=l and ££P(x €<*)/„(*,»•■) = £. (14)
«' X i

Then the augmented objective function to be maximized becomes

Ha = H + A(£ P(x G «,-) - 1) + /?(£ X) ^(* € w,)/c(x, 9i) - E), (15)
< X t

where A and ß are Lagrange multipliers. Computing dHa/dP = 0, we have

P(x G «,) = exp{l - A - /?/c(x, »,-)}• (16)

From £,: P(x G «<) = 1,

exp{l - A} = l/^2exp{-ßlc(x,ei)}. (17)
i

Thus, by sbstituting (17) into (16), we obtain the Gibbs distribution,

P(x G Ui) = -±- exp{-/?/c(x, 0,)}, (18)

where Zx is the partition function: Zx = EJ
exP{-/?/c(x,öJ)}. From the

above derivation, one can see that the parameter ß corresponding to the La-
grange multiplier is determined by the value of E. From an analogy of the
simulated annealing approach, l/ß corresponds to the "computational tem-
perature". Since each sample x G X is drawn independently, the partition
function for X is

Z{&) = l[Zx
x

= nE^pH^O"'*')}- (i9)
x «

Once the total partition function is obtained explicitly, using a statistical
mechanics analogy, we can define the free energy as an effective cost function
depending on the temperature:

F{0) = -±\ogZ(0)

= -ÄElo«Eexp{-^(x,0O}- (2°)
P X i

73

Minimizing Thermodynamic Free Energy

At equilibrium, it is known that a thermodynamic system settles into a con-
figuration that minimizes its free energy. Moreover, statistical physics states
that maximizing the entropy at a fixed temperature (= 1/ß) is equivalent to
minimizing the free energy. Hence, consider the following minimization prob-
lem:

Mimimize F{0) = -—]>^log^exp{-/?/,;(a;,#<)} with respect to 6>,
P x i

subject to 2ja, = l. (21)
i

To solve the above problem, consider the augmented objective function given
by

Fa(0) = F(0) + \(£/ai-l), (22)
»

where A is a Lagrange multiplier. Setting the partial derivative of Fa with
respect to c*j to zero,

dFa ^ exp{-ßlc(x,8j)} dlc(x,9j)

fci VEi«p{-Ä('.»-')} ö«'

On the other hand,

dle(x,8i) d
9a, 9a,

1
a,

log a,-p(as |wj,0,-)

(24)

Note that p{x\ui,8i) does not depend on a,-. By subsutituting (24) into (23)
and by using (18), (23) becomes simpler as follows:

0j = lVp(xe4 (25)
Ä x

Moreover, since ^,-a, = 1,

1 = TEE^^')
A , X

X

Therefore,

= j5> (26)

X = N. (27)

By substituting (27) into (25), we have

«.• = -|f !>(*€«.•)• (28)
N x

74

Next, similarly, by setting the partial derivative of Fa with respect to 0, to
zero, we have

J2P(x e m)-£f iogP(*k, ö.) = o. (29)

Comparing (8) with (9), and (28) with (29), respectively, one can see that
the same equations as the results of the maximization of the Q-function have
been derived, except that the posterior probability P(ui\x, Ö.) in (8) and (9) is
replaced by P(x G w,). Moreover, by substituting (12) into (18), it is shown
that P(x G Ui) is in fact a parameterized variant of the original posterior
probability:

v(~c,*\- (aiP(x\ui>ei))ß (om P(X G Ui) - ^-7 T-j ^-yCj- \M)

Note that P(x G w,-) with ß = 1 completely agrees with the original posterior
probability given by (10).

Annealing Variant of EM Algorithm

Let Q(&, ©(*);/?) be the conditional expectation of the complete data log-
likelihood by the parameterized posterior probability P(x G w«), then the
following deterministic annealing variant of the EM algorihtm can be natu-
rally induced as follows:

[Annealing EM algorithm]

1. Set ß «- ßmin(< 1).
2. Choose an initial estimate 0^ arbitrarily. Set k *— 0.
3. Iterate the following two steps until converged:

E-step: Compute

M-step: Find 0(t+1) = argmax^^©,©^);^).
4. Increase ß.
5. If ß < ßmax, set Jb <— Jb + 1, repeat from step 3.

An important distinction to keep in mind is that unlike stochastic relaxation,
the optimization in step 3 is deterministically performed at each ß. The above
algorithm is the same as the original EM algorithm for the mixture density
parameter estimation, except that an outer loop for the annealing process
is added to the original EM algorithm. In other words, if both /?mm and
ßmax are set to one in the annealing EM algorithm, the algorithm completely
coincides with the original EM algorithm.

Consequently, in the case of the mulivariate Gaussian mixture pdf (p(x \0) =
Yli t*»ff»'(a!l/ii> -Et))> by just replacing the posterior probability in the familiar

75

iterative maximum likelihood estimation [3], which are obtained in M-step in
the original EM algorithm, by the parameterized posterior probablity, we can
easily modify the iterative estimation in the M-step as follows:

X

„it+1) = £ xP{x e «*)<*>/ £ P(x e Uif>\
X X

X X

where P(x € a,)(t) = («|'V«I*W, ^ V/B^Wll'f. ^/V
j

DISCUSSION

What is the effect of the parameter /?? How does the annealing feature help
to avoid local maxima? The annealing process begins at ß = 0 (P(x € w<)
becomes uniform) where each x € X equally contributes to all components of
the mixture. Clearly, at this time, the parameterized Q-function has only one
(global) maximum. As a result, all components of the mixture converge to the
same pdf. For example, in the case of a Gaussian mixture, a\ = •• • = ac = a*,
/ij = ••• = nc = n*, and S\ = ■ ■ ■ = Ec = S*, which means that all
components completely overlap as one component.

Then by gradually increasing /?, the influence of each x is gradually local-
ized. At ß > 0 the parameterized Q function will have several local maxima.
However, at each step, it can be assumed that the new global maximum is close
to the previous one. Hence, the algorithm can track the global maximum at
each ß while increasing ß. As a result, as ß increases, a finer structure, which
is closer to the true mixture density to be estimated, gradually emerges. The
parameterized Q-function coincides with the original Q-function when ß = 1,
therefore ßmax = 1 may be appropriate.

The proposed algorithm is straightforwardly applicable to learning the
(Generalized) Radial Basis Function (RBF, GRBF) networks. In fact, Nowlan
[5] proposes a maximum likelihood competitive learning algorithm for RBF
networks. In [5], "soft competition" and "hard competition" are experimentally
compared and it is shown that soft competition can give better performance.
On the other hand, in our algorithm, the soft model corresponds exactly to
the case ß = 1, while the hard model corresponds to the case ß —* oo. Con-
sequently, both models can be regarded as a special case in our algorithm.
Furthermore, it can be regarded that the deterministic annealing approach
employs a similar learning strategy to Kohonen's self-organizing feature map,
in the sense that the influence of neighborhood learning is gradually reduced.

At present, we are experimenting with the proposed algorithm in a real
multivariate Gaussian mixture density estimation problem to verify the use-
fulness of the algorithm.

76

ACKNOWLEDGEMENT

We thank Dr. Tsukasa Kawaoka for his encouragement.

REFERENCES

[I] Fukunaga K.,: "Introduction to Statistical Pattern Recognition", Aca-
demic Press, New York, 1972.

[2] Duda R. 0. and Hart P. E.,: "Pattern Classification and Scene Analysis",
John Wiley, New York, 1973.

[3] Huang X. D., Ariki Y. and Jack M. A.,: "Hidden Markov Models for
Speech Recognition", Edinburgh Univ. Press, 1990.

[4] Dempster A. P., Laird N. M. and Rubin D. B.,: "Maximum-likelihood
from incomplete data via the EM algorithm", J. Royal Statist. Soc. Ser.
B (methodological), vol.39, pp. 1-38, 1977.

[5] Render R. A. and Walker H. F.,: "Mixture densities, maximum likeli-
hood and the EM algorithm", Society for Industrial and Applied Math.
Review, vol.26, no.2, 1984.

[6] Nowlan S. J.,: "Maximumlikelihood competitve learning", in Advances ?
Neural Information Systems, pp. 574-582, 1990.

[7] Perlovsky L. I. and McManus M. M.,:"Maximum likelihood neural net-
works for sensor fusion and adaptive classification,ctions", Neural Net-
works, vol.4, pp. 89-102, 1991.

[8] Lee S. and Shimoji S.,: "BAYESNET: Bayesian classification network
based on biased random competition using Gaussian kernels", in proc.
IEEE ICNN93, pp. 1354-1359, 1993.

[9] Geman S. and Geman D.,: "Stochastic relaxation, Gibbs distribution and
the Baysian restortion in images", IEEE Trans. Pattern Anal. Machine
Intell, vol.6, 6, pp. 721-741, 1984.

[10] Rose K, Gurewitz E. and Fox G. C.,: "Vector quantization by determinis-
tic annealing", IEEE Trans. Information Theory, vol.38, no.4, pp.1249-
1257, 1992.

[II] Buhmann J. and Kuhnel H.,: "Complexity optimized data clustering
by competitive neural networks", Neural Computation, vol.5, pp.75-88,
1993.

[12] Wong Y.,: "Clustering data by melting", Neural Computation, vol.5,
pp.89-104, 1993.

77

ADAPTIVE REGULARIZATION

L. K. Hansen, C. E. Rasmussen* C. Svarer, and J. Larsen
CONNECT, Electronics Institute B349

Technical University of Denmark,
DK-2800 Lyngby, Denmark

email: lkhansen,ed,csvarerjlarsen@ei.dtu.dk

Abstract. Regularization, e.g., in the form of weight decay, is im-
portant for training and optimization of neural network architec-
tures. In this work we provide a tool based on asymptotic sampling
theory, for iterative estimation of weight decay parameters. The
basic idea is to do a gradient descent in the estimated generalization
error with respect to the regularization parameters. The scheme
is implemented in our Designer Net framework for network training
and pruning, i.e., is based on the diagonal Hessian approximation.
The scheme does not require essential computational overhead in
addition to what is needed for training and pruning. The viabil-
ity of the approach is demonstrated in an experiment concerning
prediction of the chaotic Mackey-Glass series. We find that the
optimized weight decays are relatively large for densely connected
networks in the initial pruning phase, while they decrease as prun-
ing proceeds.

INTRODUCTION

Learning based on the conventional feed-forward net may be analyzed with
statistical methods and the result of such analysis can be applied to model
optimization [5, 6, 10, 11, 12]. We have shown how pruning and regulariza-
tion can be combined to design compact networks for time series prediction
[11, 12]. Our "Designer Net" framework is based on the Optimal Brain Dam-
age (OBD) method of Le Cun et al. [7] and we use simple weight decay for
regularization. The benefits from compact architectures are three-fold: Their
generalization ability is better, they carry less computational burden, and
they are faster to adapt if the environment changes. Further, we have shown
how the generalization error of the network may be estimated - without ex-
tensive cross-validation - using a modification of Akaike's Final Prediction
Error (FPE) estimate [1]. The minimal FPE constitutes a useful stopping

'Present address: Dept. of Computer Science, University of Toronto, Canada.

0-7803-2026-3/94 $4.00 © 1994 IEEE 78

criterion for pruning. However, our previous work has been conditioned on
the correct setting of several parameters, most prominently the weight de-
cay parameters. In this contribution we provide the possibility of adapting
regularization parameters within the Designer Net framework.

The results obtained can be viewed as a sampling theory alternative to the
Bayesian or Evidence based techniques for adaptive regularization developed
by MacKay [8, 9]. An analytical comparison of these two techniques has
recently been given in [2].

LEARNING

The use of system identification tools for neural net learning has been pi-
oneered by Moody (see e.g., [10]) who derived estimators for the average
generalization error. The main source of uncertainty in the learning process
is the shortage of training data. Other important contributions to uncer-
tainty are: Lack of fit, noise in the training process, and non-stationarity of
the data-generating environment. Lack of fit1 was discussed in, e.g., [5], while
noise in the training process has been discussed in [3]. In this presentation
we will neglect these three effects. Lack of fit can be minimized by starting
the pruning process from large enough networks, while noise in the training
process can be relieved by careful search in weight space. Non-stationarity
is a hard problem that will be pursued in future work, here we will assume
stationarity.

NETWORK ARCHITECTURE AND TRAINING

The basic network is a tapped delay line architecture with L input units, UH

hidden sigmoid units and a single linear output unit. The initial network is
fully connected between layers and implements a non-linear mapping from
lag space x(k) = [x(k), ...,x(k- L + 1)], (L is the length of the tapped delay
line), to the real axis:

y(*) = Fu(x(*)) yen, (1)

where u = [w, W] is the TV-dimensional weight vector and y(k) is the predic-
tion of the target signal y(k). The particular family of non-linear mappings
considered here can be written as:

FVL (x(fc)) = YJ
WJtanh Yl Wiix(k -*-!) + «to) + Wo, (2)

j=l \i=l /

where nn is the number of hidden units, Wj are the hidden-to-output weights,
while Wij connect the input and hidden units.

:Lack of fit is also sometimes described as "the teacher does not belong to student
space" or "incomplete modeling".

79

A simulator based on batch mode, second order local optimization has
been developed, as described in [11, 12]. The scheme is based on the diagonal
approximation of the cost-function Hessian (the second derivative matrix).
We use the sum of squared errors to measure the performance of the current

network:

Strain = " £ [j/(*) " *ll(x(*))]2 , (3)
P k = l

where p is the number of training examples. To ensure numerical stability
and for assisting the pruning procedure we augment the cost-function with a

weight decay term:

S = Slrain + ^E< + ^EHf, (4)
ij j

where Nw, Nw are the numbers of weights and thresholds in hidden and
output units, respectively. Further, aw,aw are the weight decay parameters
of the hidden and output layers, respectively. The objective of the training
procedure is to optimize the networks ability to predict near future values of
a given time series. Hence, the network weights, u, are trained to recognize
the short time structure of the training set time series.

PRUNING

The OBD method proposed by Le Cun et al. [7] was successfully applied to
reduce large networks for recognition of handwritten digits. The basic idea
is to estimate the increase in the training error when deleting weights. The
estimate is formulated in terms of weight salicncies s;:

M^ = £,S£ f + ^H <5>
where u\ is a component of u and the sum runs over the set D of weights to be
deleted. The saliency definition used here takes into account that the weight
decay terms force the weights to depart from the minimum of the training
set error. As in [7] we approximate the second derivative by the positive
semi-definite expression:

a2 Strain 2 ^ (dFu(x(k))\2

dU2 -pfey duj) ■ K)

The major assumptions entering the derivation of OBD are: 1) Terms of
third and higher orders in the deleted weights can be neglected. 2) The
off-diagonal terms in the Hessian, d2Etra\n /duidui> , can be neglected. Com-
putationally, the second order (diagonal) terms, eq. (6), are reused from the
training scheme. We refrain from operations involving the full Hessian, which
scales poorly for large networks. The recipe allows for ranking the weights
according to saliency.

80

GENERALIZATION

The generalization error is denned as the average squared error on an example
from the example distribution function P(x,y). The examples are assumed
to be generated by a teacher function of the same form as the model and with
a set of unknown weights u* and degraded by additive noise:

y(k) = fu. (x(Ar)) + i/(Jfe) (7)

where the noise samples v{k) are independent identically distributed vari-
ables of unknown variance a2. Further, we assume that the noise terms are
independent of the corresponding inputs. The generalization error of a given
network is by definition the average error on a random example. A more in-
teresting quantity is the training set average of the generalization error, viz.,
the average over an ensemble of networks in which each network is provided
with its individual training set. Using the diagonal approximation for the
Hessian this error (also referred to as the test error) can be estimated as [6]:

Et,

a v l p \ij+2aw/p

Nw / _. w* \ 2 wt
^ J \ p Aj + 2aw/p I

with
Nw (Xi- \2 Nw (A • \ 2

^ = ?U-+wPJ
+£U+wJ ' (9)

where the A's are the second derivatives already computed in eq. (6): \{j =
d2 Etram /dwjj , Aj = d2 EtTam /dW2 . The rest term R contains higher or-
der quantities and terms that do not affect the estimate of the regularization
parameters, see [5, 6] for further discussion. The estimate is based on lin-
earization of the networks as regards the fluctuations in the weights resulting
from different training sets.

The generalization error estimates were also used for answering the ques-
tion of how many weights it may be possible to delete in a pruning session in
[11, 12]. We applied Akaike's FPE estimate [1] of the test error in terms of
the training error which reads:

Etest = TT-Etrain, (10)
p — N

where p is the number of training samples, and TV is the number of parameters
in the model. The left hand side of eq. (10) is the average generalization error,
averaged over all possible training sets of size p.

81

The relation expresses the fact that the training and test errors are bi-
ased estimates of the noise level because each parameter during training has
"absorbed" noise from the training samples.

Since we have regularized the training procedure by weight-decay terms
aw,aw, hence, suppressed the ability of the (otherwise) ill-determined pa-
rameters to model noise, we need to modify the standard FPE estimate by
replacing the total number of parameters with the effective number of pa-

rameters, see [10, 11, 12]-:

~ __P + Neff .
•tatest — TT -C/train, X1-1-)

P ~ Areff

With the above tool we can obtain a generalization error estimate for each
pruned network. By selecting the network with the lowest estimated gener-
alization error we obtain a stopping criterion for pruning.

Note that the estimated average generalization eq. (9) error is a function
of the rcgularization parameters, hence, it is possible to vary these and search
for minimal test error. In MacKay's Evidence framework a similar strategy
was adopted, however, with the purpose of maximizing the so-called Evidence.
We find it more natural to optimize the quantity that is our basic objective,
namely the test error. It is at present not clear what the relation between the
Evidence and the generalization error is. Empirically, they have been found

to be related [2, 8].
We use a simple gradient descent procedure for minimization of the gen-

eralization error:

/ , 1\ / \ dEtest a(n + 1) = a{n) - p —
da

(12)

where p is a gradient descent parameter, and n is the iteration index (one
epoch). The Designer Net approach is based on the diagonal approximation
to the Hessian. In terms of the diagonal elements the recursion above reads,

aw(n + l) = aa(n)+—^— — 3 ■ (13)
P if (Xij+2aw(n)/p)

A similar expression applies for the hidden-to-output weight decay parameter
a\y, in fact an arbitrary set of weight decay parameters can be defined and
estimated using this recipe3. Expression (13) contains two unknown quanti-
ties: the teacher weights u;,*- and the noise variance a2. The teacher weights
are replaced by the current estimated weights of the network (see [2] for a

2In fact, the notion of an effective number of parameters is quite delicate see [6].
3In the derivative of the test error we have kept the dependence A2/(A + 2a/p)3 (rather

than 1/A) providing a stabilizing effect similar to the Moore-Penrose pseudo inverse dis-

cussed in [6].

82

discussion), while the noise variance is estimated from the training error in
the same approximation as in eq. (11):

= ri-^v1
?2 = (1 - — 1 Strain- (14)

EXPERIMENTS

We illustrate the virtues of the adaptive regularization scheme on two time
series forecasting problems. The first experiment explores the functional de-
pendence of the derivative of the estimated test error cf. equation (13). The
forecasting problem is the sunspot benchmark involving estimation of the
yearly sunspot activity from the past twelve years activity (see, e.g., [11] for
a detailed description of the benchmark). To simplify we consider a linear
model for which the parameters are uniquely determined when using the least
squares cost function. The sunspot benchmark involves three data sets: A
training set and two test sets. In figure 1 we show the weight decay depen-
dence of the two test errors and of the derivative of the estimated test error.
Note that both test sets have shallow minima at values just below a = 0.1,
and that the derivative of the estimated test error passes through zero at a
compatible value. Also note that the particular functional form of the deriva-
tive implies that the iterative scheme will converge to the zero point of the
gradient, hence, provide near-optimal regularization with improved general-
ization errors. To further illustrate the role of adaptive regularization in the
Designer Net framework we present tentative results on a standard problem
of nonlinear dynamics, viz. the Mackey-Glass chaotic time series. This fore-
casting problem was previously studied in [12]. The Mackey-Glass attractor
is a non-linear chaotic system described by the following equation:

^-^'TTW^r (15)

where the constants are a = 0.2, b = 0.1 and r = 17. The series is resampled
with sampling period 1 according to standard practice. We aim at identifying
the underlying dynamic model, from this chaotic time series. The network
configuration is L = 16, TIH = 10, with a total of 181 parameters, and we train
to implement a six step ahead prediction. That is, x(k) = [z(k — 6),z(fc -
12), ■■■,z(k-6L)] and y(k) = z(k).

The errors are computed as:

£set = -ä-^ £ M*) - ^U(X(*))]2 , (16)
"total ' Pset h = 1

where pset is the number of examples in the data (train or test) set in question,
and <r2otal is the total variance of y(k) on the training and test set.

83

DC
O
DC
IT
HI
D 0.124-
LU
N

£0.122
O 0

DC
o
DC 0.36
DC
LU

TEST ERROR - TEST SET 1

\

^^^^ ^___^—^
 1

a
LU

5 0.35

DC
Q (

:10

0.1
WEIGHT DECAY

TEST ERROR - TEST SET 2

0.2

0.1
WEIGHT DECAY

TEST ERROR DERIVATIVE

0.2

0.1
WEIGHT DECAY

Figure 1: The role of weight decay regularization for a linear model on the sunspot
benchmark scries. The two upper figures show the errors (see [11] for a definition)
on test sets both having shallow minima just below a weight decay of 0.1, while the
bottom figure shows the derivative of the estimated test error as function of weight
decay. Note that a gradient descent procedure will converge to the zero point.

84

There are several ways of implementing the adaptation scheme; here we
initially set the weight decays to fixed values aw = aw — 0.005 for 100
epochs, then the network is trained with simultaneous adaptation of weight
decay for 8000 epochs using eq. (13) with p = 0.1. After the initial training
phase, further pruning and adaptation took place with pruning of 2% of the
remaining weights per retraining round (400 epochs). In line with [12] it is
seen that the stop criterion is able to select the optimal network. In figure 2
the normalized training errors, test errors cf. eq. (16), and the corresponding
FPE error (after the initial training phase) are sketched for a training set
size of 500 examples and the test set comprises 8500 examples. In [12] we

X10"3 Mackey-Glass time series
1 ' 1

09 Learn error: 1.72e-0 4 ,
 Test error: 3.83e-04

0.8
\ \ \
 FPE estimate: 2.03€ -04 '"/ -

^
0.7

■ij

,_ \ s ■ ■/

H()H - \ t\ lr:
<D i \.y

T3

Ann '■'. J

E
£0.4 \ .

■j 7

0.3 ^ 1
0.2 ■■■p

0.1

1 '
120 100 80 60 40 20 0

Parameters in neural network

Figure 2: The evolution of training and test errors during pruning for the Mackey-
Glass time series for a training set of size 500. The FPE estimate of the test error
is based on eq. (11). The vertical line indicates the network for which the estimated
test error is minimal.

compared the performances of pruned networks with those of fully connected
nets, a linear model, and with a K-nearest-neighbor linear model. It was
noted that the performance of the networks is similar to the nearest neighbor
estimate. While the two weight decays previously were set manually we here
adapt them according to equation (13). In figure 3 the development of the
two weight decays is depicted as pruning proceeds. Note that the adaptive
regularization scheme "chooses" relatively high regularization for the large
network as should be expected. These networks have superfluous resources
that could potentially harm generalization through overfitting. Eventually, at
the end of the pruning session the test error estimates are rather biased (the
network is underfitting) and the adaptive scheme does not provide reliable
estimates. We have observed that the scheme in it present form has some

85

Mackey-Glass time series
0.01

0.009

I 1 1 i i

 Input - Hidden layer: 2.14e-05

o.ooa - Hidden - Output layer: 2.55e-03 -

0.007 - -
>.0.006
s
d>

2 0.005 : \
j

s 0.004 \ ■ ■

0.003 \

 -.~M 0.002

"" \
0.001 V. . , /»■

80 60 40
Parameters in neural network

Figure 3: The evolution of weight decays during pruning for the Mackey-Glass time
series. The vertical line indicates the network for which the estimated test error is
minimal.

dependence on initialization of weights and weight decays; this is a topic for
current research. The very low value of the input-to-hidden weight decay
for the small networks is also in line with our earlier observations, namely
that one can retrain the optimal architecture without weight decay and get
slightly improved generalization [11, 12].

CONCLUSION

A scheme has been derived for adaptation of weight decay parameters. The
scheme is based on asymptotic sampling theory. Two examples were given to
illustrate the virtues of such adaptation. First, we showed that the functional
form of the derivative of the estimated test error will provide convergence to
near-optimal values for a linear model on the sunspot benchmark. Secondly,
it was shown how the Designer Net framework can be applied with adaptive
regularization, hence, relieving, manual tuning of these important parameters.

ACKNOWLEDGMENTS

This research was supported by the Danish Natural Science and Technical
Research Councils through the Computational Neural Network Center (CON-

NECT).

86

REFERENCES

[1] H. Akaike, "Fitting Autoregressive Models for Prediction,"
Ann. Inst. Stat. Mat., 21, 243-247, (1969).

[2] L.K. Hansen and C.E. Rasmussen, "Pruning from Adaptive Regulariza-
tion," Accepted for Neural Computation, CONNECT Electronics Insti-
tute, Technical University of Denmark, preprint (1993).

[3] L.K. Hansen, "Stochastic Linear Learning: Exact Test and Training Er-
ror Averages," Neural Networks 6, 393-396, (1993).

[4] J. Hertz, A. Krogh and R.G. Palmer,
Introduction to the Theory of Neural Computation, Addison Wesley,
New York, (1991).

[5] J. Larsen, Design of Neural Network Filters, Ph. D. Thesis, Electronics
Institute, Technical University of Denmark, March (1993).

[6] J. Larsen and L.K. Hansen, "Generalization Performance of Regular-
ized Neural Network Models," In proceedings of the IEEE Workshop on
Neural Networks for Signal Processing NNSP'94.

[7] Y. Le Cun, J.S. Denker, and S.A. Solla, "Optimal Brain Damage,"
In Advances in Neural Information Processing Systems 2, 598-605, Mor-
gan Kaufman, (1990).

[8] D. MacKay, "Bayesian interpolation". Neural Computation 4 448-472,
(1992).

[9] D. MacKay, "A practical framework for backpropagation networks".
Neural Computation 4 415-447 (1992).

[10] J.E. Moody, "Note on Generalization, Regularization and Architecture
Selection in Nonlinear Systems,"
In Neural Networks For Signal Processing
Proceedings of the 1991 IEEE-SP Workshop (Eds. B.H. Juang, S.Y.
Kung, and C. Kamm), IEEE Service Center, 1-10, (1991).

[11] C. Svarer, L.K. Hansen, and J. Larsen, "On Design and Evalua-
tion of Tapped Delay Line Networks," In Proceedings of the 1993 IEEE
International Conference on Neural Networks San Francisco, 46-51,
(1993).

[12] C. Svarer, L.K. Hansen, and J. Larsen, and C.E. Rasmussen, "Designer
Networks for Time Series Processing," Proceedings of the 1993 IEEE
Workshop on Neural Networks for Signal Processing (NNSP'93) Balti-
more (Eds. CA. Kamm et al.), 78-87, (1993).

87

Faster and Better Training of
Multi-Layer Perceptron for

Forecasting Problems

R. R. Laddad, U. B. Desai and P. G. Poonacha
Department of Electrical Engineering,

Indian Institute of Technology, Bombay,
Powai, Bombay 400 076, INDIA

Fax : (+91-22) 578-3480 e-mail : ubdesai@ee.iitb.ernet.in

Abstract
New methods for training Multi-layer perceptron network

for forecasting problems are presented. The first method
exploits spectral characteristics of time series to get faster
learning and improved prediction accuracy. A neural net-
work scheme for real time implementation of this method is
also presented. The second method suggests the use of two
new weight initialization schemes which give very fast conver-
gence besides giving better prediction. The foreign exchange
time series is used to illustrate the efficacy of the proposed
methods.

1 Introduction

In recent times Multi-Layer Perceptron (MLP) networks have been widely
used in forecasting problems (see for example [2], [3], [5], [6], [9]). This
approach has been vigorously pursued for time series where linear meth-
ods, like the Wiener filter, the Kaiman filter, and their variants, did
not give satisfactory results. The failure of the conventional methods
becomes very evident when one is dealing with financial time series.

For forecasting problems, the MLP network is typically in a Time
Delay Neural Network (TDNN) structure (Figure 1). From a digital
signal processing perspective, the TDNN can be viewed as a nonlinear
filter. Training is done using some past data; for example in case of
foreign exchange rate time series, one could use previous day's data.
The most popular training algorithm is the backpropagation algorithm

[7], [8].
Several difficulties are encountered when one uses the raw data for

training the TDNN. In a practical situation the data is very likely to be

0-7803-2026-3/94 $4.00 © 1994 IEEE 88

x(n)

Tapped

Delay

Line

sfn-M + l)

Multi-Layer

Perceptron

F(.)

y(")

y(n) = F([x(n) x(n-l) ■■■ x(n - M + 1)]T)

Figure 1: Time Delay Neural Network

noisy, and the MLP may learn the noise along with the signal leading to
poor forecasting. The presence of noise also makes it difficult to arrive at
an appropriate size of the network. Small network may not be capable
of modeling the given system; on the other hand a large network may
cause poor generalization. From our simulations we found this to be
a difficult issue to handle. We also found that the use of raw data for
training leads to slow convergence or no convergence.

It is known that if the MLP is trained with appropriately prepro-
cessed data, it may give better1 and faster learning [5]. A further im-
provement in learning speed and accuracy can be achieved by appropri-
ately selecting the starting weights. In this paper we suggest methods
for solving these two problems :

1. The preprocessing method based on the spectral decomposition of
the data.

2. Initial weights selection based on the specific structure of the fore-
casting problem.

(a) A fixed unity gain for the path leading from x(n) to y(n) in

1 Better learning in the sense of low mean squared error

89

Figure 1.

(b) A Least Mean Square (LMS) filter for one path leading to the
output y(n).

The next two sections elaborate on both these approaches, which
constitute the key contribution of this paper.

We would like to remark that in all simulations we have used the
Random Optimization Algorithm (ROA) [1] for training the MLP. The
reason for choosing it over backpropagation is faster learning; also we
found it to give a better minima.

2 MLP Learning with Spectral Decompo-
sition Technique

2.1 Proposed Scheme

The basic idea behind the proposed technique is to decompose the time
series into many simpler time series and learn each one using a separate
MLP. We propose to use the spectral decomposition of the data; this is
achieved by passing the time series through a bank of bandpass filters
each having different passband frequencies.

Figure 2 gives the schematic of the proposed scheme. Bandpass filters
have cutoff frequencies such that the lower cutoff frequency of the next
filter is same as the upper cutoff frequency of the previous filter. Each
bandpass filter output is fed into a separate TDNN. Final prediction is
a combination of the outputs of these TDNNs. The combining filter /(•)
could be a simple summation, or a linear adaptive filter [4] or a single
layer MLP (a nonlinear adaptive filter). Adaptive filter for /(■) may
have an advantage, since it can compensate for difference in prediction
accuracy of each TDNN.

2.2 Discussion

From our simulations we found the spectral decomposition technique
to give much better prediction accuracy. Moreover, the method gave a
significant speed advantage typically by a factor of 8. Also, the design
for each TDNN becomes easier since the knowledge of the frequency
contents of the respective input time series is known.' In case of foreign
exchange time series we found that for low frequency, a MLP with large
number of input nodes and small number of hidden layer neurons is a
good choice; while for medium frequency a small number of input nodes
with large number of hidden layer neurons is a better choice.

In many practical situations high frequency variations are considered
as noise, and in such cases one can ignore high frequencies. Removal of
noise makes choosing the network size an easier problem.

90

Time series
to be learned

/(•)

BPF 1
0-/! TDNN 1

BPF 2
/1-/2 TDNN 2

.

•

BPFn
Jn-l — In TDNNn

Final
Prediction

Figure 2: Schematic of Spectral Decomposition Technique

We have carried out simulations for forecasting the foreign exchange
rate. Without spectral decomposition we were unable to train the TDNN
to give any meaningful results; this was because in most of the cases the
error obtained was unacceptable. Figure 4 gives simulation results for
the spectral decomposition technique, using one and two filters. The
combining filter /(•) used is a simple summation. In both the cases
very high frequency components were ignored since they are considered
unimportant in foreign exchange market.

2.3 Real Time Implementation

Any real time implementation of the band pass filter would involve a
certain amount of delay. For example, a P order linear phase FIR (Finite
Impulse Response filter) would have a delay of (P + l)/2. This delay
can play havoc in real time forecasting. We propose a scheme wherein
an approximate implementation of the FIR band pass filter is used to
achieve zero delay. This scheme is depicted in Figure 3. A band pass
filter, [BPF k] followed by [TDNN k] block of Figure 2 is replaced by the
block [GBk] followed by [MLPk] of Figure 3.

In Figure 3
Gßk = [GT

Bhx GBk2]Mx(M+P) C1)

where Gsfcl will be a (P - 1) x (M + P) matrix, and GBk2 will be a

91

x(n)

T

D

L

x(n)

c(n-l)

i{n-M-P-\-l)

Gi

*'(") ,

^(n-l)

g»fo-M + l)

MLPk ■y(n)

Figure 3: Schematic for Real Time Implementation of Spectral Decom-
position Technique

(M - P + 1) x (M + P) matrix defined as

Gßjt, =

1
bk
°2,1

°p-i,i

0
bk
°2,2 °2,1

bk
°P-i,P-i bk

(2)

Gßk2 =

r A*

0

b\
bk

bk
Op

0

b\

b\

b\

hk
Op

As seen from Figure 3, the input to the MLPk will be

Xn
k = Gj}kXn

where,
Xn = [z(n) • • • x(n - M - P + 1)]T

Xb
n
k = [xb(n) ■■■ x\n-M + I)]1

0
0

b\

(3)

(4)

(5)

(6)

The specification for the band pass filter corresponds to the specifica-

■tf.i] the tion of [BPF k] in Figure 2. The elements [6* j, • • ■ 6*
FIR coefficient of a (2« + 1) order band pass filter. On the other hand
[bk, • • bp, ■ ■ -bk] are the FIR coefficient of (2P+1) order band pass filter.

92

1.665

1.66 -

1.655
Exchange

rate
1.65 -

1.645

1.64
0 200 400 600 800 1000 1200 1400

Time in minute

(a)

1.665

1.66

1.655
Exchange

rate
1.65

1.645 -

1.64
0 200 400 600 800 1000 1200 1400

Time in minute

(b)

Figure 4: Results with Spectral Decomposition Technique (a) with one
filter and (b) with two filters

93

3 Very Fast Learning in MLP for Forecast-
ing Problems

3.1 Unity Transmission gain for One Path

Our simulations with financial time series exhibited an interesting char-
acteristic of MLP learning. When actual and desired output is observed
after each iteration, we found that learning passes through a phase where
the predicted value is a delayed version of the most recent input to the
MLP, i.e.

y(n) K, x(n) (7)

The MLP takes a long time to arrive at this situation. Thus the proposed
scheme is as follows: Select the initial weights for the MLP, so that (7) is
approximately satisfied. One way to achieve this is to select the weights
such that the transmission gain between the last input (say x(n) in
Figure 1) and the output node is near unity. The remaining weights can
be set to zero.

Our simulations overwhelmingly justify the proposed scheme for fore-
casting using TDNN. We carried out extensive simulations using differ-
ent data sets and networks. In all cases we found 50 to 100 times faster
convergence as compared to the conventional approach where the initial
weights are set to zero, as ROA does not require weights to be set to
a small random value as is the case with Backpropagation. Figure 6
gives simulation result which uses spectral decomposition technique of
earlier section along with the above mentioned scheme of selecting initial
weights. The same data and the network is used for the simulation with
the conventional approach (Figure 5) and for the simulation with the
new approach (Figure 6). It can be observed that the error obtained by
the conventional technique after 9500 iterations is achieved by the new
scheme in just 200 iterations. With the conventional approach the error
practically stops decreasing after 9500 iterations and the error is more
than double as compared to that obtained by the new scheme. This
suggests that the new scheme is not only faster but also provides more
accurate prediction.

3.2 LMS in Conjunction with MLP

The method of initializing weights as suggested above works well when
used in conjunction with the spectral decomposition technique. In essence
this implies the availability of noise free data for the weight initialization
scheme to work. Thus a major constraint is the real time implementa-
tion of zero delay band pass filters. To avoid this constraint we propose
a method where the MLP acts on the raw (noisy) time series but has
one node implementing a linear adaptive prediction filter. In this paper
for the purpose of illustration we have used the LMS filter. Here one

94

neuron in the first hidden layer along with the incoming inputs forms
the FIR filter, which is trained separately using LMS algorithm. This
way, for the second hidden layer we have some data which has the noise
removed by a linear adaptive filter. Note the transmission gain between
the output of this node to the output layer node is set to one. Once the
LMS filter is trained, the MLP gives an initial output which is based
on linear prediction only. After this we train the network in the regular
fashion using ROA.

The simulation results for this method are depicted in Figure 7, once
again for the same financial time series. In this figure the first 200 itera-
tions corresponds to the convergence achieved using the LMS algorithm.
It is to be noted that with raw data, the MLP training algorithm based
on ROA or backpropagation did not give any meaningful results; thus
they are not reported.

U.UUU4

0.00035

 1 1— l 1 1 1 i i 1

0.0003 A -

0.00025 - \ -

Mean
squared

error
- ^ Test set error

-

0.00015
—

0.0001

i

.^ Training set error

1

5e-05

n i i i i i i —I—

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration number

Figure 5: Error curve for conventional training

95

0.00014

0.00012

0.0001

Mean 8e"05

squared
error 6e-05

4e-05

2e-05 h

0

"i r "i r i r

Training set error
J I i i i _i_ _L

0 50 100 150 200 250 300 350 400 450 500
Iteration number

Figure 6: Error curve for training using method of Section 3.1

0.00016

0.00014

0.00012

0.0001
Mean

squared
error

6e-05

4e-05

2e-05

0
Training set error
 i i

200 400 600 800
Iteration number

1000 1200

Figure 7: Error curve for LMS based training of Section 3.2

96

4 Conclusion

We found the combination of spectral decomposition method and the
above initial weight selection approach to provide the best results both
in terms of speed and accuracy. Only sample simulations are provided
due to space limitation.

Even though the proposed methods are specific to the forecasting
problem, nevertheless they should be applicable for the general MLP
training problem.

References

[1] N.Baba, "A New Approach for finding the Global Minimum of Error
Function", Neural Networks, Vol.2, 1989, pp. 364-373.

[2] M.J.Bramson, R.G.Hoptoff, "Forecasting the Economic Cycle: Neu-
ral Network Based Approach", Workshop on Neural Network for
Statistical and Economic Data, Dublin, 1990, pp. 121-152.

[3] D.D. Hawley, J.D. Johnson, D. Raina, "Artificial neural systems: a
new tool for financial decision making", Financial Analysts Jour-
nals, Nov-Dec 1990, pp. 63-72.

[4] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs,
New Jersey, 1986.

[5] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of
Neural Computation, Addison - Wesley, Redwood City, CA, 1991.

[6] D.R. Hush, B.G. Home, "Progress in supervised neural networks,
what's new since Lippman?", IEEE Signal Processing Magazine,
Jan 1993, pp. 8-39.

[7] R.P. Lippman,' "An introduction to computing with neural nets",
IEEE ASSP Magazine, April 1987, pp. 4-22.

[8] D.E. Rumelhart, G.E. Hinton, R.J. Williams, "Learning inter-
nal representation by error propagation", In D.E. Rumelhart, J.L.
McClelland, editors, Parallel Distributed Processing : Explorations
in the Micro structure of Cognition, MIT press, Cambridge, MA,
1986, pp. 318-362.

[9] A.S. Weigend, B.A. Huberman, D.E. Rumelhart, "Predicting the
future : a connectionist approach", Int. Journal of Neural Systems,
1(3), 1990, pp. 193-209.

97

An Interval Computation Approach To
Backpropagation

C. E. Pedreira and E. Parente
Electrical Engineering Department

Catholic University of Rio de Janeiro PUC-Rio
C.P. 38063, Rio de Janeiro, RJ 22452-970 BRAZIL

E-mail:pedreira@ele.puc-rio.br

Abstract - A new learning algorithm is introduced to allow interval valued
inputs. This procedure is based on gradient descendent and error
backprogation. It has many advantages over the classical Backpropagation
including the possibility of dealing with missing values attributes. We
establish a framework especially useful for applications with incertitude in
the input. We propose a cost function reflecting a trade-off problem between
the goal of including the target value into the interval valued output, and
minimizing this interval size. Simulated numerical results are presented.

INTRODUCTION

Backpropagation has been widely used in a variety of applications. No other
Neural Network's paradigm has achieved such success from the practical point of
view. A major restriction of this classical technique arises from the obligation of
using real valued inputs. In many relevant applications one needs to train the
Network by associating the output target to an interval valued input. This
situation is typical in medical diagnoses problems for instance. In this type of
applications, one is fact dealing with classification problems where the input
patterns have a good dose of uncertainty. Another Backpropagation limitation
appears in the cases when part of input information is not available.

The management of Neural Networks with missing values attributes as inputs, is
a very important open problem. Again, this is an everyday occurrence in medical
among other applications. Suppose that a Neural Network has been trained to
emulate an automatic diagnosis system by using a data basis composed by vectors
in 9t". Each of these vectors contains the information of n medical exams the
patient is supposed to undertake. Suppose that after a successful training section,
one or more of the n exams could not be applied to a given patient. The question
then is: How can the system be used in this case? To retrain the Network for n<m
inputs is not, in general, a feasible solution. The Interval Neural Networks
(INN), introduced in this paper, provides an adequate solution for these problems.

0-7803-2026-3/94 $4.00 © 1994 IEEE 98

The use of interval arithmetic's in Neural Networks was first suggested by
Ishibuchi et al [1]. They proposed a classification method for two-group
discriminant problems where the Network inputs are given as intervals. Their
method is limited to classification problems, and it can not be directly extended to
more than two groups. In this paper we propose a much more general approach to
Interval Neural Networks.

Our contribution concerns the introduction of a new learning algorithm that is
able to deal with interval inputs. We believe that our algorithm will find
application in classification, forecasting, and pattern recognition, among other

areas.

PRELIMINARIES

Let us consider a one hidden layer Neural Network with a single unit in the output
layer. As it will be notice in the ensuing developments, our results can, after some
algebraic manipulation, be easily extended to a more general architecture. Assume
that each input unit receives an interval valued income.

Notation
Let us consider the presentation of pattern p. Let e1p and eip , / = 1,2, ,n be
the lower and upper limits of the n input units. ofp and ofp ,j-\,2,...,m
denote the lower and upper limits of the outputs of the m hidden units, and 0L

V,
0% are the lower and upper limits of the network output. The n x m input
weights are represented by wfi , and the v, are the m weights linking the hidden
layer to the network output. The network target, for each pattern p, is denote by
tp. Let Xw be the interval for which the lower and upper limits are XL and Xu

respectively.

Basic Definitions
We define the linear combination of the input intervals, when pattern p is
presented, as:

netfp
u = X wjfiff + Qj , for each / = 1,2,....,m , (1)

while the linear combination of the hidden units outputs is given by:
JVE^ELv^+e (2)

where 0; and 6 are the bias terms.

Our problem is to modify the Network weights such that the cost function
E = 2 e„ is minimised for all patterns in the training set. The cost due to pattern p

p
is defined as follows:

eP = \a{tp - {Oy + 0L
p)/2]2 + ß(0? - 0L

P) (3)

This cost function is intended to solve a trade off problem. Its first term pushes
the centre of the output interval towards the pattern target, while its second term

99

minimises the interval size. This trade off problem is balanced by parameters a
and ß. Our main goal is to define a gradient descendent algorithm that modifies
the weights wß and v, for i=l,2,...n , j=l,2,...m such that the cost (3) is
minimised.

Preliminary Results
Let /(ft) be the set of all closed real intervals. Note that real numbers x e ft
may be considered special elements [x,x] of /(ft). Let X, Y e 7(9?). The following
binary operations can be calculated as [2]:

X+Y=[XL + YL,XU + YU] (4)

X-Y=[XL-YU,XU-YL] (5)

XY= [xmn(XLYl,XLYu,XuYL,XvYu\ max(XLYL,XLYu,XuYL XUYU)] (6)
X+Y=[XLXU] [1/Yu,l/YL] 7

e^=[e^,e^] if Xu>0 (8)

= [ex",exi] otherwise

Here it is assumed that 0 e Y in case of division. Note that /(ft) is closed under
operations (4) - (8). Furthermore, it can be proved [2] that one has: (i)
commutativity and associativity for addition and multiplication; (ii) [0,0] and
[1,1] are the unique neutral elements concerning addition and multiplication
respectively; and (iii) /(ft) has no zero divisors.
Let Ye /(ft) be a point interval, i.e. Y= \y,y] where y e ft , then from (6) one
gets

X■ Y = [mm(XLy,Xuy), max(XLy,Xuy)] VX e /(ft), and so

yX= [yXL,yXu] for m>0 VXe /(ft) (9)
y-X=\yXu,yXL] for m<0 VXG/(ft)

MAIN RESULTS

We are now able to establish a proceeding to calculate the weights changes in
order to minimise the contribution of pattern p, ep ,to the cost function E. Let us
consider the following Delta rule:

APVj(k + 1) = TK-a^/av,) + yApVjik) (10)
ApWß(k +l) = r\(-dep/dyvß) + vApwß(k)

where T| and y. represent the learning and momentum parameters respectively.
The remaining hardship is related to the ep partial derivative's calculation From
(1),(2) and (9) we get:

100

netf" = ^[wjK'wJiEl]+dJ Vy = l,2,...,m , and

NETF=i[Vjofp,Vjofp]+e

where
A = L , B = U if w,}>0 , and A = U,B = L otherwise,
C = L , D = U if v, > 0 , and C = U, D = L otherwise.
Now, concerning the hidden layer units we have that:

OjP =Anetjp)
and for the output unit:

0^=J[NET^u)

where the activation function f: I(3i) -»/(9t) is a generalised logistic function
i.e:

flX) = 1/(1 + expHO) \fX e /(9t).

Note that this generalised logistic function can be defined because of (4),(7) and
(8).
Let us define the auxiliary parameters O, *F, K as follows:
O = L if Wjj > 0 , O = U otherwise
y¥=U if wjj>0 , *¥ = L otherwise
K=l if v;>0 , K=0 otherwise

By applying the basic interval computation operations (4) - (7), and the chain rule
we get:
(i) For "input to hidden" weights:

dep _ deP dOL
P (dNETL

P dofp dnefa dNET1} do# d»<*L

*">fi ~ dOp-dNET^ doi dne£ **JI do" dne£ dwft > +

dep W
v

p .dNErf dofp dnetfp dNETp1 &# dnet% \
and so

t| = ffi(2tp ~ °" ~ °LpM + ^ + m ~ Ö (11}
where

$ = *(1 - 0L
p)0

L
pVjofp(l - o£)e* + (1 - A)(l - 0$Ofyft%{\ - o>*

G5 = (l-A0(l- 0£)0,V,>(1 - °fP)4 +K(l - OjbO?Vjo%,(l - o£)e*)

101

(ii) For "hidden to output" weights:

where

de p OKp dep dO" dNETl! , dep dOL
p dNETL»

fy dO^dNET^ 3v> dOL
pdNETL

p ty

= (-^(2tp -oy- 0L
p)(n + a) + ß(0 - it)

n = c%0¥(l-0¥) and a = o*0£(l-0£)

(12)

By applying (11) and (12) in (10) one can appropriately train the Neural Network
to minimize the proposed cost function E.

NUMERICAL RESULTS

To illustrate our method we simulated a hypothetical medical diagnosis decision
support system. Let us suppose that four exams are applied to each patient, being
the first one more relevant than the others. The Network output indicates the
patient diagnostic. We assume that "0" indicates negative and "1" indicates
positive, i.e a patient with an output near 1 considered to be with good health. An
input equal to "1" reflects a positive exam result. For all the following examples
the Neural Network has two units in the hidden layer. In our first simulation we
set ß = 0. The following training set was presented:

Presentation 123456789 10 11 12 13 14 15 16
Input 1 111111110

1110 10 0 0 0

110 0 0 110 0

10 0 0 110 10

0 0 0 0 0 0 0

1110 0 10

0 1110 0 1

0 0 11110

Input 2

Input 3

Input 4

Target 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0

After a training section of approximately 4000 iterations (see figure 1) we have
got the following outcome corresponding to the 16 training data:

Presentation

Outcome

Presentation

Outcome

1 8

0,9998 0,9996 0,9876 0,0190 0,9996 0,9996 0,9876 0,0004

16 10 11 12 13 14 15

0,0007 0,0004 0,0146 0,9833 0,0146 0,0007 0,0146 0,0007

102

1000 2000 3000

Epoch
4000 5000

Figure 1

Note that real outcomes were obtained, i.e. lower interval bound is equal to the
upper bound. This result was expected since real inputs were presented. Next we
recalled the network simulating that the third exam was not undertaken, i.e. input
= (1, 1 , [0,1], 0), and we got as outcome [0,9876 ; 0,9996]. This result is also
coherent since the absent exam is not the relevant one. In contrast, if we omit the
first exam, i.e. input = ([0,1] , 1 , 0 , 0), we will get outcome = [0,0007 ;
0,9876], indicating an undefined response as expected. In the next experiment we
set ß = 0,01 , and used the following training data:

Present. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input 1 AAAAAAAABBBBBBBB

1110100001110010

1100011000111001

1000110100011110

Input 2

Input 3

Input 4

Target 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0

where A = [0.8 , 1] and B = [0 , 0.2]. We trained the network to reach a sum
squared error of approximately 10~7. This network was recalled with
input=([0 ; 0,4], 1,1,0), to get as output [0,9988 ; 1,0000].

103

FINAL REMARKS

In this paper we introduced a new approach to the classical Backpropagation
algorithm. This method allows interval valued inputs, producing an interval
valued output. The main advantages of our approach are the possibility of
recalling the network even when one has missing or uncertain values attributes as
input. We presented preliminary simulated numerical results obtain quite fast
convergence and coherent results. Further research is now been conducted with
the goal of generalising this approach to interval output targets.

REFERENCES:

[1] H.Ishibuchi, A.Miyazaki, K.Kwon and H.Tanaka, "Learning from Incomplete
Training Data with Missing Values ansd Medical Application", Proc. of Int. Joint
Conf. on Neural Networks, ppl871, Nagoya, Japan, Oct 1993.

[2] G.Alefeld and J.Herzberger "Introduction to Interval Computation" ,
Academic Press, N.Y.,1983.

104

Robust Estimation for
Radial Basis Functions

Adrian G. Bor§ I. Pitas

Department of Electrical and Computer Engineering
University of Thessaloniki

Thessaloniki 540 06, Greece

Abstract

This paper presents a new learning algorithm for radial basis func-
tions (RBF) neural network, based on robust statistics. The extention
of the learning vector quantizer for second order statistics is one of the
classical approaches in estimating the parameters of a RBF model. The
paper provides a comparative study for these two algorithms regard-
ing their application in probability density function estimation. The
theoretical bias in estimating one-dimensional Gaussian functions are
derived. The efficiency of the algorithm is shown in modelling two-
dimensional functions.

1 Introduction
Radial basis function (RBF) neural networks have been used in different
applications in order to model unknown functions, providing the network
with a training set [4]-[8]. RBFs have suitable properties to be used for
function approximation [5], by decomposing a general function in a sum of
kernels [2]. All the functions in this structure have similar parameters and
can be embedded in a neural network.

The first approach considered in this paper is the second order statistics
extension [7] for Learning Vector Quantization (LVQ) algorithm [3]. However,
from statistical studies [2] this method is expected to give a large bias in the
cases when data are long tailed distributed or contain outliers [1, 9]. In order
to overcome these situations, we use an algorithm based on median type
learning and called Median RBF (MRBF). Robust estimators are known to
find the parameters best fitting to the bulk of the data and to identify outliers
[2]. In the MRBF learning algorithm, we use the marginal median estimator
in order to find the centers of the Gaussians and median of the absolute
deviation for the covariance matrix parameters.

0-7803-2026-3/94 $4.00 © 1994 IEEE 105

The RBF network has a feed-forward topology and can be used in un-
supervised as well as in supervised learning. The network can be fed with
real TV-dimensional vectors denoted by A and the hidden units implement a

Gaussian function:

4>j(X) = cxp [-(,,,- - A")' S^O'i - A')], j=l,...,L (1)

L is the number of hidden units, // is the mean vector and S is the covariance
matrix. These weights are associated with input to hidden layer connections
and geometrically they represent the centers and the shape parameters for the
basis functions. Each hidden unit has associated an activation region, similar
with the Voronoi partition from vector quantization. In order to assign a
new sample to an activation region we have assumed two different metrics:

Euclidean and Mahalanobis.
The output layer implements a weighted sum of hidden unit outputs:

L

y,t.(A') = 53 Kktj)d>j{X), k = l,...,M (2)

whore M is the number of outputs.
The outputs are binary coded and a sigmoidal function is used in order

to limit the output:

Yk(X) = — ! . ,y.v k = \,...,M (3)
l+exp[-V'*(A)]

where Yk is the kt\\ output of the network.

2 Learning Algorithms

The weights in a RBF network can he found on-line by using a combined
unsupervised-supervised technique [4], The unsupervised part is derived from
the. LVQ algorithm and is similar to the adaptive fr-means clustering.

In the first, stage, the algorithm computes the distances from the given
pattern to all the existing kernel centers. If we use Euclidean distance:

If II A,- - /-/,■ ||2 = min || Xi - fik ||2 then A',- G Cj (4)
k — \

where C) is the kernel associated with the given pattern. Only the center of
the winner class will be updated, according to the LVQ algorithm [3]:

fij =f'j + — (Xi-f'j) (5)
Tlj

for j = 1, . . ., L, where n.j is the number of samples assigned to the cluster
j. Taking the learning rate equal with the inverse of the number of samples
associated with that unit we obtain a minimal output variance [10].

106

A similar method with (5) can be used to calculate the covariance matrix
elements for each Gaussian neuron [7]:

'.' = ^TTT^*' + ^731 (6)

for &, / = 1,..., N j = 1,..., L. The estimators in (5,6) are consistent with
the classical statistical estimators for the first and the second order statistics.

The Mahalanobis square distance takes into consideration the covariance
matrix for each hidden unit and can be used instead of (4):

If (fij - Xi)' tr\ßj - Xi) = min^t - Xi)' t~\ßk - Xi) then Xt G Q (7)

In the training stage it is desirable to avoid using patterns which may cause
bias in the parameter estimation. The LVQ algorithm together with its ex-
tention in RBF network do not have robustness against the outliers or against
the erroneous choices for the parameters. Robust estimators are known to
provide accurate estimates when data are contaminated with outliers or have
long-tailed distributions [1, 2]. The marginal median LVQ algorithm [9] can
be used in order to evaluate the reference vectors for each partition region. In
order to avoid increasing complexity, the samples assigned to a neuron pass
through a running window W. If the data statistics change in time, then W
is small. If a better evaluation of the median is desired then W is large. The
learning rule is given by:

_ (med{X0,Xu...,Xi} \ii<W
P' - \ med{Xi-W,Xi-W+u...,Xi} iii>W y)

For the robust estimation of the scale parameter we use the median of the
absolute deviation (MAD):

med{|Xi - ßj\,... ,\XW - fij\}
*iM = ^^ (9)

where 0.6745 is a scaling factor in order to make the estimator consistent
for the normal distribution [1, 2]. The cross-correlation components of the
covariance matrix can be derived from the MAD calculated for Xi(h) + X{(1)
tmd Xi(h) - Xi(l) [2].

In both algorithms, for supervised learning, a second layer it is used in
order to group the clusters found in the unsupervised stage. The output
weights are updated as:

X(k,j) = X(k,j) + V(Yk(X) - F\X))Yk{X){\ - Yk(X))^(X) (10)

for k = 1,...,M j = 1,...,L and r] G (0,1) is the learning rate. Fk{X) is
the desired output for the pattern X and it is binary coded. The formula
(10) corresponds to the backpropagation for RBF network with respect to
the square error cost function [8].

107

3 The Performance Analysis

Wo consider the case when we have a mixture of one-dimensional normal
functions N(//j, (Tj):

f(X) =

L

i = i
ITTCFJ

exp (X->>j)2

2er] (11)

£ Ej — 1 (12)

where Sj is the a priori probability for the function j. In the case of a
mixture of multivariate normal distributions, the estimation can be clone on
marginal data. If we consider more complex distribution functions, they can
1)0 decomposed in sums of mixed Gaussians and reduced to the model (11).

We estimate the center for the jth Gaussian:

E\fij) = E[X\Xe[fj,fj + 1)] =
a^ xf(x)dx

JTj

fV1 f(X)dX
(13)

where Tj and 7j + i arc the estimates of the separating boundaries for the
jth Gaussian kernel and f(X) is given by (11). In order to evaluate the
parameters for one Gaussian from a mixture of normal functions we should
also consider parts from neighboring functions which are inside the boundaries
Tj and Tj + i. Replacing (11) in (13) we derive the stationary value of the mean
estimate, valid for (5).

The median is located where the pdf of the given data is split in two equal
areas [1], From this condition the stationary value of the center estimate for
the jth Gaussian distribution can be obtained by using the median operation:

^ [—*— =EJ
rf

Tj + i - Hi
erf Tj - Hi

<?i

where we consider the definition for the erf function:

erf(A') = 7=1' '27T J0

exP 1 -y) dt

(14)

(15)

The stationary value for the estimate of the variance using the classical
estimator (6) is given by:

f^+i

E[&]] = E[(X - fi?'<">)*\x G [T),fi + 1)] =
tii+x{X-E\ji?"n]?f{X)dX

J^x f(X)dX
(16)

108

where f(X) is from (11) and E[ßfean] is the stationary value of the center
estimate using the mean estimator.

From similar properties like those used for (14), for the MAD estimator
(9) we can derive its expected stationary value from:

2si = l £i
erf /e[Ard]-M,+^fAOA _ erf fE[ßrd]-ß,-cE[&r

A-

= |EL^[erf(^^)-erf(^)] (17)

where c=0.6745.
In order to evaluate the parameters for the Gaussian kernels we must also

evaluate the activation domains V = p),2)+1) for each Gaussian function. If
the Euclidean distance is used in order to assign a new pattern to an activation
region (4), we can estimate the boundary Tj between two activation regions
j and j + 1 as:

7) = k±B» (18)

for j = 1,..., L — 1. The first and the last boundaries are: T0 = — °o and
TL = oo.

In the case when the Euclidean distance is replaced by the Mahalanobis
distance (7), then the boundary condition in one-dimensional case can be
found solving the equation:

(19)

for j = 1,..., L — 1. Analytical methods can be used in order to find the
boundaries as well as the model parameters.

We consider the following particular examples :

f(X) = ±N(5,<r) + ±N(lO,<r) (20)

f(X) = |j\T(3, a) + |JV(5, a) + |jV(10, a) (21)

We estimate the center and the scale parameter for the distribution N(5, a)
using both mean and median estimators for RBF centers. The absolute errors
E[ß]—[i are depicted in Figure la for the distribution (20) and in Figure lb for
the distribution (21) with respect to the scale parameter a. The comparison
results in the bias estimation for the scale parameter E[a] — cr are presented in
Figure lc for the distribution (20) and in Figure Id for the distribution (21).
The estimation of the class means and scale parameters of (20) corresponds
to the estimation of parameters of medium-tailed distribution and in the case
of (21) to a short tailed distribution. All these plots show that in the cases
when it is occuring a certain overlap in the functions to be estimated, the
bias given by the robust algorithm it is smaller than that obtained by using
classical methods.

109

ffl

6 •a

s

-0.5 -

2 3

Scale parameter

2 3

Scale parameter

a
S

s

2 3

Scale parameter

Scale parameter

Figure 1: Theoretical analysis for robust and classical statistics estimators in
evaluating the RBF parameters: a) estimation of the center for N(5,2) in a
long-tailed distribution and b) in a short-tailed distribution; c) estimation of
the scale parameter for N(5,2) in the first distribution and d) for the second
distribution.

4 Simulation results

Wc have applied both algorithms presented in Section 2 and analyzed in
Section 3 to the estimation of the parameters for mixed bivariate normal dis-
tributions. The first algorithm uses classical statistics estimators for finding
the RBF parameters and the second uses robust estimators. In these appli-
cations we have used both Euclidean and Mahalanobis distances in order to
assign a new corning pattern to a cluster.

We apply the networks for estimating the following distributions:
Distribution I: P/(X)=N(2,1;3,1;0)+N(8,7;3,1;0)

Pf(X)=N(8,2;l,3;0)+N(2,6;l,3;0)
Distribution II: P//(X)=N(6,0;4,1;0)+N(0,6;1,4;0)

D
2"(X)=N(6,6;2,2;0)

Distribution III: P{u(X)=e P/+(l-e)U([-5,15],[-5,15])

Distribution IV: P{v(X)=e Pfc
//+(l-e)U([-5,15],[-5,15])

where we denote a Gaussian distribution through N(p.\, \xi\ C\, &2] r), r is
the correlation factor and a uniform distribution through U and k £ {1,2},
£ = 0.9.

110

Table 1: Comparison between RBF and MRBF algorithms

Distribution Method
Distance Measures

Euclidean Mahalanobis
Error (%) MSE Error (%) MSE

I
RBF 21.26 13.69 17.17 6.90

MRBF 17.58 8.65 13.75 2.75
Optimal 12.13 0.00 12.13 0.00

II
RBF 3.89 3.69 2.95 1.24

MRBF 2.90 1.20 2.61 0.82
Optimal 2.52 0.00 2.52 0.00

III
RBF 26.63 34.22 35.05 48.59

MRBF 21.11 10.11 18.82 5.74
Optimal 15.78 0.00 15.78 0.00

IV
RBF 15.28 32.36 22.21 39.61

MRBF 8.78 5.50 7.24 2.49
Optimal 7.18 0.00 7.18 0.00

The comparison measures are the miss-classification error and mean square
error (MSE) between the true functions and those modeled by means of the
neural network. The problem of multi-distribution estimation is seen as a
pattern classification task. The optimal network is obtained when its param-
eters are identical to those of the given Gaussian distributions. The MSE is
defined as:

1 M f
MSE = JTJ2 (Yk(x) ~ Y\X)f dX (22)

where the domain is V = (—00,00) x (—00,00) in our case , Yk(X) is the
surface for the kth output unit and Yk(X) is the target function.

In the learning stage, we consider a window of W=401 samples (8) (for
MRBF) and 4000 learning samples with equal number of samples for each
cluster. The comparison results between the two methods are given in Table
1 where the same data were used for both algorithms. The simulations were
repeated with different data, consistent with the same distribution functions
and the presented results are the average of all these trials.

In all these cases, we have obtained a clear improvement by using the
MRBF algorithm. When the mixture of bivariate normal distributions is
contaminated with uniform distributed patterns the difference is very large
because the median type learning is insensitive to the presence of outliers.
Using the Mahalanobis distance instead of the Euclidean distance, we ob-
tain better results, except for the classical estimators in the case of models
contaminated by uniform noise.

111

20

15

10 pi \x'y-s>'\-:C/y '■'/■'-.■'■■ P1

1 5

0

' VS^(^Ä-;^.ffi^-;':V:"
'. ^%-r''5r^>

£
■; -:^^^^^^

pi ;.<;>' vv;-.''';. '-- pi

-5

-10 -5 0 5 10 15 20

FEATURE I

Figure 2: Samples from the distribution I and the boundaries between the
classes: '-' optimal classifier, '- -' MRBF and '-' RBF.

L\l

15 i& ^
10 ■:||;^^K.

1
5

0

:Ällil|^ -
P1'1"/^■■^.^0^^^^~^^0 ■■':'■''■ ■

-5 -

" -10 -5 0 5 10 15 20

FEATURE I

Figure 3: Samples from the distribution 11 and the boundaries between the
classes '-' optimal classifier, '- -' MRBF and '-' RBF.

112

Samples drawn from the distributions I and II are depicted in Figures 2
and 3. The separation boundaries found by means of the RBF and MRBF
networks as well as the optimal boundary are marked in these Figures. The
separation boundaries are situated where two neighboring classes have equal
probabilities. The decision rule for the assignment of a new pattern was based
on Euclidean distance in Figure 2 and on Mahalanobis distance in Figure 3.
It can be seen from these Figures that we obtain a better approximation of
the optimal boundary by using MRBF compared with the classical algorithm.

In Figure 4 we evaluate the convergence of these algorithms in the case
of distribution I. The learning curves represent the estimation of the pdf
functions (MSE) with respect to the number of samples. From this plot the
improvement given by MRBF compared with classical RBF learning and by
using the Mahalanobis distance instead of the Euclidean distance is clear.

From the Table 1 we can see that MRBF gives better results in estimating
the pdf functions and it is not biased by the presence of the outliers. MRBF
gives more accurate approximations for the Bayesian boundaries then the
classical statistical algorithms in the case of bivariate mixtures of Gaussians,
as can be seen in Figures 2, 3. Median type learning applied to radial basis
functions converge smoothly to a stationary value smaller than that obtained
in classical estimation for RBF as can be seen in Figure 3.

m
GO

2000 2500 3000 3500 4000

No. of Samples

Figure 4: The learning curves in the case when the samples are drawn from
the distribution I. Classical estimators are used together with the Euclidean
distance for curve a and together with the Mahalanobis distance for curve c ;
robust estimators are used together with the Euclidean distance for curve b
and together with the Mahalanobis distance for curve d.

113

5 Conclusions
This paper presents a comparative study of two learning algorithms, one
based on classical statistics estimators and the other on robust estimators.
The algorithm derived from robust statistics and called Median RBF uses the
median in order to find the centers in the network and median of absolute
deviations for the estimation of the scale parameters. Both algorithms can
be implemented on-line. We have derived theoretical analysis in a parameter
estimation problem. The algorithm based on robust statistics is proved to
give more accurate results in the one-dimensional estimation problem as well
as in a two dimensional density function approximation. Possible fields of
application for this algorithm arc in communication systems, image processing

and speech recognition.

References
[1] I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters: principles

id applications, Hingham, MA: Kluwer Academic, 1990. an<

[2] G. Seber, Multivariate Observations, John Wiley, 1986.

[3] T. K. Kohonen, Self-organization and associative memory, 3rd edition,

Berlin, Germany: Springer-Verlag, 1989.

[4] J. Moody, C. Darken, "Fast learning in networks of locally-tuned pro-
cessing units," Neural Computation, vol. 1, no. 2, pp. 281-294, 1989

[5] T. Poggio, F. Girosi, "Networks for approximation and learning," Proc.

of the IEEE, vol. 78, no. 9, pp. 1481-1497, Sep. 1990

[6] D. F. Specht, "A general regression neural network," IEEE Trans, on

Neural Networks, vol. 2, no. 6, pp. 568-576, Nov. 1991

[7] S. Chen, B. Mulgrcw, P. M. Grant, "A clustering technique for digi-
tal communications channel equalization using radial basis function net-
works," IEEE Trans, on Neural Networks, vol. 4, no. 4, pp. 570-579, Jul

1993

[8] A. G. Bors,, M. Gabbouj, "Minimal topology for a radial basis functions
neural network for pattern classification," to appear in Digital Signal

Processing , A review Journal, 1994

[9] I. Pitas, P. Kiniklis, "Median learning vector quantizer," Proc. SPIE,
vol. 2180, Nonlinear Image Processing V, San Jose, CA, pp. 23-34, 7-9

Feb. 1994

[10] E. Yair, K. Zeger, A. Gersho "Competitive learning and soft competition
for vector learning quantizer design," IEEE Trans, on Signal Processing,

vol. 40, no. 2, pp. 294-309, Feb. 1992

114

Network Architectures

THE USE OF RECURRENT NEURAL NETWORKS
FOR CLASSIFICATION

T. L. Burrows M. Niranjan
Cambridge University Engineering Department

Trumpington Street, Cambridge CB2 1PZ, England

Abstract-Recurrent neural networks are widely used for context dependent
pattern classification tasks such as speech recognition. The feedback in these
networks is generally claimed to contribute to integrating the context of the input
feature vector to be classified. This paper analyses the use of recurrent neural
networks for such applications. We show that the contribution of the feedback
connections is primarily a smoothing mechanism and that this is achieved by
moving the class boundary of an equivalent feedforward network classifier. We
also show that when the sigmoidal hidden nodes of the network operate close
to saturation, switching from one class to the next is delayed, and within a class
the network decisions are insensitive to the order of presentation of the input
vectors.

INTRODUCTION

Many classification problems depend on the context in which class data is received,
ie. the history of previous classes. Human perception of speech is a typical example,
in which coarticulation effects between adjacent phonemes are important contextual
factors for correct recognition, especially in noise. The performance of a classifier
can be enhanced by providing past and future context. Future context can be provided
by a delay between input window and output decision. Past context can be presented
within an input window which contains a fixed number of previous frames [1],
and by including delayed feedback paths (recurrent connections), which provide
information about previous local decisions [2]. For a fixed input window, the depth
of the context ie. the number of frames spanned by the input, is fixed. The classifier
may miss dynamic features of the class with a longer duration than that of the input
window and cause smoothing of features that change rapidly within this window. For
a recurrent network, the depth of the context is potentially infinite, but in practise is
determined by the relative size of the recurrent connection weights.

Much experimental work eg. [2], has reported improved performance of recurrent
networks over feed-forward networks. In a previous paper [3], we looked at how
this is achieved for the system identification of time-varying patterns. In this paper,
we proceed by studying how recurrent networks operate for classification of time-
varying patterns. We concentrate specifically on how the recurrent connections make
use of previous context during 2-class classification problems such as classification
of phoneme pairs from the TIMIT database.

0-7803-2026-3/94 $4.00 © 1994 IEEE 117

EFFECT OF FEEDBACK ON DECISION BOUNDARY POSITION

Consider the unit delay recurrent connection around a single hidden node, with a
nonlinearity f(x) = tanh(x), shown in Fig. 1. The output node is linear and the
classification decision is determined by an output threshold at zero.

z(t)

unit

delay

Figure 1: Single Hidden Node With Recurrent Connection

For such a network, the equations for the output of the hidden node, y(t) and network
output, z(t), are :

y(t) = f(vTx(t) + wy(t-l) + 6)

z{t) = uy(t)
(1)

(2)

where v is a vector of input weights, x{t) is a vector of input parameters, [ci,c2,...
,c„]r, 0 is a bias term and (.)T denotes transpose. We used cepstral coefficeints
derived from phoneme segments from the TIMIT database as an example input. The
networks were trained as 2-class classifiers using back-propagation through time
to minimise the mean squared-error, with class targets of -1 and 1. The decision
boundary is defined by :

vrx(t) + wy(t- 1) + 0 = O (3)

The contribution vTx(t) + 0, represents a static linear decision boundary which can
be interpreted as the decision boundary for a feed-forward classifier which has the
same weights u, v and 0. The term wy(t — 1) represents a variable bias which causes
the decision boundary to move parallel to v. We consider a trajectory of points in
class 1, Fig. 2 a), for which some of the points are incorrectly classified by the static
boundary. For these errors to be corrected, the decision boundary must move away
from class 1, biasing the current decision towards that of the previous classification.
This occurs for positive w, which also gives stable feedback around the node. Hence
for maximum classifier performance, we require a training algorithm which develops

118

positive w. The limits of the boundary movement lie at ± w on either side of the static
boundary, and with this they divide the input space into 4 regions, A-D, as shown
in Fig 2 b). Classification of points in A and D is unaffected by the position of the
decision boundary and is independent of their context. A and D define a region of
the input space in which the number of classification errors made by the recurrent
net is predetermined. B and C define an indeterminate region of the input space, of
width 21w\, in which the classification of points requires knowledge of their context,
since movement of the decision boundary in this region causes both correction of
and addition to errors made by the feed-forward net. The sensitivity of the output
to the context of the input data implies that the order of presentation of the training
classes is important. Different orders of presentation of the classes will not converge
to the same solution, when starting from the same weight initialization.

b)
4

■"'"nit
3 Class 1

2
A

1
^"--\-- B '"■■-..x f

V*
0 • d e

-'
° a

-2 ~~ ^
Class 0 ~-'--.

Figure 2: a) Movement of decision boundary by recurrent connection, b) Decision boundary
limits and classification regions

EFFECT OF DECISION BOUNDARY MOVEMENT ON OUTPUT
SWITCHING

The decision boundary movement, which biases the current decision towards that
of the previous decision, gives a classifier output which exhibits a switching delay
and is trajectory sensitive ie. is dependent on the order of presentation of input data
within the current class. The magnitude of the delays and the extent of the trajectory
sensitivity is determined by the relative range of the indeterminate region, B and
C, and the approximately linear region of the node function, Fig. 3. All points in
regions A and D are trajectory insensitive, since they cannot move the decision
boundary. Only indeterminate points which lie within the linear region of the node
function, shown hatched in Fig. 3, can cause boundary movement and are therefore
trajectory sensitive. The entire indeterminate region will be trajectory sensitive if it
is completely spanned by the linear region of the node function.

The variation in switching delay for different points within the indeterminate region
is shown in Fig. 4. The decision boundaries and test data points for this classifier

119

Figure 3: Trajectory sensitive region of input space when decision boundary lies at class 0
limit, for a nonlinear function which is linear over the range 2d and 9 = 0

are shown in Fig. 2 b). For a narrow nonlinear function, only a few indeterminate
points are within the linear region and can cause switching. This switching is rapid
since the boundary moves quickly across the indeterminate region to the other class
limit. Most points cause saturation and no switching, Fig. 4 a). Hence most of the
indeterminate region is trajectory insensitive and smoothing of the classifier output
occurs ie. previous decisions are favoured. This is obvious in the limiting case of a
step function, in which the linear width is zero. For this nonlinearity, the boundary
can only lie at a class limit and only points in A or D cause switching. In this case,
all indeterminate points are also trajectory insensitive and the previous decision is
always chosen, giving maximum output smoothing. For a wide nonlinear function,
Fig. 4 b), more of the indeterminate points fall within the linear region and are
therefore trajectory sensitive, as shown in Fig. 3. The wider the linear region, the
more slowly the decision boundary crosses the indeterminate region, giving longer
switching delays and greater output smoothing. The actual boundary movement
caused by a trajectory of points, f to a, which span the 'indeterminate region', is
shown in Fig. 5 a), for f(x) = tanh(x). The boundary and data trajectory move in
opposite directions, and due to the finite switching delay illustrated in Fig. 4 b), the
recurrent decision lags the feed-forward decision, Fig. 5 b).

The limited trajectory sensitivity of the recurrent network is illustrated in Fig. 6, for a
network with 10,5 and 1 units in the input, hidden and output layer respectively. The
network was trained as a classifier of voiced and unvoiced phonemes on sentences
from the TIMIT database. In testing, adjacent input frames within a class segment
were swapped and the classifier output compared with that*for the normal input
order. For most segments, the hidden nodes saturate, giving similar recurrent network
outputs in Fig. c) and d). Only segments in which a node operates in the linear region
(node output < 0.5 in Fig. 6 b).) are the network outputs very different. Smoothing
of the recurrent network output within a class segment is seen in the unvoiced
segments around frames 100 and 145 and a switching delay in the unvoiced/voiced
class transition at frame 151.

120

I

b. c, d, e

1 1
decision

threshold

I- ■

O Q O 0

Actual switching

b)

t d, e

0.5 n1*^ *■"-■» c

decision
threshold

-0.5 .
la *.

, ■ ■ ■ .

Actual switching

2 4 « S

Figure 4: Delay in 1-0 switching, f to a: a) Narrow node function f(x)= tanh(lOx). b) Wide
node function f(x)= tanh(x)

a)

Class 1

B

A

■•■.." f

^^
C

" c ""

" d e

D

° a

~^--.."J,,■ -b

^

Class 0 ^ ^--

o
a

,.l e d
c ■

"*-.

decision
^\b

threshold

■ \a

■

 tMd-forwafd
'

.
0.5 t

Figure 5: Movement of decision boundary due to a recurrent connection: a) Decision bound-
aries for 1-0 trajectory, b) Classifier output for 1-0 trajectory

121

a) Speech

20 40 60 80 100

c) Network outputs

120 140

S- 0.5
o

■£ 0
o
1-0.5
z

-1

-1.5

decisk
threshi oM"

t^^\

■ recurrent
feed-forwar J

IS-V~n1 .-, p^v-T"

20 40 60 80 100
Input frame number

120 140

160

20 40 60 80 100 120 140 160

d) Network outputs with adjacent frames swapped in order

160

Figure 6: Voiced-unvoiced classification of phrase "a woman met a famous author"

122

EFFECT OF DECISION BOUNDARY MOVEMENT ON CLASSIFIER
PERFORMANCE

The movement of the decision boundary has the potential to both improve and impede
the performance of a recurrent net over that of a feed-forward net due to the variable
classification of points in the indeterminate region, B and C. The recurrent net cannot
correct errors in regions A and D. The combined effect of the trajectory sensitivity and
switching delay caused by boundary movement, is to smooth output decisions of the
recurrent net causing them to lag those of the feed-forward net. If the 'indeterminate
region' is too narrow, Fig. 7 a), the feed-forward and recurrent outputs are almost
identical and there is little difference in performance, Fig. 7 c). Conversely, if the
'indeterminate region' is too wide, Fig. 7 b), most classifications are dependent on
previous decisions and over-smoothing of the output occurs, causing the performance
of the recurrent net to fall below that of the feed-forward net, Fig. 7 d). Hence to
minimise the additional errors of the recurrent network caused by switching delays,
we require the indeterminate region to bind, as tightly as possible, any region of data
overlap surrounding the static boundary.

decision

^y-i
-IS ■

-2.L

— lead-forward

Input frame number

1
s-»

n. rin

kn-^

rui

fW
^

- Ie«d-tafwai

Input frame number
35 40

b)

\

% x g
o d

' * \

v. ° x *>*
Xs" «x

x *x x

»
o o

x*^

tf> \ °o

Figure 7: Test patterns and decision boundary limits for a 'g-d' classifier: a) w too large,
b) w too small. Network output: c) w too large, d) w too small.

123

The smoothing of the recurrent network output can explain the change in relative
performance of recurrent and feed-forward classifiers at different frame-rates (res-
olutions) [4], where recurrent networks are reported to perform better at lower
frame-rates. At a higher frame-rate, there are more frames for a given phoneme
duration but the parameters vary much less on a frame-to-frame basis than at a lower
rate, causing saturation of the recurrent network. At a phoneme boundary, the small
changes in parameter values at each frame cause the recurrent net to switch slowly,
causing smoothing of the output decisions and a fall in performance below that of a
feed-forward net.

DISCUSSION

Recurrent neural networks are widely used for context dependent pattern recognition.
In speech recognition, for example, their application is motivated by the need to
integrate acoustic cues that are distributed over time. It is generally claimed that
this ability to model the temporal correlation in the data vectors gives recurrent
neural network classifiers greater power than state-of-the-art acoustic models based
on hidden Markov modelling. The observations reported in this paper suggest this
may not be the case in practice. We have shown that the contribution of the feedback
is primarily a smoothing operation. This can improve performance over a static
classifier in regions of the input space where the class data may overlap, by moving
the class boundary of the static classifier. The smoothing can also cause a delay in
switching from one class to the next.

We also observed, that when the hidden nodes operate in the saturated regions of
the sigmoid, the network outputs are not sensitive to the order of presentation of the
input examples within a class. When this happens, the network is not modelling the
trajectory of the input vectors and is effectively treating each data vector within a
class independently, similar to a hidden Markov model state. We suggest some of
the above problems can be overcome by setting the network targets (or weighting
the error function) in a similar manner to Etemad [5] and Watrous [6]. These authors
use a ramp-like target function over the duration of a class, say a phoneme in
speech recognition, to reflect the increasing confidence of class membership as more
and more data is received. Such training will force the hidden units to stay out of
saturation, avoiding some of the problems we have pointed out.

For the single hidden node recurrent net, a linear decision boundary, vTx, is defined,
with a bias of 0 + wy(t — 1). We have shown that the effect of w is to bias the current
decision towards that of the previous decision, in a similar way to which the log prior
ratio biases the decision boundary of a Bayes optimal descriminant function towards
the most probable class [7]. We can interpret wy(t — 1) as acting like a variable prior
ratio, since wy(t — 1) determines which class is favoured. The recurrent connection
thus updates our estimate of the priors, depending on the previous context, y(t — 1).
In [8], variation in the class priors between training and test data is accounted for
by scaling the network outputs. Recent work on feed-forward nets by Gish [9] has
shown that adjustment of the output biases is sufficient to adapt the classifier to the

124

new data. For a recurrent net, this suggests that modifications to both the recurrent
weights and the biases are necessary.

For a feed-forward network (multi-layer perceptron or MLP) with a single output
node, training by back-propagation is known to yield a minimum mean squared-error
estimate of the Bay es optimal descriminant function [10], in which the outputs are
treated as posterior probabilities. The MLP approximation is only accurate if there
are sufficient hidden nodes to capture the complexity of the function. With multiple
hidden nodes, the decision boundaries become nonlinear and result as a combination
of local decisions by each node. For the recurrent network case, cross terms in the
feed-back matrix, w determine how previous decisions in other local regions of the
input space affect the current local decision. We are now studying the multiple hidden
node case more closely and expect the indeterminate regions for each local decision
to overlap resulting in more of the input space being context sensitive.

REFERENCES

[1] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, "Phoneme
recognition using time-delay neural networks," Tech. Rep. TR-1-0006, ATR,
October 1987.

[2] A. J. Robinson and F. Fallside, "Phoneme recognition from the TTMIT
database using recurrent error propagation networks," Tech. Rep. CUED/F-
INFENG/TR.42., Cambridge University, England, 1990.

[3] T L. Burrows and M. Niranjan, "The use of feed-forward and recurrent neural
networks for system identification," Tech. Rep. CUED/F-INFENG/TR158.,
Cambridge University, England, 1993.

[4] S. Renais, M. Hochberg, and A. J. Robinson, "Learning temporal dependen-
cies in connectionist speech recognition," in Advances in Neural Information
Processing Systems 6, Morgan Kaufmann, 1994.

[5] K. Etemad, "Phoneme recognition based on multi-resolution and non-causal
context," in Proc. 1993 IEEE Workshop on Neural Networks for Signal Pro-
cessing (C. A. Kamm, G. M. Kuhn, B. Yoon, R. Chellappa, and S. Y. Kung,
eds.), pp. 343-352,1993.

[6] R. L. Watrous and L. Shastri, "Learning phonetic features using connectionist
networks: An experiment in speech recognition," in Proc. 19871st International
Conference on Neural Networks, pp. 318-388,1987.

[7] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New
York: Wiley, 1973.

[8] M. D. Richard and R. P. Lippman, "Neural classifiers estimate bayesian a
posteriori probabilities," Neural Computation, vol. 3, no. 4, pp. 461—483,1991.

[9] H. Gish and M. Siu, "An invariance property of neural networks," in Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing (Adelaide), pp. 541-544,
1994.

[10] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, "The
multilayer perceptron as an approximation to a Bayes optimal descriminant
function," IEEE Trans, on Neural Networks, vol. 1, no. 4, pp. 296-298,1990.

125

NETWORK STRUCTURES FOR NONLINEAR
DIGITAL FILTERS

Ji-Nan Lin and Rolf Unbehauen
Lehrstuhl für Allgemeine und Theoretische Elektrotechnik

Universität Erlangen-Nürnberg
Cauerstrasse 7, 91058 Erlangen, Germany

Abstract Mapping neural networks based on a piecewise-Iinear (PWL) function
approximation scheme are useful in signal processing, i.e. nonlinear filtering.
However, the traditional canonical PWL model has a drawback that limits the
usefulness of these networks. To overcome this limitation, three more general
PWL models with their network implementation structures are introduced in
this paper. As the first application of the models in signal processing, the
modelling, the unification, and the generalization of the useful nonlinear filter
family, the order statistic filters are considered.

I. INTRODUCTION

Neural networks whose input/output relation is characterized by a map, i.e.
a real function of several variables, play an important role in signal processing.
They are often used as a method for nonlinear digital signal filtering, which is
traditionally thought a difficult problem to deal with. It is expected that the ap-
plication of neural networks in signal filtering opens a new way towards gen-
eralizing or unifying existing nonlinear filters, which were mostly developed for
some special purposes [1].

The most popular mapping networks may be the multilayer perceptrons
motivated by a model of a biological perceptual system. Recently, mapping net-
works have also been developed on some function approximation schemes, e.g.
the Radial-Basis-Function network and the networks that implement a
piecewise-Iinear (PWL) function. The network structures developed in [2,3]
are based on the so-called canonical PWL function proposed in [4]. It has re-
cently been revealed that the multilayer perceptrons can also be regarded as be-
longing to the family of canonical PWL networks [5]. A canonical PWL net-
work has advantages in the implementation. Theoretically, it can be used as a
general model to approximate an arbitrarily given filtering operator in practice
[6]. The usefulness of the canonical PWL filter has been proved in various ap-

This work is supported by the Deutsche Forschungsgemeinschaft, Bonn,
Germany.

0-7803-2026-3/94 $4.00 © 1994 IEEE 126

plications of nonlinear signal or image processing.
Mapping networks implementing a PWL function should have a particular

meaning in nonlinear signal filtering. One notices that some useful signal pro-
cessing approaches are inherently PWL characterized. For instance, an impor-
tant approach of nonlinear filtering is the family of filters based on order-
statistics [1]. This family is rich in members and possesses useful specialities in
applications, e.g. image processing. An order statistic filter is in fact a PWL
filter. This fact has not caught enough attention in the literature where special-
ized network structures are proposed for the realization of an order statistic
filter [1,8]. It is naturally expected that a rather general PWL network structure
will be meaningful in the unification and further generalizations of the family of
order statistic filters.

The canonical PWL function serves as the only method at present to
represent PWL functions in an explicit and compact form that is easy to imple-
ment in a network structure. However, the canonical model has a fatal draw-
back, i.e. it only works for a subclass of PWL functions. This drawback limits
the usefulness of the canonical PWL network in applications, e.g. signal pro-
cessing. Some useful PWL functions, including the function of an order statistic
filter, cannot be represented by the canonical model. It is thus a meaningful
research theme to overcome the limitation of the canonical model and to
achieve a more general model for PWL functions.

In this paper we will consider the problem of the PWL model from the
viewpoints of both the representation capability as large as possible and the sui-
tability for the network implementation. First we will introduce a general
scheme for representing all PWL functions. Two simplified models are then
developed from the general scheme. Each of them has its specialities, but both
are capable of representing all continuous PWL functions. Therefore, they will
be more useful than the canonical PWL ones in applications of nonlinear signal
filtering. The use of the models for the implementation of an order statistic
filter and its generalizations are considered.

II. PWL FUNCTIONS -- A GENERAL MODEL

Let us consider a PWL function /: RN —> R. The domain is partitioned
into a set of sub-spaces (regions)

p

R:={RpCRN | uRp=RN,RpnRp-=<f>, p ^p1, p,^ e{l,2,...,P}}(l)

by a finite set of Q (N - l)-dimensional hypersurfaces (boundaries)

H:={HqCR»,q£{l,2,...,Q}}. (2)

Each boundary is characterized by

127

Hq :={x£R"| ^(x)=0}, (3)

where cpq: R
N —> R is called the boundary function of Hq. As usual, the

boundary functions are limited only to linear ones. That means, the boundaries
are all (N - l)-dimensional hypcrplanes.

On each region Rp,p £{ 1,2,...,.P},/ is represented by

/(x)=/,(x) for x e*, CR\ (4)

where fp: R
N —> R is a linear function called the local function of Rp.

An important class of PWL functions is that of the continuous ones, for
which there is

/,(x)=/,.(x), where x £Rp n*,- , (5)

forallp,/»' e{l,2,...,P}.
Although the PWL functions have shown their usefulness in many scientific

and engineering areas, it is still a difficult task to find a compact global
representation for all of them, (even only for all continuous ones.) From the
viewpoint of mapping networks, a useful PWL representation which is suitable
for a network realization is strongly expected.

From the above definition we can first see that any general representation of
PWL functions should include two aspects, concerning the local functions and
the domain partition, respectively. Through a further study we see that the to-
pological structure of the boundaries in the domain partition plays a key role in
the representation. Generally speaking, PWL functions with their domain par-
tition topologically similar to each other, should have a similar representation.

A general scheme for representing PWL functions is given as follows

/(*)= £/P(*)7/>(*(^*)),*(^(X)),...,5(MX))), (6)

where fp, ^:R"—> R,s:R—> {0,1} is the hardlimit function:

f 0, ^0
*<0:={l, £>0, W

and y, for/) ={ 1,2,...,P} are logical operators yp: {0,1}C —> {0,1}.
We call this scheme the / - cp model of PWL functions, which emphases the

two aspects of the local functions and the domain partition. Clearly, all PWL
functions defined as above can be represented by this model. One notices that
a region Rp for/? £ { 1,2,...,P } can also be defined as

Rp ={x £R" | ^(x)>0, for some q £{1,2,...,F} and

<Pq.(x)Z0, for other <?'£{ 1,2,...,/>}}. (8)

128

The kernel part of the / - cp model are the logical operators jp that carry the
information about the topological property of the domain partition of the PWL
function to be represented. The logical operators will not change if the / - cp
model is used to represent PWL functions that are isomorphic with each other,
i.e. they are defined on isomorphic domain partitions. *

A network implementation of the / - cp model is straightforward, as illustrat-
ed by Fig. 1, where the blocks of fp and cpq are linear combinators implement-
ing the local and boundary functions of a PWL function, respectively. S is the
hardlimit unit. F is a logical array implementing the logical operators,
representing the topological structure of the domain partition. Beside these,
the components needed by this network are simply switches.

X —^^

m
J1 l_ _i

: >* Jp L_
t

r
fl Ö -*

Yfi \2/

Fig. 1 Network structure of the/ - 9? model

As a general scheme the / - <p model takes all information into account
which may be required in representing an arbitrary PWL function. For a con-
crete problem of a given PWL function, the network structure may be unneces-
sarily large or complicated. In practice, PWL functions are often used within a
constrained subclass. Therefore, it is meaningful to study the simplification of
the / - cp model by attaching some constraints. The most widely used subclass
of PWL functions may be that of the continuous ones. It has been investigated
that the continuity leads to a strong constraint between the local and the boun-
dary functions of a PWL function [9]. That means a large reduction of informa-
tion should be achieved in representing a continuous PWL function. In the fol-
lowing we will introduce two simplified versions of the / - cp model based on

1 Two domain partitions are said isomorphic with each other if there exists a
one-to-one correspondence between the boundaries, their intersections,
intersections of intersections etc. of them.

129

this kind of constraint.

HI./ -/ MODEL AND NETWORK STRUCTURE

The first simplification of the / - cp model is defined as follows:

p

/(*) = T,fp(*K(rl(fl(x),...,fr(x)),...Mfi(*),---,fp(*))), (9)

where rp:R
p —> Z are rank functions defined by

/>(&,...,&):=* £{1,2,..,^},

if £p is the kth largest in { £i,...,&.} , (10)

and ipp for /? = {1,2,...,P} are quasi-logical operators
<^:{1)2,...,JP}'>^ {0,1}'.

We call this representation scheme the / -/ model of PWL functions. Com-
paring the / -/ model with the / - cp one we see that all boundary functions
become implicit. That is, in the / -/ model the information about the domain
partition is implied in that about the local functions. Accurately speaking, the
/ -/ model represents PWL functions where the domain partition is deter-
mined by the order of values of the local functions. One notices that this pro-
perty is possessed by a continuous PWL functions. Therefore, we have

Theorem 1:
Any continuous PWL function may be represented by the / -/ model.

A network structure of the / -/ model is given in Fig. 2. The blocks imple-
menting the rank functions bring about no difficulty since they can simply be ex-
pressed as:

rpUt,...,Sr)=T,s(Sp-&). (11)
i*P

The array iff implementing the quasi-logical operators ipp,p = 1,2,...,P is also
easy to realize.

The / -/ model may be especially effective in some cases where the PWL
function to be represented has a relatively small number of local functions. A
typical example is an order statistic filter. An k th order statistic filter of the sig-
nal x (n) is described by

y(n) = xik)(n) := kth largest value of {x(n -/),/ £<>} , (12)

where ^CZ is the filter window. Let S be the size of the window. An order
statistic filter can be regarded as a PWL function of S variables / (x), where

130

JC ' ^»

f^
— J\ —*

■— it T
*•< ^'.-

v
•.. rP -H>

Fig. 2 Network structure of the/ -/ model

xs £JC for 5=1,2,..., 5 are the values of the signal pixels within the window. /
is continuous. It consists of P = S local functions

/-(x):=xf, *e{l,2,...,S} (13)

for p =1,2,...,5 and ß =5(5-l)/2 boundaries in the domain partition
characterized by

<pq(x): = Xi-Xj=0, />/, /,;€{ 1,2,...,5}, (14)

To represent the PWL function of the fcth order statistic filter by the / -/
model we have simply

y,(x) = j(i-,(x)-* + i)-*o>(x)-*). (15)

The network realization of this / -/ model is shown in Fig. 3. One notices that
the network structure is similar to the OSNet proposed in [8]. The OSNet is
developed as a special building block for an efficient hardware implementation
of order statistic filters, while our network is as a special issue of the more gen-
eral PWL model.

For all local functions /_ (l) in this model being linear ones we obtain an
extension of the order statistic filter. Median hybrid filters where a median
filter, a special issue of the order statistic filter, is coupled to the outputs of a
group of linear FIR filters [1], belong to this extension. Theoretically, any furth-
er (linear) extension can also be represented by the/ -/ model, provided that
the continuity is preserved. However, if the extension leads to a large increase
of the local functions, it may be no longer efficient for the / -/ network reali-
zation.

131

■Q

y

X

*■ NS

"-(k)

Fig. 3 Network structure of the/ -/ model of an order statistic filter

IV. (f - <p MODEL AND NETWORK STRUCTURE

Now we introduce another variation of the / - cp model, with which a PWL
function is represented by

Q >q

f(*)=fo(x)+Z<P<(x)Zcqjq7qjq(s((p1(x)),s(cp2(x)),...,s(<pe(x))),
«-1 k-i

(16)

where /0: R" —> R is a linear function, c,ii? e R, and 7, , are logical opera-
tors 7,.<,:{0,l}ß -» {0,1}, for i, = 1,2,...,/, and 9 =1,2,...,ß, respec-
tively.

We call this variation scheme the <p-<p model of PWL functions. It is seen
that in this model all local functions are implicit. The <p-<p model represents
PWL functions for which each local function is expressed as a linear combina-
tion of the boundary functions. This property is fulfilled by a continuous PWL
function. Thus, we have also:

Theorem 2:
Any continuous PWL function may be represented by the <p- tp model.

Dual to the /-/ model, the cp-cp model may be more suitable for
representing PWL functions which have a relatively small number of boundary
functions. A further study of the continuous case can reveal more details of the
inner structure of the logical array 7.

132

X ^

J 0

^^

| =* Cl

i_
i -.. \

•
L_

©-^
CQ •

L_ _1

3 '
.!T

© >

©—>
r

Yl

Fig. 4 Network structure of the cp- cp model

Let simply Iq = 1 for all q = 1,2,..., Q and

7,4(J(Pi(*)),*(?,(x)) s(cpQ(x)))=s(cpq(x)), 9 =1.2 G

Then, (16) becomes

/(x)=/o(x)+E*,P,(x)j(p,(x))
4=1

(17)

= /'o(x)+ECJ^(x)|
,=1

(18)

with / '„ a linear function and c'? ER. That is just the canonical PWL model
given in [7], which constitutes the basis for the network structure developed in
[2] and [3]. The main points of this canonical model are its explicity, compact-
ness and that its network realization is rather simple. Unfortunately, this model
is available only in a subclass of PWL functions. For the existence condition it
has been proved in [7] that a continuous PWL function has a canonical
representation if and only if it possesses the so-called "consistent variation pro-
perty", i.e., for each boundary Hq there should exist a unique constant \ such
that for any pair of regions Rp and Rp. separated by Hq there is

/,(x)-/,(*) = \p(x). (19)

The consistent variation property is not satisfied by some important PWL func-

133

tions, e.g. the PWL function of an order statistic filter. Based on the fact that
the canonical model is only the simplest special issue of the cp-cp model, it is
expected that useful alternatives or extensions of the canonical model may be
achieved through a deeper study of the cp- <p structure, i.e. the logical array.

Through a study of the PWL characteristics of an order statistic filter it can
be seen that the <p- cp model of the filter should have Iq = 2 with c , = -1 and
c?2 =1 for all q = 1,2,...,Q. The logical structure of 7 depends on the win-
dow size, i.e. S. We have seen in the preceding section that for an order statis-
tic filter or the extension of median hybrid filter we have P < Q. That means, a
<p-<p network representation of the order statistic filter itself may not be effi-
cient, in comparison to an/ -/ one. Besides the median hybrid filter there are
still other kinds of linear extensions, e.g. the L-filter and the Ll-filter which
combine order statistic filters with linear FIR filters [1]. Since the combination
of a PWL function with a linear function still results a PWL function, these
linear generalizations are also PWL characterized. For these extensions, how-
ever, P < Q is no longer tenable. Then, the <p- <p model may be more suitable
for representing such an extension. It can be seen that, for a given filter win-
dow, there exists a fixed <p-cp structure which is common in representing all
order statistic filters and all of their linear extensions, including the median hy-
brid filters, the L-filters, the Ll-filters [1], and even more. This is because in
this case the PWL functions of these filters are all isomorphic with each other.
In this sense, we may say that the <p-<p model is more meaningful in the
research towards generalizing order statistic filters.

V. CONCLUSIONS

In order to find a more useful network structure for nonlinear signal pro-
cessing, we have developed three models for representing PWL functions. As a
basic scheme, the / - <p model provides a general model for all PWL functions.
This general model is suitable for a network implementation. The other two,
i.e. the/ -/ model and the <p-cp model are simplifications of the/ -cp model,'
by attaching a constraint between the local functions and the domain partitions!
For the / -/ model, the information about the domain partition is implicit,
while for the cp-cp model, the local functions are implicit. Therefore, each of
them has its specialities in applications. But both are capable for representing
all continuous PWL functions. With them the limitation of the canonical model
is overcome. In fact, the canonical model is just the simplest special issue of the
<p-<p model. As the first application, the modelling of the order statistic filter
and its linear extensions has been considered. This useful family of nonlinear
filters is inherently PWL characterized, but it cannot be represented by the
canonical model. Our approach delivers not only a unified network structure
for this family, but also a way to generalize it and, furthermore, towards the un-
ification of this specialized family in a more general class of nonlinear filters.

134

The logical array carries information about the topological structure of the
domain partition and plays a kernel role in the models. Its properties for a
given class of PWL functions, e.g. that of the family of order statistic filters,
should be an interesting theme of further study.

REFERENCES

[1] I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters, Kluwer,
1989.

[2] J.-N. Lin and R. Unbehauen, "Adaptive nonlinear digital filter with
canonical piecewise-linear structure," IEEE Trans. Circuits and Systems,
vol. 37, pp. 347-353,1990.

[3] R. Batruni, "A multilayer neural network with piecewise-linear structure
and back-propagation learning," IEEE Trans. Neural Networks, vol. 2,
pp.395-403,1991.

[4] L. O. Chua and S. M. Kang, "Section-wise piecewise-linear functions:
Canonical representation, properties, and applications," Proc. IEEE, vol.
65, no. 6, pp. 915-929,1977.

[5] J.-N. Lin and R. Unbehauen, "Canonical PWL Network and Multilayer
Perceptron-like Networks: A Unified View," Proc. IEEE Int. Symp. Cir-
cuits and Systems, 1993, pp. 2588-2591.

[6] J. Lin, Mapping-Netzwerke und adaptive nichtlineare Filter, Dissertation,
University Erlangen-Nürnberg, Germany.

[7] L. O. Chua and A. C. Deng, "Canonical piecewise-linear representation,"
IEEE Trans. Circuits and Systems, vol. 35, pp. 101-111,1988.

[8] P. Shi and R. K. Ward, "OSNet: A neural network implementation of
order statistic filters," IEEE Trans. Neural Networks, vol. 4, pp. 234-241,
1993.

[9] T. Ohtsuki, T. Fujisawa, and S. Kumagai, "Existence theorem and a solu-
tion algorithm for piecewise-linear resistor networks," SIAM J. Math.
Anal., vol. 8, pp. 69-99,1977.

135

LOCALLY EXCITATORY GLOBALLY
INHIBITORY OSCILLATOR NETWORKS:

THEORY AND APPLICATION TO
PATTERN SEGMENTATION

DeLiang Wang' and David Terman

^Department of Computer and Information Science
and Center for Cognitive Science

+
Department of Mathematics

The Ohio State University, Columbus, Ohio 43210, USA
Telephone: 614-292-6827; Fax: 614-292-2911; Email: dwang@cis.ohio-state.edu

Abstract - An novel class of locally excitatory, globally
inhibitory oscillator networks (LEGION) is proposed and
investigated analytically and by computer simulation. The model
of each oscillator corresponds to a standard relaxation oscillator
with two time scales. The network exhibits a mechanism of
selective gating, whereby an oscillator jumping up to its active
phase rapidly recruits the oscillators stimulated by the same
pattern, while preventing other oscillators from jumping up. We
show analytically that with the selective gating mechanism the
network rapidly achieves both synchronization within blocks of
oscillators that are stimulated by connected regions and
desynchronization between different blocks. Computer
simulations demonstrate LEGION's promising ability for
segmenting multiple input patterns in real time. This model lays
a physical foundation for the oscillatory correlation theory of
feature binding, and may provide an effective computational
framework for pattern segmentation and figure/ground segregation.

1. INTRODUCTION

A basic attribute of perception is its ability to group elements of a perceived
scene or sensory field into coherent clusters (objects). This ability underlies
perceptual processes such as figure/ground segregation, identification of objects,
and separation of different objects, and it is generally known as pattern
segmentation or perceptual organization. Despite the fact that humans perform it
with apparent ease, the general problem of pattern segmentation remains unsolved
in the engineering of sensory processing, such as computer vision and auditory
processing.

Fundamental to pattern segmentation is the grouping of similar sensory
features and the segregation of dissimilar ones. Theoretical investigations of brain
functions and feature binding point to the mechanism of temporal correlation as a

0-7803-2026-3/94 $4.00 © 1994 IEEE 136

representational framework [11,12]. In particular, the correlation theory of von der
Malsburg [11] asserts that an object is represented by the temporal correlation of
the firing activities of the scattered cells coding different features of the object. A
natural way of encoding temporal correlation is to use neural oscillations, whereby
each oscillator encodes some feature (maybe just a pixel) of an object. In this
scheme, each segment (object) is represented by a group of oscillators that shows
synchrony (phase-locking) of the oscillations, and different objects are represented
by different groups whose oscillations are desynchronized from each other. Let us
refer to this form of temporal correlation as oscillatory correlation. The theory of
oscillatory correlation has received direct experimental support from the cell
recordings in the cat visual cortex [1, 2] and other brain regions. The discovery of
synchronous oscillations in the visual cortex has triggered much interest from the
theoretical community in simulating the experimental results and in exploring
oscillatory correlation to solve the problems of pattern segmentation (see among
others [14, 4, 8, 9, 5, 7, 13]). While several demonstrate synchronization in a
group of oscillators using local (lateral) connections [4, 7, 13], most of these
models rely on long range connections to achieve phase synchrony. It has been
pointed out that local connections in reaching synchrony may play a fundamental
role in pattern segmentation since long-range connections would lead to
indiscriminate segmentation [9, 13].

There are two aspects in the theory of oscillatory correlation: (1)
synchronization within the same object; and (2) desynchronization between
different objects. Despite intensive studies on the subject, the question of
desynchronization has been hardly addressed. The lack of an efficient mechanism
for desynchronization greatly limits the utility of oscillatory correlation to
perceptual organization. In this paper, we propose a new class of oscillatory
networks, LEGION, and show that it can rapidly achieve both synchronization
within each object and desynchronization between a number of simultaneously
presented objects. LEGION is composed of the following elements: (1) A new
model of a basic oscillator; (2) Local excitatory connections to produce phase
synchrony within each object; (3) A global inhibitor that receives inputs from the
entire network and feeds back with inhibition to produce desynchronization of the
oscillator groups representing different objects. In other words, the mechanism of
LEGION consists of local cooperation and global competition, thus fully encoding
oscillatory correlation. This surprisingly simple neural architecture may provide an
elementary approach to pattern segmentation and a computational framework for
perceptual organization.

2. MODEL DESCRIPTION

The building block of LEGION, a single oscillator i, is defined in the simplest
form as a feedback loop between an excitatory unit JCJ- and an inhibitory unit y^.

dx: ,
-£ = 3x(-xt+2-yi + p + /,. + St (la)

137

dt
= £(7(1 +tanh{xilß))-yi) (lb)

where p denotes the amplitude of a Gaussian noise term. /,• represents external
stimulation to the oscillator, and S,- denotes coupling from other oscillators in the
network. The noise term is introduced both to test the robustness of the system
and to actively desynchronize different input patterns. The parameter e is chosen to
be small. In this case (1), without any coupling or noise, corresponds to a
standard relaxation oscillator. The x-nullcline of (1) is a cubic curve, while the y-
nullcline is a sigmoid function, as shown in Fig. 1. If / > 0, these curves
intersect along the middle branch of the cubic, and (1) is oscillatory. The periodic
solution alternates between the silent and active phases of near steady state
behavior. The parameter y is introduced to control the relative times that the
solution spends in these two phases. If / < 0, then the nullclines of (1) intersect at
a stable fixed point along the left branch of the cubic. In this case the system
produces no oscillation. The oscillator model (1) may be interpreted as a model of
spiking behavior of a single neuron, or a mean field approximation to a network of
excitatory and inhibitory neurons.

>> 4
\ ' \ \ f \ \ '• / \ \ ;/ \

\ r- \ \ / •' \ \ ' \
 — —r- "" I

Figure 1. Nullclines and periodic orbit of a single oscillator as shown in the
phase plane. The x-nullclinc (dx/dt = 0) is shown by the dashed curve and the
y-nullcline (dy/di = 0) is shown by the dotted curve. In a simulation when the
oscillator starts at a randomly generated point (upper middle position in the
figure) in the phase plane, it quickly converged to a stable trajectory of a limit
cycle. The parameters for this simulation are / = 0.2, p = 0.02, £ = 0.02, y=

4.0, 0 = 0.1.

The LEGION we study here in particular is two dimensional. However, the
results can easily be extended to other dimensions. Each oscillator in the LEGION
is connected to only its four nearest neighbors, thus forming a 2-D grid. This is
the simplest form of local connections. The global inhibitor receives excitation
from each oscillator of the grid, and in turn inhibits each oscillator. This

138

Figure 2. Architecture of a two dimensional LEGION with nearest neighbor
coupling. The global inhibitor is indicated by the black circle.

architecture is shown in Fig. 2. The intuitive reason why the LEGION gives rise
to pattern segmentation is the following. When multiple connected objects are
mapped onto the grid, local connectivity on the grid will group together the
oscillators covered by each object. This grouping will be reflected by phase
synchrony within each object. The global inhibitor is introduced for
desynchronizing the oscillatory responses to different objects. We assume that the
coupling term S{ in (1) is given by

lceN(i)

wz s„(z, exz) (2)

SJx, 0) - 1+ gjpr.jj^g)] (3)

where Wik is a connection (synaptic) weight from oscillator k to oscillator i, and
N(i) is the set of the neighoring oscillators that connect to i. In this model, N(i) is
the four immediate neighbors on the 2-D grid, except on the boundaries where N(i)
may be either 2 or 3 immediate neighbors. 6X is a threshold (see the sigmoid
function of Eq. 3) above which an oscillator can affect its neighbors. Wz

(positive) is the weight of inhibition from the global inhibitor z, whose activity is
defined as

fife
dt

= <f> (o^ - z) (4)

for at least where ax = 0 if *,- < 0^ for every oscillator, and a„ = 1 if*,- > 0^
one oscillator i. Hence 0^ represents a threshold. If the activity of every oscillator
is below this threshold, then the global inhibitor will not receive any input. In
this case z -> 0 and the oscillators will not receive any inhibition. If, on the other

139

hand, the activity of at least one oscillator is above the threshold 0ZX then, the
global inhibitor will receive input. In this case z —> 1, and each oscillator feels
inhibition when z is above the threshold 0^. The parameter tp determines the rate
at which the inhibitor reacts to such stimulation.

In summary, once an oscillator is active, it triggers the global inhibitor. This
then inhibits the entire network as described in Eq. 1. On the other hand, an active
oscillator spreads its activation to its nearest neighbors, again through (1), and
from them to its further neighbors. Thus, the entire dynamics of LEGION is a
combination of local cooperation through excitatory coupling among neighboring
oscillators and global competition via the global inhibitor. In the next section, we
give a number of properties of this system.

Besides boundaries, the oscillators on the grid are basically symmetrical.
Boundary conditions may cause certain distortions to the stability of synchrous
oscillations. Recently, Wang [13] proposed a mechanism called dynamic
normalization to ensure that each oscillator, whether it is in the interior or on a
boundary, has equal overall connection weights from its neighbors. The dynamic
normalization mechanism is adopted in the present model to form effective
connections. For binary images (each pixel being either 0 or 1), the outcome of
dynamic normalization is that an effective connection is established between two
oscillators if and only if they are neighbors and both of them are activated by
external stimulation. The network defined above can readily be applied for
segmentation of binary images. For gray-level images (each pixel being in a
certain value range), the following slight modification suffices to make the
network applicable. An effective connection is established between two oscillators
if and only if they are neighbors and the difference of their corresponding pixel
values is below a certain threshold.

3. ANALYTICAL RESULTS

We have formally analyzed the LEGION. Due to space limitations, we can
only list the major conclusions without proofs. The interested reader can find the
details in Terman and Wang [10]. Let us refer to a pattern as a connected region,
and a block be a subset of oscillators stimulated by a given pattern. The following
results are about singular solutions in the sense that we formally set £ = 0.
However, as shown in [10], the results extend to the case £> 0 sufficiently small.

Theorem 1. (Synchronization). The parameters of the system can be chosen
so that all of the oscillators in a block always jump up simultaneously
(synchronize). Moreover, the rate of synchronization is exponential.

Theorem 2. (Pattern Separation) The parameters of the system and a
constant T can be chosen to satisfy the following. If at the beginning all the
oscillators of the same block synchronize with each other and the temporal distance
between any two oscillators belonging to two different blocks is greater than T,
then (1) Synchronization within each block is maintained; (2) The blocks activate
with a fixed ordering; (3) At most one block is in its active phase at any time.

140

Theorem 3. {Desynchronizatiori) If at the beginning all the oscillators of the
system lie not too far away from each other, then the condition of Theorem 2 will
be satisfied after some time. Moreover, the time it takes to satisfy the condition is
no greater than N cycles, where N is the number of patterns.

The above results are true with arbitrary number of oscillators. In summary,
LEGION exhibits a mechanism, referred to as selective gating, which can be
intuitively interpreted as follows. An oscillator jumping to its active phase opens
a gate to quickly recruit the oscillators of the same block due to local connections.
At the same time, it closes the gate to the oscillators of different blocks.
Moreover, segmentation of different patterns is achieved very rapidly in terms of
oscillation cycles.

4. COMPUTER SIMULATION

To illustrate how LEGION is used for pattern segmentation, we have
simulated a 20x20 LEGION as defined by (l)-(4). We arbitrarily selected four
objects (patterns): two O's, one H, and one I; and they form the word OHIO.
These patterns were simultaneously presented to the system as shown in Figure
3A. Each pattern is a connected region, but no two patterns are connected to each
other.

All the oscillators stimulated (covered) by the objects received an external
input / = 0.2, while the others have / = -0.02. Thus the oscillators under
stimulation become oscillatory, while those without stimulation remain silent.
The amplitude p of the Gaussian noise is set to 0.02. Thus, compared to the
external input, a 10% noise is included in every oscillator. Dynamic normalization
results in that only two neighboring oscillators stimulated by a single pattern have
an effective connection. The differential equations were solved numerically with
the following parameter values: £ = 0.02, <p = 3.0; 7= 6.0, ß = 0.1, K = 50, 0X =
-0.5, and 6^ = 6XZ = 0.1. The total effective connections were normalized to 6.0.
The results described below were robust to considerable changes in the parameters.
The phases of all the oscillators on the grid were randomly initialized.

Fig. 3B-3F shows the instantaneous activity (snapshot) of the network at
various stages of dynamic evolution. The diameter of each black circle represents
the x activity of the corresponding oscillator. That is, if the range of x values of
all the oscillators are given by xmin and xmax, then the diameter of the black circle
corresponding to an oscillator is proportional to (x-xmin)/(xmax-xmin). Fig. 3B
shows a snapshot of the network a few steps after the beginning of the simulation.
In Fig. 3B, the activities of the oscillators were largely random. Fig. 3C shows a
snapshot after the system had evolved for a short time period. One can clearly see
the effect of grouping and segmentation: all the oscillators belonging to the left O
were entrained and had large activities. At the same time, the oscillators stimulated
by the other three patterns had very small activities. Thus the left O was
segmented from the rest of the input. A short time later, as shown in Fig. 3D, the
oscillators stimulated by the right O reached high values and were separated from
the rest of the input. Fig. 3E shows another snapshot after Fig. 3D. At this time,
pattern I had its turn to be activated and separated from the rest of the input.

141

Finally in Fig. 3F, the oscillators representing H were active and the rest of the
input remained silent. This successive "pop-out" of the objects continued in a
stable periodic fashion. To provide a complete picture of dynamic evolution, Fig.
3G shows the temporal evolution of each oscillator. Since the oscillators
receiving no external input were inactive during the entire simulation process, they
were excluded from the display in Fig. 3G. The activities of the oscillators
stimulated by each object are combined together in the figure. Thus, if they are
synchronized, they appear like a single oscillator. In Fig. 3G, the four upper traces
represent the activities of the four oscillator blocks, and the bottom trace represents
the activity of the global inhibitor. The synchronized oscillations within each
object are clearly shown within just three cycles of dynamic evolution.

The exact shapes and positions of the patterns in Fig. 3 do not matter for
pattern segmentation. In fact, this 2-D LEGION provides a general solution to
segmentation of planar connected patterns.

5. DISCUSSION

Besides neural plausibility, oscillatory correlation has a unique feature as an
computational approach to the engineering of pattern segmentation and
figure/ground segregation. Due to the nature of oscillations, no single object can
dominate and suppress the perception of the rest of the image permanently. The
current dominant object has to give way to other objects being suppressed, and let
them have a chance to be spotted. Although at most one object can dominant at
any time instant, due to rapid oscillations, a number of objects can be activated
over a short time period. This intrinsic dynamic process provides a natural and
reliable representation of multiple segmented patterns.

The basic principles of selective gating are established for LEGION with
lateral connections beyond nearest neighbors. Indeed, in terms of synchronization,
more distant connections even help expedite phase entrainment. In this sense,
synchronization with all-to-all connections is an extreme case of our system. With
nearest-neighbor connectivity (Fig. 2), any isolated part of an image is considered
as a segment. In an noisy image with many tiny regions, segmentation would
result in too many small fragments. More distant connections would also provide
a solution to this problem. Lateral connections typically take on the form of
Gaussian distribution, with the connection strength between two oscillators falling
off exponentially. Since global inhibition is superimposed to local excitation, two
oscillators positively coupled may be desynchronized if global inhibition is strong
enough. Thus, it is unlikely that all objects in an image form a single segment as
the result of extended connections.

Due to its critical importance for computer vision, pattern segmentation, or
perceptual organization as known in computer vision, has been studied quite
extensively. Many techniques have been proposed in the past [3, 6]. Despite
these techniques, as pointed out by Haralick and Shapiro [3], there is no underlying
theory of image segmentation, and the techniques tend to be adhoc and emphasize
some aspects while ignoring others. Compared to the traditional techniques for
pattern segmentation, the oscillatory correlation approach offers many unique
advantages. The dynamical process is inherently parallel. While conventional

142

computer vision algorithms are based on descriptive criteria and many adhoc
heuristics, LEGION as exemplified in this paper performs computations based on
only connections and oscillatory dynamics. The organizational simplicity renders
LEGION particularly feasible for VLSI implementation. Also, continuous-time
dynamics allows real time processing, desired by many engineering applications.

ACKNOWLEDGMENTS. DLW is supported in part by the NSF grant
IRI-9211419 and the ONR grant N00014-93-1-0335. DT is supported in part by
the NSF grant DMS-9203299LE.

REFERENCES

[I] R. Eckhorn, et al., "Coherent oscillations: A mechanism of feature linking in
the visual cortex?" Biol. Cvbern.. vol. 60, pp. 121-130, 1988.

[2] CM. Gray, P. König, A.K. Engel, and W. Singer, "Oscillatory responses in
cat visual cortex exhibit inter-columnar synchronization which reflects global
stimulus properties," Nature, vol. 338, pp. 334-337, 1989.

[3] R.M. Haralick and L.G. Shapiro, "Image segmentation techniques," Comput.
Graphics Image Process.. vol. 29, pp. 100-132, 1985.

[4] P. König and T.B. Schulen, "Stimulus-dependent assembly formation of
oscillatory responses: I. Synchronization," Neural Comput., vol. 3, pp. 155-
166, 1991.

[5] T. Murata and H. Shimizu, "Oscillatory binocular system and temporal
segmentation of stereoscopic depth surfaces," Biol. Cvbern., vol. 68, pp. 381-
390, 1993.

[6] S. Sarkar and K.L. Boyer, "Perceptual organization in computer vision: a
review and a proposal for a classificatory structure," IEEE Trans. Syst. Man
Cvbern.. vol. 23, 382-399, 1993.

[7] D. Somers, and N. Kopell, "Rapid synchronization through fast threshold
modulation," Biol. Cvbern.. vol. 68, pp. 393-407, 1993.

[8] H. Sompolinsky, D. Golomb, and D. Kleinfeld, "Cooperative dynamics in
visual processing," Phvs. Rev. A. vol. 43, pp. 6990-7011, 1991.

[9] O. Sporns, G. Tononi, and G.M. Edelman, "Modeling perceptual grouping and
figure-ground segregation by means of active reentrant connections," Proc.
Nat.l. Acad. Sei. USA, vol. 88, pp. 129-133, 1991.

[10] D. Terman and D.L. Wang, "Global competition and local cooperation in a
network of neural oscillators," Submitted, 1993.

[II] C. von der Malsburg, "The correlation theory of brain functions," Internal
Report 81-2, Max-Planck-Institut for Biophysical Chemistry, Göttingen,
FRG, 1981.

[12] C. von der Malsburg and W. Schneider, "A neural cocktail-party processor,"
Biol. Cvbern.. vol. 54, pp. 29-40, 1986.

[13] D.L. Wang, "Modeling global synchrony in the visual cortex by locally
coupled neural oscillators," Proc. 15th Ann. Conf. Cognit. Sei. Soc. 1993,
pp. 1058-1063. For a more extended version, see D.L. Wang, "Emergent

143

synchrony in locally coupled neural oscillators," IEEE Trans, on Neural
Networks, in press.

[14] D.L. Wang, J. Buhmann, and C. von der Malsburg, "Segmentation in
associative memory," Neural Comput.. vol. 2, pp. 94-106, 1990.

B
••••••••• •«•••••••-
••••••••0*•••••••«
••• ••••••••••••••••
••'••••••••<•••••••
•• ••••••••••••••••«
••••••••••••••••••.•
••••<••••••••••••••• •••••••••••••••••o-•
»•••••.••••••••••••.
•••••••••• •••••••■•

-••'••••••••••-••*••
••••••••••••••••<••
•• ••••• ••••••••• •
• ••••• •*••••■ •• • . .

•••••••••••• -•■•••

•••••••■ ••••••••••

••••••••••••••••••••
••••• •••••••■.••■«■
•'•'•#••.•.•■«.•..a
••••••■.••••••■••■•■

!>•••

I)f<
••

E

• ••■ •

• ••■ •

■ ••• •

• ■•■ ■ . .». .
. .«. .
• ••• •
■ ••• •

• ••• •
• ••• •
• ••• •
•••••

It
•••

•••
•••

••• <•<

144

LeftO

Pattern H

Pattern I

LJJLJ1

-LLIUIJIJl .f)
Inhibitor

i nr~ir~i rirnririrnnrri~rT~rTT~rT~r
Time

Figure 3. A An image composed of four patterns which were presented
(mapped) to a 20x20 grid of oscillators. B A snapshot of the activities of the
oscillator grid at the beginning of dynamic evolution. C A snapshot taken
shortly after the beginning. D Another snapshot taken shortly after C. E
Another snapshot taken shortly after D. F Another snapshot taken shortly
after E. G The upper four traces show the combined temporal activities of the
oscillator blocks representing the four patterns, respectively, and the bottom
trace shows the temporal activity of the global inhibitor. The simulation
took 8,000 integration steps.

145

A UNIFYING VIEW OF SOME TRAINING
ALGORITHMS FOR MULTILAYER PERCEPTRONS

WITH FIR FILTER SYNAPSES

Andrew Back*, Eric A. Wan**, Steve Lawrence*, Ah Chung Tsoi*
♦Department of Electrical and Computer Engineering,

University of Queensland, St. Lucia, Queensland 4072. Australia.
♦♦Department of Electrical Engineering and Applied Physics

Oregon Graduate Institute of Science & Technology
P.O. Box 91000, Portland, Oregon 97291, USA

back@sl.elec.uq.oz.au, ericwan@eeap.ogi.edu
lawrence@sl.elec.uq.oz.au, act@sl.elec.uq.oz.au

Abstract— Recent interest has come about in deriving various neural network
architectures for modelling time-dependent signals. A number of algorithms
have been published for multilayer perceptrons with synapses described by finite
impulse response (FIR) and infinite impulse response (IIR) filters (the latter case is
also known as Locally Recurrent Globally Feedforward Networks). The derivations
of these algorithms have used different approaches in calculating the gradients,
and in this paper we present a short, but unifying account of how these different
algorithms compare for the FIR case, both in derivation, and performance. A new
algorithm is subsequently presented. In this paper, results are compared for the
Mackey-Glass chaotic time series against a number of other methods including a
standard multilayer perceptron, and a local approximation method.

INTRODUCTION
As a means of capturing time-dependent signals in a nonlinear framework, multilayer
perceptrons (MLPs) with synapses described by filters have recently been proposed
[1,2,17]. These approaches replace the traditional scalar synaptic weights with finite
impulse response (FIR) filters commonly used in digital filter theory. The architecture
can be considered an extension of earlier work in which time delays were incorporated
as a means of capturing time-dependent input information. For example, in the Time
Delay Neural Network used by Waibel et al [20], the outputs of a layer in a feedforward
network are buffered several time steps and then fed fully connected to the next layer.
Lapedes and Farber's [10] use of a time-window as the input to a multilayer network
for applications in time series prediction is equivalent to one layer of time delay
synapses at the input. FIR networks provide a more general model for distributed time
representations.

An algorithm for training networks having FIR synapses was first published by Wan
[17]. A similar algorithm for the same network as well as the case for IIR synapses
was published by Back and Tsoi [1, 2]. We focus on these algorithms in this paper,
comparing their derivations and presenting a brief, but unifying view of them. Related
work which has been presented in [4, 6, 7, 11] and [14] among others, will not be
considered here. Our aim is to compare the forms of the training algorithms, and to
provide an indication of how they perform on some practical prediction problems. In
this brief summary, we show only one set of results, the Mackey-Glass chaotic time
series which allows us to easily highlight the differences in performances of various
methodologies for prediction of nonlinear time series.

The network architecture is defined below:

Definition 1. An FIR MLP of size (L, nw) with N0,Ni,..., NL nodes per layer, is
defined by

4(*) = f(x[(t)) (i)
0-7803-2026-3/94 $4.00 © 1994 IEEE 146

4(0 = f>,!*(0 (2)

y\k(t) = 44(0 (3)
4(0 = w/fc(8-

,)^-1(o, (4)

where each neuron i in layer I has an output at time t ofz\(t); a layer consists ofNi
neurons (1 = 0 denotes the input layer, and I = L denotes the output layer, zl

Nl = 1.0
may be used for a bias); 4(0 is the output of a synapse connecting from neuron
i in the previous layer to neuron k in layer 1; c\k is a synaptic gain; and /(•) is a
sigmoid function typically evaluated as tanh(-). An HR synapse is represented by
W/t(g-1) = I2"=o'4J•(«~■,) where w\kj correspond to the variable coefficients, and

q~l is a delay operator (q~l z(t) = z(t — I)), and nw is the number of delays.

The algorithms use first order stochastic gradient descent to minimize an error function.
We define the instantaneous performance criteria

m = X £ e*(0 = 2 £ (*(*) - **(*)) (5)

where dk(t) is the desired output at time t, and the sum is taken over the output
neurons. The total error or cost is given by summing the instantaneous error over all
T time steps in a training sequence

T

£T = £*(')• (6)

The different forms of the training algorithms for FIR networks differ in the manner
in which the gradients are calculated and on whether the instantaneous or total error is
used in the calculations.

GRADIENT COMPUTATION IN FIR SYNAPSES USING AN
INSTANTANEOUS COST FUNCTION

An algorithm for updating the weights in an FIR network may be obtained by consid-
ering the instantaneous error £(t) [1,17]. The weight changes can be adjusted using
a simple gradient method

w\kj(t + l) = w'ikj(t) + Aw'ikj(t) (7)

4(* + 0 = 4(0 + A4(0 (8)

A^W = -"ÄEÜ) (9)

_ d£(t) dx'k(t)

~ '«4(0^(0 m

A4W = "A (11)
_ B£(t) 3*1(0
~ 'ö4(*)ftfo(o (12)

147

where rj is the learning rate. A derivation of the partial terms is given in [2]. In
the derivation, it is necessary to define a secondary variable 6'k(t) = - ffi') . If we
consider only the gradient at the exact time t, then we have

Algorithm IC-1 Instantaneous Cost - Instantaneous Gradient
N,

«io = r (*lw) E Cw^tXtV en)
m=l

This can be considered an approximate instantaneous gradient. This is the method
adopted in [1,2]. Note the 6 terms are essentially calculated using standard backpropa-
gation through thewkm0 taps; the rest of the coefficients in the FIR synapse are ignored,
since we only assume a relationship between z[(t) and y'^ (t) instantaneously at time

A different form is achieved if we calculate the gradient over a short time period by
delaying the calculation of the gradient until all contributions from feedforward delay
elements can be combined.

Algorithm IC-2 Instantaneous Cost - Accumulated Gradient

m=l d=0

= r(4(0)EWM'o-<o
m=l d=0

= /#(*iw)E4+nlwii.,(«-I)*,(o. (i4)
m=l

This is similar to the second algorithm proposed by Wan in [17] (discussed in a
subsequent section of this paper). In this case, we have the backpropagated error
being obtained from a backward filter and all coefficients in the FIR synapse have an
influence on the 6 value.

For both cases, the final update equations for the FIR MLP are

w'ikj(t + l) = «tki(t) + ri6l(t)4tzl-l(t-j) (15)

40 + 1) = 4(<) + ^i(0^(?-,K?-1(<)> (16)
where 6k(t) may be computed by one of the two methods described above. We will
discuss the relative performance of the different methods in the results section.

GEDIENT COMPUTATION IN FIR SYNAPSES USING A
TOTAL COST FUNCTION

This section reviews the algorithms derived by Wan in [17, 18]. Gradient adaptation
is based on the total squared error over the entire sequence of inputs, as opposed to
the instantaneous error measure used previously. This should not be confused with
the fact that in all cases, we use an on-line updating scheme which makes use of error
measurement computed for that particular time instant.

Fundamentally, the weight changes in (9) and (11) are replaced by

148

We have simply substituted the total error ST for the instantaneous error £(t). In this
case an expression for 6 is obtained by maintaining the dependence over all values
of the input sequence. Derivations given in [19] leads to the following algorithms.
Algorithm TC-1 is very inefficient for networks with more than two layers. Algorithm
TC-2 on the other hand, uses the same update equations (15) and (16) as before. In
this case we derive a slightly different equation for the S term.

Algorithm TC-1 Total Cost - Instantaneous Gradient

TT®Z = E cU!-1(* - ")''(^(< -»)) £ #! w^MtUo <18> ÖtW*) ^o m=l

aen\ n» Nl+1

|M- = J2yl(t-n)f'(xUt-n))^6'^t)c^(t)w^n^ (19)
^tJfcW „=0 m=l

Algorithm TC-2 Total Cost - Temporal Backpropagation

N,+i

[() = /#(«i(*))Eet!nlWiK.1(«+,)Cl('). (20)
m=l

Note that in this case, Algorithm TC-2 needs to be delayed nw time steps to maintain
causality. It can be seen as very similar to Algorithm IC-2, though the evaluation of 6
and w terms occurs at different times (cf. (14)). In this algorithm, the backward filtering
comes about directly as a result of using the total cost function over time, thereby
necessitating the accumulation of gradient information. In Algorithm IC-2, gradient
computations are accumulated over time after initially considering an instantaneous
gradient.

SIMULATION RESULTS
As a means of comparing the different algorithms, we present some preliminary results
for the application of the neural network algorithms to some time series prediction
tasks. In this extended summary, only the results obtained in modelling the Mackey-
Glass delay-differential equation1 are presented, due to the widespread interest in using
it as a benchmark. In the full paper, results pertaining to other time series prediction
problems are considered, specifically:

1. Prediction of Mackey-Glass chaotic time series,

2. Prediction of Laser data as used in Santa Fe Time Series Prediction Competition.

3. Nonlinear speech prediction

4. Financial time series prediction

The algorithms discussed above are each trained on the data for the Mackey-Glass time
series. In each case, multiple simulations were performed and the results averaged
to obtain a reasonable indication of the networks performance. After some initial
testing to determine suitable learning rates, we selected a specific learning rate which
remained the same for each network when trained on a particular time series.

'The Mackey-Glass [12] equation is described by x(t) = -bx(t) + ^'„^lo , where T=30, a=0.2,

and 6=0.1.
149

Our aim was to test two basic approaches to time series prediction, namely, the
traditional approach of using past values of the time series directly, and secondly, the
approach of embedding the time series in a phase space, and using the delay coordinates
as the vector of inputs2. This approach, proposed by Takens [13,15] involves sampling
the time series at some delayed time values to create a delay coordinate vector. This
is sometimes referred to as a phase space.

As a means of comparing each algorithm, we benchmark their relative performances
againsta windowed input MLP, and a local approximation method developed by Cas-
dagli [5] (a version of the nearest neighbor method). Obviously, there are many
variations in which this could have been done. Our intent is to provide a reasonable
means of quickly assessing the performance of these algorithms which may provide a
starting point for anyone interested in considering them further.

The work we present here consists of benchmarking each of the above algorithms on
some representative time series as listed above. We consider three main cases:

• Single-step ahead prediction using a vector of past inputs (spaced one time unit
apart)

• Multi-step ahead prediction using a delay coordinate (Takens) vector of past
inputs (spaced r time units apart, where r is the delay parameter)

Iterated-prediction problem, using past outputs of the model as inputs for future
predictions3.

•

In the simulations performed, we used delay coordinate vectors with 6 elements (D=6),
and a time delay of r = 6. The order of FIR filters was nw = 5. The results shown in
Figures 1 and 2 are for the multi-step prediction problem, and the iterated-prediction
problem using a prediction time-step of 6.

These results are interesting, in that they show, for the problem at hand, the FIR MLP
structure appears to be better able to model the dynamics of the chaotic time-series.
The multi-step ahead prediction performance for the test set shows that each model
is able to do quite well. However, when we consider the more difficult problem of
iterated-prediction, we observe that the networks with FIR synapses perform much
better (see for example, the generated phase space plots in fig. 3).

It is interesting also to observe the different behaviours of the algorithms possible
for the FIR MLP model, indicating that while they may be better than other methods
generally, there are differences between how the algorithms operate in practice. Results
on the other simulation problems will be presented at the workshop.

CONCLUSIONS
The aim of this brief note was to clarify some of the issues in calculating the gradients
for multilayer perceptrons with FIR synapses. This contributes to a further under-
standing of these types of network architectures. Results in using these networks have
shown promise for a variety of nonlinear signal prediction tasks and we look forward
to continued activity in this area.

In our models, we only have a single input. However this is equivalent to the case where, for example,
a linear predictor or multilayer perceptron has a window of inputs. In our case, the window of each filter
exists in each synapse already.

3Our approach is to allow the models to recursively predict further and further into the future, based on
the initial predictions obtained. Therefore, if we allow the model to predict 6 time-steps into the future, and
we wish to see how it performs out to 400 time-steps, we allow the model to use its shorter predictions to
"bootstrap" itself out. This follows the conventions adopted by Lapedes and Färber [10] and Stokbro and
Umberger[16J.

150

Madiay-GlaaaUafeigBa<*pi<ip»5:1 L-O.OSW-eD-eT-ftTaatSat 1 Parfornianc.

i
8

I
8

8

i
8

8

(a)
Madcay43laaa Ualng Nn »1:1 A-2 K-20W>6 D>eTrf:Tm Sat 1 Parfomanca

(b)
Mackay-Glaaa Uahg IcHr 1:5:1 Nbrf:5 A-1 G.1 UO.OS D-6T-6: TaatSat 1 PwfomivK»

(C)

Madcay-Glaaa Ualng Icflr 1:5:1 Nb-5:SA-2Q«1 L>0.002 (he T-6: Tast Sal 1 Partetmmca

(d)
Mackay-Glaaa UalngTclr 1:5:1 Nb-5:5 A-1 Q-1 L-0.002 MT.6: Test Sat 1 Performance

(e)
Mackay-Qlaaa Ualng Tclr 1:5:1 Nb-5:5 A-2G.1 1*0.002 D-6T-«: Taat Sat 1 Patfoimanca

I
8

(f)

Figure 1: Test set performance on 6-step ahead prediction of theMackey-Glass chaotic
time series (T = 30). (a) Backpropagation (b) Nearest Neighbour (k = 20) (c)
Algorithm IC1 (d) Algorithm IC2 (e) Algorithm TCI (f) Algorithm TC2. (G=l
indicates synaptic gain is used, D is embedding delay, T is prediction time-step, W is
input window (backpropagation only), L is learning rate, A is algorithm, Nb is FIR
filter order).

151

Matfcay-Glaaa Uaing Bactprop «:5:1 L-0.05 W-e W T-«: Qanaraion Sat 1 Parlomanca

1
3

I
8

i
8

8

Ä
8

I
8

(a)
Maekay-Glaaa Uahg No «: 1:1 A-2 K.20 W.« CM T-«: Qanaraion S*l 1 Perform anca

(b)
Madrey-Glaaa Uaing Idle 1:5:1 Nb-5:5 A-1 G.1 L-0 OS Drf T.«: Qanaraion Set 1 Performance

(C)

Maokey-Qlaee Uaing Idr 1:5:1 Nt»*5 A.2 Q.1 L*0 002 CM T-«: Generation Set 1 Performance

(d)
Mackey-Glaee Uaing Tdlt 1:5:1 Nb-5:5 A.1 Q.1 U0 002IX T-«: Generation Sal 1 Performance

(e)
Madtey-Qlaea Uaing Tdr 1 5:1 Nb-5:5 A-2 Q.1 1*0 002 CM T-«: Generation Sal 1 Performance

(0

Figure 2: Iterated prediction performance on Mackey-Glass chaotic time series (T =
30). (a) Backpropagation (b) Nearest Neighbour (k = 20) (c) Algorithm IC1 (d)
Algorithm IC2 (e) Algorithm TCI (0 Algorithm TC2.

152

Mackey-Glass - BP 6:5:1 Gen. Pred. Phase Space
2

Mackey-Glass - NN 6:1:1 Gen. Pred. Phase Space
1.4

0.5 1
y(t-30)

(a)
Mackey-Glass - IC1 1:5:1 Gen. Pred. Phase Space

1.4

0.4 0.6 0.8 1
y(t-30)

(b)
Mackey-Glass - IC2 1:5:1 Gen. Pred. Phase Space

1.6

0.4 0.6 0.8 1 1.2
y(t-30)

(C)

0.4 0.6 0.8 1
y(t-30)

(d)

1.2 1.4

Mackey-Glass - TC1 1:5:1 Gen. Pred. Phase Space Mackey-Glass -TC2 1:5:1 Gen. Pred. Phase Space

0.4 0.6 0.8 1 1.2 1.4
y(t-30)

0.4 0.6 0.8 1
y(t-30)

(e) (0
Mackey-Glass - Desired Phase Space

0.4 0.6 0.8 1
y(t-30)

(g)

Figure 3: Phase space generation performance plotting y(t) vs. y(t - 30) for Mackey-
Glass chaotic time series (T = 30). (a) Backpropagation (b) Nearest Neighbour
(jfc = 20) (c) Algorithmic! (d) AlgorithmIC2 (e) Algorithm TCI (f) Algorithm TC2.
(g) Desired phase space.

153

Acknowledgements.
The first author acknowledges financial support from the Australian Research Council.
The third author acknowledges support from the Australian Research Council and
Australian Telecommunications and Electronics Research Board. The fourth author
acknowledges partial support from the Australian Research Council.

References
[1J Back, A.D. and Tsoi, A.C., "A Time Series Modelling Methodology Using FIR and IIR Synapses",

Proc. Workshop on Neural Networks for Statistical and Economic Data, Dublin, DOSES, Statistical
Office of European Communities, F. Murtagh (Ed.), pp. 187-194,1990.

[2] Back, A.D. and Tsoi,A.C, "FIR and IIR Synapses, a New Neural Network Architecture for Time
Series Modelling". Neural Computation, vol 3. no. 3, pp. 375-385,1991.

[3] Back, A.D. and Tsoi, A.C., "An Adaptive Lattice Architecture for Dynamic Multilayer Perceptrons",
Neural Computation, Vol 4, No. 6, pp. 922-931,1992.

[4] Bengio, Y. De Mori, R., Gori, M. "Learning the dynamic nature of s peech with backpropagation for
sequences". Pattern recognition Letters. Vol. 13, pp 375 - 385, 1992.

[51 M. Casdagli, "Chaos and Deterministic versus Stochastic Non-linear Modelling", J. R. Statist. Soc.
B, 1991,54, No. 2, pp. 303-328.

[6] P. Frasconi, M. Gori and G. Soda, "Local Feedback Multilayered Networks", Neural Computation,
vol.4, no. 1,1992.

[7] Gori, M., Bengio, Y., Mori, R.D. "BPS: a learning algorithm for capturing the dynamic nature of
speech". Intern. Joint Conf on Neural Networks, Vol II, pp 417 - 423, 1989.

[8] N.A. Gershenfeld, and A.S. Weigend, "The Future of Time Series: Learning and Understanding", in
Time Series Prediction: Forecasting the Future and Understanding the Past, Eds. A.S Weigend, and
N.A. Gershenfeld, Addison-Wesley: Reading MA, 1993.

[9] U. Hübner, CO. Weiss, N.B. Abraham, and D. Tang, "Lorenz-like Chaos in NH3-FIR Lasers", in
Time Series Prediction: Forecasting the Future and Understanding the Past, Eds. A.S Weigend, and
N.A. Gershenfeld, Addison-Wesley: Reading MA, 1993.

[10] Lapedes, A. and Farber, R., "Nonlinear Signal Processing using Neural Networks: Prediction and
System modelling", Tech Report LA-UR87-2662, Los Alamos National Laboratory, 1987.

[11] Leighton, R.R. and Conrath, B.C., "The Autoregressive Backpropagation Algorithm", Proc. Int. Joint
Conf. Neural Networks, 1991.

[12] Mackey, M.C., and Glass, L., "Oscillation and Chaos in Physiological Control Systems", Science,
vol. 197, pp. 287,1977.

[13] Packard, N., Crutchfield, J., Farmer, D., and Shaw, R., "Geometry from time series", Phys. Rev. Lett.,
vol 45., pp. 712-716.

[14] Poddar, P. Unnikrishnan, K.P. "Memory neuron networks: A Prolegomenon". General Motors Re-
search Laboratories Report GMR-7493, October 21,1991.

[15] Takens F., "Detecting Strange Attractors in Turbulence", Lecture Notes in Math., vol 898, Springer-
Verlag, 1981.

[16] Stokbro K. and Umberger D.K., "Forecasting with Weighted Maps", in Nonlinear Modeling and
Forecasting, SFI Studies in the Sciences of Complexity, Proc. Vol. XII, Eds. M. Cadagli, and S.
Eubanks. Addison-Wesley, 1992.

[17] Wan, E.A., "Temporal backpropagation for FIR neural networks", Proc. Int. Joint Conf. Neural
Networks, San Diego, June 1990, pp I 575-580.

[18] Wan, E.A., "Time Series Prediction by Using a Connectionist Network with Internal Delay Lines'",
in A. Weigend and N. Gershenfeld, eds., 77m« Series Prediction: Forecasting the Future and
Understanding the Past. Addison-Wesley, pages 195-218,1994.

[19] Wan, E.A., "Finite Impulse Response Neural Networks with Applications in Time Series Prediction",
PhD Dissertation, Stanford University, November, 1993.

[20] Waibel, A., Hanazawa, T, Hinton, G., Shikano, K., and Lang, K., "Phoneme recognition using
time-delay neural networks", IEEE Trans. Acoust., Speech, Signal Processing, vol ASSP-37, March,
1989.

154

SPECTRAL FEATURE EXTRACTION USING
POISSON MOMENTS

Samel Qelebi, Jose C. Principe
Computational Neuroengineering Lab. CSE447
University of Florida, Gainesville FL32611, USA

E-Mail: celebi@synapse.ee.ufl.edu, principe@synapse.ee.ufl.edu

Abstract. We propose to use the Gamma filter [1] as a feature extractor for the
preprocessing of speech signals. Gamma filter which can be implemented as a
cascade of identical first order lowpass filters generates at its taps the Poisson
Moments of an input signal. These moments carry spectral information about
the recent history of the input signal. They can be used to construct time-fre-
quency representations as an alternative to the conventional methods of short
term Fourier transform, cepstrum, etc. In this study it is shown that when the
time scale of the Gamma filter is chosen properly, the Poisson moments corre-
spond to the Taylor's series expansion coefficients of the input signal spectra.
The appeal of the proposed method comes from the fact that in the analog
domain the moments are available as a continuous time electrical signal and
can be physically measured, rather than computed off-line by a digital com-
puter. With this convenience, the speed of the discrete time processor following
the preprocessor is independent of the highest frequency of the input signal,
but is constrained with the stationarity duration of the signal.

INTRODUCTION

Classification of temporal patterns is one of the areas where artificial neural net-
works (ANNs) are frequently utilized. Speech recognition is a special case to that
problem. In order to simplify the classification task undertaken by an ANN prepro-
cessing of the temporal pattern is vital. The goal of the preprocessing should be to
capture the features of the pattern and to express them in a low dimensional space.
If this is achieved, then a big deal of computational and structural burden over the
neural network can be removed.

One method suggested for the preprocessing of speech signals is the Focused
Gamma Network [2][3]. This is & generalized feedforward structure with adjustable
feedback which is responsible for changing the time scale (or the memory depth) of
the preprocessor. Adjusting the time scale allows one to focus the representation
space on the signal of interest such that a low dimensional, but a faithful representa-

0-7803-2026-3/94 $4.00 © 1994 IEEE 155

tion is obtained. Well known Time Delay Neural Network (TDNN) [4] is a special
case of the Gamma Network where the time scale is frozen to be unity.

In their isolated word speech recognition task Tracey and Principe [2] showed that
the Gamma Network is superior to TDNN both in terms of the size of the neural
network required and the time it took to learn the given patterns. In this paper we
analyze the Gamma Network and show that the features fed into the ANN are basi-
cally the Taylor's series expansion coefficients of the recent speech spectra. Taking
into account the practicality of obtaining these features, a time-frequency represen-
tation can easily be constructed by concatenating the feature vectors of different
times together. An analog implementation of the filter can be pursued in analog
VLSI. Since the moment vectors are obtained in the analog domain, a digital pro-
cessor that operates on these vectors is not bound by the Nyquist rate of the input
signal, but by the rate the moments vary.

POISSON MOMENTS

Fairman and Shen [5] proposed that a distribution f(t) can be expanded in terms of
the derivatives of Dirac's delta function as follows

/«) = lfi«0)e-X('-'°)S"(t-,0) (1)
; = o

fj(t0) is called the im Poisson Moment of f(t) at t=t0. It is given by

(2)
/,('.)=/(')*/>,• (0|,_, Pi0) = t-e-X' X,t>0

« l\

'<%>' stands for the convolution operator. pj(t) can be recognized as the impulse
response of a cascade of i+1 identical lowpass filters. This structure is known as the
Gamma filter. X is called the time scale of the filter and it is responsible for adjust-
ing the region of support of the impulse response pj(t). Equation (2) suggests that,
instead of computing fj(t0) off-line, one can physically measure it as the value at the
i+lst tap of a Gamma filter with input f(t) (Figure 1). This convenience makes the
moments computationally inexpensive.

156

1st stage X: time scale k+1 st stage

f(t)
s + X s + X

w

s + X.

Jk*

Figure 1 Poisson moments of f(t) are generated by the Gamma filter

Taking the Laplace transform of both sides of (1) and using only a finite number of
terms it can be shown that this is equivalent to [4]

^WB^W(* + i)' (3)
i = 0

Notice the similarity between (3) and the Taylor's series expansion of est0F(s)
around s=-X given by

i = 0

where q's are the Taylor series coefficients.

(4)

1 (I - St„ „ , , , I
c; = ^ —Ae °F{s)}\

'■ ds s = -K
jm^ (fo~0' -*.(»„-0

dt (5)

Taylor series coefficients carry spectral features of est0F(s) around the frequencies
s=-^.. If one is concerned only with the magnitude spectrum IF(jQ)l (as with the
speech signals) the term est0 has no significance in the analysis since it accounts for
a delay. Due to the fact that Taylor's series approximation diverges at points away
from the pivot point s=-X, feature vector [c0 Cj... cN] carries only local frequency
information. However, a piecewise representation of the entire frequency axis can
be attained by concatenating the feature vectors obtained around different X .

157

APPROXIMATION OF TAYLOR SERIES COEFFICIENTS IN TERMS OF
THE POISSON MOMENTS

When the time scale X and the measurement time t0 are chosen properly, Taylor
series coefficients q can be approximated by the Poisson moments f4(t0). If this
holds, Poisson moments can be used as a feature vector to represent the spectral
features of IF(jw)l, too. Let's denote the error of approximating the i1*1 Taylor's coef-
ficient by the i,h Poisson moment with ej i.e.

fiOe) = Ci + e-, (6)

Assume that f(t) is a sum of complex decaying exponentials and let pr be the real
part of the pole that is closest to the imaginary axis, i.e.

M

fit) = ^bke'Pk'u{t) min{Re[pk)} =pr
k

(7)
* = o

Comparing (2) and (5) it can be shown that an upperbound for the absolute percent
approximation error is

/;• 100 100 e-ß

I

I
m = 0

(-ß)"'
m\

(8)

where

ß= (P,-l)t0 Pr>0 (9)

The error upperbound q decreases monotonically as a function of ß. As an example,
a choice of ß>4.2 guarantees that r;<2% for moment orders up to 8. If there is no
apriori information available on pr, it can be selected to be a small positive number.

REGION OF CONVERGENCE OF THE SPECTRAL APPROXIMATION

As stated before, when the time scale X is chosen properly, the Poisson moments
correspond to the Taylor's series expansion coefficients of the input spectra around
s=-X. The choice of the time scale affects the region of convergence (ROC) of the
spectral approximation as shown in Figure 2. ROC is centered around the point
s=-X and bounded by the pole that is closest to the imaginary axis of the s-plane. If
that pole has a negative real part pr and an imaginary part pi(it can be shown that
Taylor's approximation converges for frequencies IQkfic where

nc = Jp2r+pl + 2XPr

158

, i Im{s}

pole closest to
the imaginary

axis v

\ j^c

Re{s}«
Pi xx
1 %

■;;:':A.:-

\ ROC

:S9>0). /

Region of Convergence of Taylor's Series Expansion around s=-A,

PIECEWISE APPROXIMATION OF THE FREQUENCY SPECTRA

Taylor's series expansion yields a local approximation. At points away from the
pivot point it diverges fast. Therefore, it is not possible to globally approximate a
wide bandwidth of frequencies with a finite number of coefficients. As a solution, a
piecewise approximation scheme that partitions the frequency axis into several
bands and approximates each band locally can be adopted. The region of support of
each local approximation can be changed by selecting the pivot point s=-X as a
complex number and varying its imaginary part so as to cover different frequency
bands. Or, instead of doing the expansion around various center frequencies one
can also frequency shift each band to the origin and then expand it around real X. In
practice a constant Q bandpass filter followed by a mixer can be used to shift the
frequency band of interest to the origin. The baseband signal at the output of the
envelope detector can be fed into the Gamma network whose tap outputs are the
Poisson moments. These moments would represent the band of frequencies that the
bandpass filter was tuned to. If the mixer is replaced with a cascade of a square-law
device and an envelope detector, one can obtain an approximate representation for
the power spectrum of the input signal (Figure 3). Actually that's what has been
done in Tracey and Principe's study of simple word recognition using ANNs [2]. In
preprocessing the speech signal they used a cochlea model [6] followed by a
Gamma network that is used to capture the features of various bands in the form of
Poisson moments. These features were further fed into an ANN for classification.

159

Original spectrum

§EHZHJL§

'Approximate spectrum

: Gamma
Network

Figure 2 Picccwisc approximation of the magnitude spectrum using Poisson moments

Figure 4 illustrates the magnitude spectrum of a 20 msec segment of sample word
utterance 'suit' and its approximation obtained using Poisson moments. The fre-
quency axis was divided into bands of 160 Hz each. Each band was shifted to the
origin and filtered by a Gamma filter of order 4, thereby creating Poisson moment
vectors of size 4. Poisson moments were further used to approximate the original
magnitude spectrum. The closeness of the approximation to the original spectrum is
noticeable.

CONCLUSIONS

In this study we have shown how the Gamma filter can be used to form a time-fre-
quency representation of its input. This filter can be implemented as a cascade of
identical lowpass filters. The representation is readily available at the taps of the
Gamma filter in the form of Poisson moments. Compared to conventional spectral
representation schemes like Fourier series or cepstral coefficients, this is a compu-
tationally very inexpensive method. The discrete time processor that operates on

160

the moments is not constrained by the Nyquist rate of the input signal, but by the
rate moments vary. The highest frequency of the input signal affects the number of
bands that need to be implemented to cover the required bandwidth with a given
precision. In a sense, this method trades speed for parallelism, since each frequency
band operates totally independent of the others. For spectral analysis of very high
frequency signals that can not be digitized with the present technology, this method
is very appealing. Analog VLSI chips can be fabricated to implement the analog
bandpass filters and the Gamma structure, where the Poisson moments will be mea-
sured. The moments can be further fed into an ANN directly for tasks like classifi-
cation, prediction and identification.

IF(jQ)l

o.s

0.4

I !

0.3
A

; \

0.2

0.1
II A /

I l! U \.'
h v ? :/ \ r. <

V W V

1 \
A A A A A ry \

\J U / XJ \j \ ! \! \ \ ; v \
.V M . \

i

uc > soo lOOO 1SOO 2000 2500

Original magnitude spectrum Hz

|F,pp(Q)l

o.s

0.4

0.3

0.2

0.1

uo 500 1OOO 1500 2000 2SOO

Approximate spectrum Hz

Figure 3 Original and approximate magnitude spectrums of a segment of the word
utterance 'suit'.

161

ACKNOWLEDGEMENTS

This work has been partially supported by NSF grant ECS #920878.

REFERENCES

[1] B. de Vries, J. C. Principe, "The Gamma Model- A New Neural Model for Tem-
poral Processing," Neural Networks, vol. 5, pp. 565-576, 1992.

[2] Tracey J.W., Principe J.C., "Isolated-Word Speech Recognition Using the
Focused Gamma Neural Network," World Congress on Neural Networks, Port-
land, Oregon, vol III, pp. 87- 90, July 1993.

[3] Tracey J., 'Isolated Speech Recognition with the Focused Gamma Networks'
Master Thesis, U. of Florida, 1992.

[4] Waibel, Alex, Hanazawa T, Hinton G., Shikano K., Lang K., "Phoneme Recog-
nition Using Time-delay Neural Networks," IEEE Trans, on Acoustics. Speech
and Signal Processing, vol. 37:3, pp. 328-339, 1989.

[5] Fairman F.W., Shen D.W.C.,"Parameter Identification for Linear Time-Varying
Dynamic Processes," Proc. IEE, vol. 117, no. 10, Oct. 1970.

[6] Pickles J.O., An Introduction to the Physiology of Hearing,2nd edition, Lon-
don:Acadcmic Press, 1988.

162

APPLICATION OF THE FUZZY MIN-MAX
NEURAL NETWORK CLASSIFIER

TO PROBLEMS WITH
CONTINUOUS AND DISCRETE ATTRIBUTES

A. Likas, K. Blekas and A. Stafylopatis
National Technical University of Athens

Department of Electrical and Computer Engineering
Computer Science Division

157 73 Zographou, Athens, Greece

Abstract. The fuzzy min-max classification network constitutes
a promisimg pattern recognition approach that is based on hy-
berbox fuzzy sets and can be incrementally trained requiring
only one pass through the training set. The definition and
operation of the model considers only attributes assuming con-
tinuous values. Therefore, the application of the fuzzy min-max
network to a problem with continous and discrete attributes,
requires the modification of its definition and operation in order
to deal with the discrete dimensions. Experimental results us-
ing the modified model on a difficult pattern recognition prob-
lem establishes the strengths and weaknesses of the proposed
approach.

INTRODUCTION

Fuzzy min-max neural networks [2, 3] consitute one of the many mod-
els of computational intelligence that have been recently developed from
research efforts aiming at synthesizing neural networks and fuzzy logic

The fuzzy min-max classification neural network [2] is an on-line
supervised learning classifier that is based on hyperbox fuzzy sets. A hy-
perbox constitutes a region in the pattern space that can be completely
defined once the minimum and the maximum points along each dimen-
sion are given. Each hyperbox is associated with exactly one from the
pattern classes and all patterns that are contained within a given hyper-
box are considered to have full class membership. In the case where a
pattern is not completely contained in any of the hyperboxes, a properly

0-7803-2026-3/94 $4.00 © 1994 IEEE 163

computed fuzzy membership function (taking values in [0,1]) indicates
the degree to which the pattern falls outside of each of the hyperboxes.
During operation, the hyperbox with the maximum membership value
is selected and the class associated with the winning hyperbox is con-
sidered as the desicion of the network. Learning in the fuzzy min-max
classification network is an expansion-contraction process that consists of
creating and adjusting hyperboxes (the minimum and maximum points
along each dimension) and also associating a class label to each of them.

In this work, we study the performance of the fuzzy min-max clas-
sification neural network on a pattern recognition problem that involves
both discrete and continuous attributes. In order to handle the discrete
attributes, the definition of a hyperbox must be modified to incorporate
crisp (not fuzzy) sets in the discrete dimensions. Moreover, a modifica-
tion is needed of the way the membership values are computed, along
with changes in the criterion under which the hyperboxes are expanded.
Besides extending the definition and operation of the fuzzy min-max net-
work, the purpose of this work is also to gain insight into the factors that
affect operation and training and test its classification capabilities on a
difficult problem.

In the following section a brief description of the operation and train-
ing of the fuzzy min-max classification network is provided, while in
Section 3 the modified approach is presented. Section 4 provides ex-
perimental results from the application of the approach to a difficult
classification problem. It also presents results from the comparison of
the method with the backpropagation algorithm and summarizes the
major advantages and drawbacks of the fuzzy min-max neural network
when used as a pattern classifier.

LEARNING IN THE FUZZY MIN-MAX CLASSIFICATION
NETWORK

Consider a classification problem with n continuous attributes that have
been rescaled in the interval [0,1], hence the pattern space is In ([0, l]n).
Moreover, consider that there exist p classes and K hyperboxes with
corresponding minimum and maximum values v,-,- and Wji respectively
(j = 1,..., K, i = 1,..., n). Let also ck denote the class label associated
with hyperbox B^.

When the hth input pattern Ah = (ahl,...,ahn) is presented to the

164

network, the corresponding membership function for hyperbox Bj is ([3])

1 n

bj{Ah) = - J2il ~ f(ahi ~ WJII 7) - f(vji ~ ahi, 7)] (1) n . .

where f(x, 7) = xy, if 0 < xj < 1, /(z, 7) = 1 if xj > 1 and f{x,j) = 0
if £7 < 0. If the input pattern Ah falls inside the hyperbox Bj then
bj(Ah) = 1, otherwise the membership decreases and the parameter
7 > 1 regulates the decrease rate. As already noted, the class of the
hyperbox with the maximum membership is considered as the output of
the network.

In a neural network formulation, each hyperbox Bj can be considered
as a hidden unit of a feedforward neural network that receives the input
pattern and computes the corresponding membership value. The values
Vji and Wji can be considered as the weights from the input to the hidden
layer. The output layer contains as many output nodes as the number
of classes. The weights ujk (j = 1,..., K, k = 1,... ,p) from the hidden
to the output layer express the class corresponding to each hyperbox:
Ujk = 1 if Bj is a hyperbox for class Cfc, otherwise it is zero.

During learning, each training pattern Ah is presented once to the
network and the following process takes place: First we find the hyperbox
Bj with the maximum membership value among those that correspond
to the same class as pattern Ah and meet the expansion criterion:

n

n0 > ^2(max(wji,ahi) - min(t7jt-,ahi)) (2)
i=i

The parameter 0 (0 < 6 < 1) is a user-defined value that imposes a
bound on the size of a hyperbox and its value significantly affects the
effectiveness of the training algorithm. In the case where an expandable
hyperbox (of the same class) cannot be found, then a new hyperbox
Bk is spawned and we set Wki = Vki = a/ii for each i. Otherwise, the
hyperbox Bj with the maximum membership value is expanded in order
to incorporate the new pattern Ah, i.e., for each i = 1,..., n:

mm(v0jld,ahi) (3) .new „,:„/„.oI<i

W
new rr,n^f„.fild = max(w;f, ahi) (4)

Following the expansion of a hyperbox, an overlap test takes place to
determine if any overlap exists between hyperboxes from different classes.
In case such an overlap exists, it is eliminated by a contraction process
during which the size of each of the overlapping hyperboxes is minimally

165

adjusted. Details concering the overlap test and the contraction process
can be found in [2].

From the above description it is clear that the effectiveness of the
training algorithm mainly depends on two factors: the value of the pa-
rameter 9 and the order with which the training patterns are presented
to the network.

TREATING DISCRETE ATTRIBUTES

A basic assumption concerning the application of the fuzzy min-max clas-
sification network to a pattern recognition problem is that all attributes
take continuous values. Hence, it is possible to define the pattern space
(union of hyperboxes) corresponding to each class by providing the min-
imum and maximum attribute values along each dimension. In the case
of pattern recognition problems that are based on both analog and dis-
crete attributes, it is nessecary for the discrete features to be treated in
a different way. This is mainly due to the fact that it is not possible to
define a meaningful ordering of the values of discrete attributes. Thus,
it is not possible to apply the minimum and maximum operations on
which the original fuzzy min-max neural network is based.

Consider a pattern recognition problem with n attributes (both con-
tinous and discrete). Let V denote the set of the indices of the discrete
attributes and C denote the set of indices of the continuous attributes.
Let also nc = \C\ and nD = |2>| denote the number of continuous and dis-
crete attributes respectively and £>' denote the domain of each discrete
feature i € V. A pattern Ah = (ahu...,ahn) of this problem has the
characteristic that ahi 6 [0,1] for i £ C and ahi e D

{ for i £ V. In order
to deal with problems characterized by such mixture of attributes, we
consider that each hyperbox Bj is described by providing the minimum
vji and maximum Wji attribute values for the case of continuous features
(i € C) and by explicitly providing a set of attribute values Dj{ C D{ for
the case of discrete features i 6 V. Since it is not possible to define any
distance measure between the possible values of discrete attributes, we
cannot assign any fuzzy membership values to the elements of sets Dj{

Therefore, the sets Dj{ are crisp sets, i.e., an element either belongs to
a set or not. Taking this argument into account, equation (1) provid-
ing the membership degree of a pattern Ah to a hyperbox Bj, takes the

166

following form:

bj(Ah) = -{Yfi-~f(ahi~ WJ»y) ~f(vfi ~°w>7)]+ J2 mDn(a/»)) (5)
" tec i€P

where ms(x) denotes the membership function corresponding to the crisp
set 5, which is equal to 1 if x G 5, otherwise it is equal to 0.

In a neural network implementation, the continuous input units are
connected to the hidden units via the two kinds of weights «,,- and Wji
as mentioned in the previous section. In what concerns the discrete
attributes, we can assign one input unit to each atribute value, that is
set to 1 in case this value exists in the input pattern, while the other
units corresponding to the same attribute are set equal to 0. If a specific
value dik G D* belongs to the set Dji, the^ the weight between the
corresponding input unit and the hidden unit j is set equal to 1, otherwise
it is 0.

During training, when a pattern Ah is presented to the network the
expansion criterion has to be modified in order to take into account both
the discrete and the continuous dimensions. More specifically, we have
considered two distinct expansion criteria: The first one concerns the
continuous dimensions and remains the same as in the original network
given by equation (2) with n being replaced by nc which denotes the
number of continuous attributes. The second expansion criterion con-
cerns the discrete features and has the following form:

A < 5Z mDji (ahi) (6)

where the parameter A (0 < A < nu) expresses the minimum number
of discrete attributes in which the hyperbox Bj and the pattern Ah
must agree in order for the hyperbox to be expanded to incorporate the
pattern.

During the test for expansion process, we test whether there exist
expandable hyperboxes (according to the two criteria) from the same
class as Ah and we expand the hyperbox with the maximum membership.
If no expandable hyperbox is found a new one Bf. is spawned and we set
Vki = wki = ^hi for i G C and Dki = {ahi} for i G V.

When a hyperbox is expanded, its parameters are adjusted as follows:
If i G C

vjr = mm(vf,ahi) (7)

w*r = m*x{v$d,ahi) (8)

167

if iev
D]r = Df U {ahi} (9)

During overlap test and contraction the discrete dimensions are not
considered and ovelap is eliminated by adjusting ony the continuous di-
mensions of the hyperboxes following the minimum disturbance principle
as in the original network. Although it is possible to separate two hy-
perboxes Bj and Bk by removing common elements from some of the
sets Dji and D^, we have not followed this approach. The main reason
is that the disturbance in the already allocated patterns would be more
significant, since these sets do not contain many elements in general.

EXPERIMENTS ANI^ CONCLUSIONS

We have studied the modified fuzzy min-max neural network classifier
on a difficult classification problem concerning the assignment of credit
to consumer applications. The data set (obtained from the UCI repos-
itory [5]) contains 690 examples and was originally studied by Quinlan
[4] using decision trees. Each example in the data set concerns an appli-
cation for credit card facilities described by 9 discrete and 6 continuous
attributes, with two decision classes (either accept of reject the applica-
tion). Some of the discrete attributes have large collections of possible
values (one of them has 14) and there exist examples in which some at-
tribute values are missing. As noted in [4] these data are both scanty
and noisy making accurate prediction on unseen cases a difficult task.

Two series of experiments were performed. In the first series, the
data set was divided into a training set of 460 examples (containing
equal number of positive and negative cases) that were used to adjust
the network hyperboxes, while the remaining 230 examples were used as
a test set to estimate the performance of the resulting classifier. Each
experiment in a series consisted of training the network (in a single pass)
for certain values of 6 and A and then computing the percentage of correct
classifications over the test set. Moreover, the order of presentation of
the training patterns to the network was held fixed in all experiments.
Best results were found for 9 = 0.237 and A = 8. For these parameter
values the resulting network contained 136 hyperboxes and the success
rate was 87%. It must be noted that the success rate was very sensitive
both on the choice of the parameter 6 and on the order with which the
training examples are presented. This of course constitutes a weakness
of the fuzzy min-max classifier, but on the other hand, each training

168

experiment is very fast and the process of adjusting 6 can be performed
in reasonable time. We have also tested the classification performance in
case the training data are presented to the network more than once and
we have found that only marginal performance improvement is obtained.

We have also used the same data set to train a multilayer percep-
tron using the backpropagation algorithm (the on-line version). A net-
work with one hidden layer was considered. Several experiments were
conducted for different values of the number of hidden units. The best
classification rate we were able to obtain was 83% for a network of 10 hid-
den units and with learning rate 0.1. It must be noted that the required
training time was excessively long compared to the one-shot training of
the fuzzy min-max network.

During experiments, we have observed that some of the examples
were 'bad', in the sense that they were very difficult predict, and, in
addition, when used as part of the training set, the resulting network
exhibited poorer classification performance, than in the case in which
these examples were not used for training. For this reason, a second series
of experiments were conducted on a subset of the data set (400 examples)
that resulted from the removal of the bad examples. We considered
a training set and a test set of size 200, each of them containing 100
positive and 100 negative examples. Best performance was obtained for
0 = 0.115 and A = 8 (112 hyperboxes) with classification rate 97.5%.
Moreover, the performance was very robust with respect to the value of
0 with the classification rate being more than 90% for all tested values.
The best classification rate we have obtained for this data set using the
backpropagation algorithm was 89.5%.

As the experiments indicate, the fuzzy min-max classification neural
network constitutes a promising method for pattern recognition problems
that has the advantage of fast one-shot training with its only drawback
coming from its sensitivity in the parameter values used in the test for
expansion criteria. Therefore, further research should be focused on de-
veloping algorithms for automatically adjusting these parameters during
training.

REFERENCES

[1] IEEE Trans, on Neural Networks, Special Issue on Fuzzy Logic and
Neural networks, vol. 3, No. 5, September 1992.

169

[2] P. K. Simpson, "Fuzzy Min-Max Neural Networks-Part 1: Classi-
fication," IEEE Trans, on Neural Networks, vol. 3, No. 5, pp. 776-786,

September 1992.

[3] P. K. Simpson, "Fuzzy Min-Max Neural Networks-Part 2: Cluster-
ing," IEEE Trans, on Fuzzy Systems, vol. 1, No. 1, pp. 32-45, February

1993.

[4] J. R. Quinlan, "Simplifying Decision Trees," Int. J. Man-Machine

Studies, vol. 27, pp. 221-234, 1987.

[5] P. M. Murphy and D. W. Aha, "UCI Repository of Machine Learning
Databases," Irvine, CA: University of California, Department of Com-

puter Science, 1992.

170

Time Signal Filtering by Relative Neighborhood
Graph Localized Linear Approximation.

John Aasted S0rensen, Electronics Institute, Build. 349
Technical University of Denmark, 2800 Lyngby Denmark.

Abstract. A time signal filtering algorithm based on the relative neigh-
borhood graph (RNG) used for localization of linear filters is proposed.
The filter is constructed from a training signal during two stages. During
the first stage an RNG is constructed. During the second stage, localized
linear filters are associated each RNG node and adapted to the training
signal. The filtering of a test signal is then carried out by inserting the
test signal vectors in the RNG followed by the determination of the filter
output as a function of the linear filters of the RNG nodes to which the
vectors are associated. Training examples are given on a segment of a
speech signal and a signal with burst structure generated from a bilinear
Subba Rao model.

1 Introduction

A time signal filtering algorithm based on relative neighborhood graph
(RNG) localized linear filters is proposed. The filter is constructed
during two stages:
During the first stage, a training signal xn, n = 1,...,N is used for
generation of an RNG using an input dimension D. The RNG of a set of
vectors, connect the vectors xf = (x{,.. .,X,_D+I) and Xj if the inter-
section of the spheres with radii equal to the distance between Xj and
Xj and centered in x; and Xj does not contain any vector from the set.
This intersection is also denoted the lune A,-j of x, and Xj. A lune thus
represents a part of the input space which is mainly defined by the two
vectors generating the lune. The result of the first stage is a structural
representation of the input space based on the RNG. This structure is
then used for localizing linear filters, adapted by a gradient algorithm to
the training set during the second stage.

The filtering of a test signal tn, n - 1,... is then carried out as follows:
Insert test vectors t£ = (tn,tn-i,. ..,tn-D+i) into the RNG, by deter-
mining all the lunes to which each tn belongs. These lunes defines the
neighborhood of t„. The filter output is then a function of the linear
filters belonging to this neighborhood. In the example hereafter the filter
output function is a weighted mean value of the neighborhood filters.

0-7803-2026-3/94 $4.00 © 1994 IEEE 171

The Relative Neighborhood Graph (RNG)

If the open sphere with center in x and radius r is denoted

B(x,r) = {y|d(x,y)<r} (1)

where d(x,y) is the distance between x and y,
then the lune A,j of x, and Xj is determined by

Aij = B(xi, rf(x,,xj))r\ B(xj, d(xi,XJ)) (2)

or by
A,-j = {x | max(rf(xt-,x), d(x,Xj)) < rf(x,-,x7)} (3)

The lune is exemplified in Figure 1.

S(xi,d(x,-,x;-))

B{xj,d(xi,Xj))

Figure 1: The relative neighborhood A,-j.

Based on this definition of a lune [1], the RNG of an input signal
xn, n = 1,..., JV is determined by

where

[P,C] = RNG(xn,n=l,...,N,D) (4)

D : Dimension of input space.
P is a matrix of RNG nodevectors.

P = [pi,P2,...,pfl]eRDxfl

R is the number of nodes in the RNG.
C is the incidence matrix of the RNG.

C = [c1,c2,...,cfl]6{0,l}flxfl

CT = (ci,j,---,Cfl,,-)
ctj = 1 if Ap^p^ is empty, otherwise aj = 0.

172

2 Training Algorithm

The training algorithm is divided into 2 stages.

Stage 1: Generation of the RNG filter structure.
In the first stage the RNG is determined according to

[P,C] = RNG(xn,n=l,...,N) (5)

Stage 2: Adaptation of RNG localized linear filters.

The RNG localized linear filters are now formed by associating a FIR
filter with each node of the RNG. This leads to the following filter matrix

W = [wi,...,wfi] (6)

where wf = [wi:k,..., wo,k, WD+i,k]- The term wo+i,k is the bias of
the RNG node filter number k — 1,..., R.

Assuming that the current augmented input signal vector at time step n
is zj = (xn,xn-i,...,xn-D+\, 1) and the augmented RNG node vectors
are rj = [pT, 0] for j = 1,..., R, gives the following filter output, using
the weighted mean of neighborhood

Here jjin is the number of times the RNG node number j is a member
of a lune to which x„ belongs, when xn is inserted into the RNG. x„ is
inserted in the RNG by determining the lunes to which xn belongs. The
total number of nodes in the lunes to which x„ belongs is

R

7n=X)7j> (8)
J' = l

The RNG node weighting matrix at time step n becomes

r Ti

r„
0

0 2«^
7n J

0)

In (7) x is formed as a weighted mean value of the predictions from
the nodes which constitute the lunes to which x„ belongs. Defining the
error vector between the current input vector xn and RNG node number
j gives 6j = zn — rj for j = 1,..., R. This defines the input signal matrix
at time step n to the RNG nodes:

An = [6u...,SR] (10)

173

From (7), (9) and (10) the filter output can be represented

xn = trace(W^A„r„) (11)

Using the LMS adaptation of the filter matrix W„, where the index n
denotes the time step, leads to:

W„+1 = Wn + /ien A„r„ (12)

where e„ = xn — xn is the prediction error and n is the adaptation con-
stant.

3 Training Experiments

The training algorithm is exemplified on a speech signal segment shown
in Figure 2 and on a segment of the bilinear model of Subba Rao [2]:

xn = 0.8x„_i - 0.4ain_2 + 0.6x„_ie„_i + 0.7x„_2e„_i + e„ (13)

where e„ is white, Gaussian noise with variance 1. As shown in Figure
3, this signal exhibits burst structure.

300

Figure 2: Speech input signal.

174

3

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2.

X10

•wJW—■

50 100 150
n

200 250 300

Figure 3: Input signal from the bilinear Subba Rao model.

The predictions are evaluated by the normalized, mean square error [3]

1
N

NMSE(xn,xn) = —-^2(xn - xn) (14)
n=l

where x„ is the true value of the input signal at time step n and xn

is the predicted value, a2 is the variance of the input signal with N
samples. Thus NMSE is the ratio of the mean squared errors of the
filtering method being trained and a method which predicts the mean
at every time step.
In Table 1 are given training examples using the above speech and bi-
linear signal segments. The training is carried out on three models: The
block linear filtering, the linear k-nearest neigbor filtering [4] and the re-
lative neighborhood graph based filtering. From this it is seen that the
training performance of the RNG filter structure is comparable to the
performance of the k-nearest neighbor filtering at the same dimension
of the input space. Furthermore it is expected that the RNG leads to a
more suitable definition of neighborhood for localized filtering compared
to the k-nearest nigborhood.

175

Filter D nn R NMSE speech R NMSE bilinear
Linear 12 0.137 0.691
k-nn 4

6
12
3
4
4

10
15
15
6
6
10

0.080
0.073
0.005

0.155
0.032
0.210

RNG 3 54 0.130 55 0.042
4 66 0.051 58 0.0089

Table 1: Training results for the speech and the bilinear signal segment.
D: Dimension of input vector.
nn: The number of nearest neighbors in k-nearest neighbor.
R: The number of nodes in the RNG, determined in the first stage.

References

[1] Jerzy W. Jaromczyk, Godfried T. Tousssaint, Reiative Neighbor-
hood Graphs and Their Relatives, Proceedings of IEEE, Vol. 80,
No. 9, September 1992.

[2] M.B. Priestly, Non-linear and Non-stationaryTime series Analysis,
Academic Press, 1988.

[3] Time Series Prediction
Andreas S. Weigend, Neil A. Gershenfeld, Eds.
Proceedings Volume XV, Santa Fe Institute
Addison-Wesley Publishing Company, 1994.

[4] J.D. Farmer, J.J. Sidorowich
Exploiting Chaos to Predict the Future and Reduce Noise.
Tech. Rep. LA-UR-88-901, Los Alamos National laboratory, 1988.

176

CLASSIFICATION USING HIERARCHICAL
MIXTURES OF EXPERTS

S.R.Waterhouse A.J.Robinson
Cambridge University Engineering Department

Trumpington Street, Cambridge CB2 1PZ, England

Abstract-There has recently been widespread interest in the use of multiple
models for classification and regression in the statistics and neural networks
communities. The Hierarchical Mixture of Experts (HME) [1] has been suc-
cessful in a number of regression problems, yielding significantly faster training
through the use of the Expectation Maximisation algorithm. In this paper we
extend the HME to classification and results are reported for three common
classification benchmark tests: Exclusive-Or, N-input Parity and Two Spirals.

INTRODUCTION

Traditional Neural Network architectures such as the multi-layer perceptron have
proved successful as universal function approximators and have been used in many
different problems ranging from pattern classification to control engineering. Whilst
there is undoubtably further valuable work to be done on such architectures, such
as improving training methods, there is a considerable incentive to look in other
directions for new architectures. Such architectures ideally would be statistically
motivated and have parameters which are easily interpretable; they would also allow
training speeds to be increased, since the gradient descent algorithm used in tradi-
tional back-propagation is typically too slow for solving real-world problems in real
time.

Motivated by such concerns, a number of researchers have investigated methods of
function approximation incorporating ideas from the fields of statistics and neural
networks. One recurring trend in such work is the use of separate models to approx-
imate different parts of a problem. The general approach is to divide the problem
into a series of sub-problems and assign a set of function approximators or 'experts'
to each sub-problem. Different approaches use different techniques to divide the
problem into sub-problems and to calculate the best solution to the problem from
the outputs of the experts. The architecture described in this paper, the Hierarchical
Mixtures of Experts (HME) [1], employs probabilistic methods in both the way it
divides the input space and the way it combines the outputs from the experts.

The paper is organised as follows. The HME architecture is described, along with the
use of the Expectation Maximisation (EM) algorithm [2] which is used to estimate
its parameters. The extension of the HME to classification is discussed, including the
required modifications to the training algorithm. The results obtained on two classi-
fication simulations are presented: N-input Parity and the 'Two Spirals' problem.

HIERARCHICAL MIXTURES OF EXPERTS

The HME is based on the principle of 'divide and conquer' in which a large, hard
to solve problem is divided into many smaller, easier to solve problems. There are

0-7803-2026-3/94 $4.00 © 1994 IEEE 177

Node
(0)

»I H2

Node
a)

Node
(2)

Gating
Network

«HI,

i I
1 IU Gating

\ 1 Network
(1) ' h,2 (2)

\ Ai y1« »21 / H22\ t
X H xpcrt

Network
a./)

Expert
Network

(1.2)

Expert
Network

(2.1)

Expert
Network

(22)

X

h 1 i 1 ,

Figure 1: Hierarchical Mixture of Experts

several alternative strategies for tackling such problems. The simplest approach is to
divide the problem into sub-problems having no common elements - a 'hard split'
of the data. The optimum output of the experts assigned to each sub-problem may
then be chosen on a 'winner-takes-all' (WTA) basis. Classification and Regression
Trees (CART) [3] are based on this principle. Alternatively, the outputs of the experts
may be combined in a weighted sum with weights derived from the performance of
the experts in their partition of the input space; this is the principle behind Stacked
Generalisation [4]. The most advanced method is to divide the problem into sub-
problems which can have common elements -a 'soft split' of the input space into
a series of overlapping clusters. The outputs can be chosen either using WTA or
stochastically. The HME combines the ideas of soft splits of the data with stochastic
selection of the outputs of the experts by the use of a gating network. A two-level
HME architecture with a common branching factor of two at each level (a 'binary
branching' HME) is shown in Figure 1. In the general architecture, multiple levels
and branching factors are possible. In its basic form, the HME employs a fixed
architecture which is pre-determined before training commences. The tree consists
of non-terminal and terminal nodes which we denote by a set of indicator variables
{Z}. Non-terminal node (1) is thus denoted z\ and consists of gating network GN(1).
Terminal node (1,1) is denoted by zu and consists of expert network EN(1,1). A
general HME with / levels of gating networks and branching factors bo, £i,..., b,_i
is denoted by HME(/':<?o>6i £;-■), thus Figure 1 is HME(2:2,2). In the original
HME each expert was linear and performed a regression task [1]. In this paper, each
expert is non-linear and performs multi-way classification.

Our general classification problem may be considered as follows. At time t during
training, we observe an input vector xw which belongs to class n. We construct a
target output vector yw with 1 in element; and 0 elsewhere. We wish to compute the

178

probability P(yn\x
(,)) of the correct class n being returned given the input vector at

time t.x We do this by breaking the problem into a series of smaller problems. For
example, expert network EN(1,1) computes P{y\x,z\,zu), the probability vector
of all classes given that we took the left branch of every split and ended up in
terminal node (1,1). The top level gating network GN(0) computes P(z\ \x), and the
second level gating network GN(1) computes P(zu\x,zi). GN(1) weights EN(1,1)
and EN(1,2) to give the output of node (1),

/*, = P(y\x,zi) = J2P(y\x,zuZij)P(zy\x,zi).

All these nodes are combined to give the overall output \i of the HME,

bo

fi = P(y\x) = ^2P(Zi\x)P{y\x,Zi)

bo

<=l ;=l

This process may be extended to any depth and may use arbitrary branching factors
at each depth. Unlike CART, the shape of the HME network is pre-determined
heuristically before training.

Expert network EN(1,1) is a single layer network with 'softmax' activation function
[5] whose output is

IN

Mil =^(y|tf.Zi.zn,©n) = exp(e[lnaO /^exp(0[ux),
/ *=i

where ©u is a parameter matrix, consisting oiN independent vectors {9Uk}- The
formofGN(l)is

P(zi\x,Hi) = exp(£[,a;) / ^exp(^[,a!)
/ i=i

where Si is the parameter matrix for this gate, consisting of b\ independent vectors
t,u. Therefore, the mathematical form of the gating and expert networks is the same,
with the difference that the gating network is classifying the experts over the input
space and the experts are classifying within the input space regions.

Training the HME

The HME is trained using the Expectation Maximisation (EM) algorithm, in which
'missing data' is specified, which if known would simplify the maximisation problem.
If we had information about which node had generated the data, we could update the
parameters for the gates and experts for that node. Thus the missing data for the EM
algorithm applied to HMEs is the set of indicator variables {Z} which indicate which
node generated each output, or alternatively which node is best suited to the portion

1. For simplicity of notation, we shall now drop the superscript t on the inputs, outputs and indicator
variables.

179

of the input space under consideration. The E-step of the EM algorithm reduces
to computing the expected values of the indicator variables which gives the set of
posterior probabilities {//}. The conditional posterior probability of node (1,1) is
the probability that EN(1,1) can be considered to have generated the data based on
both input and output observations, given that we are in non-terminal node (1). This
is given by

_. , . />(zn|zi,a!)/>(y|a!,zii,zi>0ii)
h\\\ =P(zu\z\,x,y) =

VpiP(zij\zix)P(y\x,z\j,ZuGij)

where P(y \x, z\\,Zi,0u)is the probability of generating the correct output vector y
from EN(1,1) given the input x. For 1-out-of-N classification, this is given by

P(y\x,zi\,z\,Q]]) = expf 53>jfclog/iiuJ =/in„

where jim is the output for class k from EN(1,1) and n is the correct class. In a
similar way, the conditional probability of node (1) is given by

, _, , P(z\\x)P{y\x,zy)
h\ =P(zi,x,y) =

Y:i,P{Zi\x)P{y\x,Zi)

For node (1,1) the joint posterior probability, h\\ is the product of the joint posterior
probability of node (1) and the conditional posterior probability of node (1,1). In
a deeper architecture, the joint posterior probabilities are recursively computed by
multiplying the conditional posterior probabilities along a path from the root node
(0) to the node in question.

The M step reduces to a set of independent weighted maximum likelihood problems
for the experts and the gates. Thus the weight for GN(1), at time t, is the joint
posteriorprobabilityof this node, /i(,°, and the weighfforEN(l, 1) isthejointposterior
probability of this node, ftf]. The target outputs for the gating networks are the
conditional posterior probabilities of the node in question, so that the targets for
GN(1) at time t are //,'?, and h% for outputs 1 and 2 respectively.

Once the maximum likelihood problems of the M-step have been completed, the E-
step is repeated, computing a new set of posteriors {//} for all times t which become
the new weights for the M-step.

Solving the M-Step

Since each EN and GN is a simple network with a single layer of weights, we may
solve the maximum likelihood problems relatively easily. We update the parameter
vectors for each output of the networks independently, given the Generalised Linear
[6] assumption that the outputs are independent. The simplest method is to use
gradient ascent of the likelihood, which for parameter vector 0f at iteration m for
output i of an EN reduces to

er] = 0T + ^^r^ E A(0*w(yi,) - ^

180

where y\{) is the target for class i, juf() is the ith output of the EN, ftw is the weight
at time t, T is the total time, and A is a learning rate. These equations are the same
for the gating networks, with the output targets {v^} replaced by the conditional
posterior probabilities of the node in question.

An alternative maximisation method, and the one adopted in this paper, is to use the
Hessian or second derivative of the likelihood with respect to the parameter vectors:

er1 = ef + x\Yj iPx®i#\\ - tfW)T) [J2 Aw*(r)(yi° - vP)) > (D

where X is once again a learning rate, which has typical values in the range 0.4 to
1.0. This method is equivalent to the Iteratively Reweighted Least Squares algorithm
(IRLS) of Generalised Linear Models [6].

Implementation Issues

Variation in M-Step Iterations. Although the basic EM algorithm dictates that the
M step should be iterated until convergence, the Generalised EM algorithm (GEM)
relaxes this constraint, requiring only an increase in the likelihood in the M-step. By
reducing the number of M-step iterations we can reduce the overall computation.
The power of the EM algorithm lies in the E-step which repeatedly computes new
weights based on the previous M steps. In our experiments the number of M step
iterations was typically set to between 1 and 3.

Learning rates. The IRLS algorithm in common with conventional gradient de-
scent algorithms, is sensitive to learning rates. Learning rates that are too large give
instability, manifested in step sizes that lead to an decrease in the overall network
likelihood. In practice we found that a learning rate of 0.4 for both experts and gates
gave a good balance between learning speed and stability, although rates of 0.8 have
proved stable with some initial conditions.

Saturation of expert and gating network outputs. If the output ju/r) in Equation
(1) of any of the networks becomes near to either 1 or 0, or if the weight Aw is near
0, then the addition to the Hessian matrix for output i of that network at time t will
be very small. If this occurs for a large majority of the training set, the Hessian will
become singular and impossible to invert accurately. The solution to this problem
is to use threshold values for the outputs of 0.9999 and 0.0001 and a floor for the
weights of 0.0001. In practice, these have to be tuned to prevent instability but have
no significant effect on accuracy until set to around 0.9 and 0.1.

Choice of initial parameter values. Two strategies are used to initialise the network.
The first is to start all parameter vectors of experts and gates at zero and give each
gate output a 'kick' so that the experts begin to separate in the input space and
compute different outputs. The second is to initialise all parameter vectors to random
values, in a range — r to +r. TypicallyO. 1 < r < 3. An alternative is to use random
weights for the expert parameters and zero initial weights for the gates, with the
choice of strategy varying with the problem. In our experiments we found that the
second option gave the quickest results which were most free from local maxima,
whilst the first and third options gave solutions which were drawn to local maxima
or failed to separate the experts at al!

181

SIMULATIONS

In this paper we follow the work of [7] in using strict methods when reporting
learning speeds and network performance. In particular we use a 40-20-40 threshold
criterion which dictates that an output is only correct if it is greater than 0.6. We
define an epoch as one pass through the training set. Thus, one EM cycle may consist
of many epochs, depending on the number of iterations performed in the M-step.

N-Input Parity

The task of the N-input parity problem is to compute the odd parity of N binary inputs.
The network must compute a 'one' if the input has an odd number of 'one' bits in
the input and a 'zero' if there are an even number. The special case of 2-input parity
is the Exclusive Or function (XOR) which was shown to be impossible for simple
single layer networks to approximate [8]. In this paper we show that the HME can
solve this problem efficiently using only three single layer networks, in the form of
one GN and two ENs. We also describe solutions for 3 to 8 input parity, with learning
times faster than conventional feed-forward networks. The performance of the HME
on the XOR problem using a varying degree of test thresholding and averaging over
100 trials per threshold is shown in Table 1. These results were obtained using a

Threshold Min
Epochs

Max
Epochs

Average
Epochs

Standard
Deviation

0.6 2 6 2.76 0.971
0.8 2 6 3.32 0.882
0.9 3 6 4.14 0.757

0.95 4 7 4.67 0.713
0.99 8 24 . 11.5 4.27

HME(1:2) w
forward netw
in an average
training time
0.6 thresholc
of 11.5 epoc
converge or r
in Table 2. B
by a 2-16-1 h
[10] and 172
The number
NC. Using tr
networks wit
effect may be
foraHME(l
only 2 expert
in the figure c
is a solution i
2 experts ina

Table 1: Results for the HME on the XOR problem,

ith a total of 9 parameters. By way of comparison, conve
orks, using a 2-2-1 structure can solve this problem at the (
of 19 epochs of quickprop [7]. Using the delta-bar-delta rul
of 250.4 epochs has been reported [9]. Using the HME,

i in an average of 2.76 epochs, and the 0.99 threshold i
hs. Of all these trials of the HME on the XOR problem, n
md to be restarted. The results on the N-input Parity proble
y way of comparison, the best performance reported on 8
ack-propagation network is 2000 epochs of standard back
epochs of quickprop. The table shows the average results c
of tests which failed to converge to the correct solution is
le HME, N-input parity requires at least N experts. Howe\
h around N experts, there is an increased chance of local n
; seen in Figure 2 which shows the effect of different initi
:4) on the XOR problem. Since we may solve the XOR pi
s, this network is over-specified and includes redundancy.r

liffer in the distribution of the data between the experts. Su
n which the data is shared evenly between 2 experts with t
ctive. In 2(b) the data is distributed again between 2 exp

182

sntional feed
). 6 threshold
e, an average
we reach the
n an average
one failed to
m are shown
-input Parity
-propagation
ver 50 trials,
shown as %

lev, in 'tight'
laxima. This
al conditions
oblem using
"he solutions
b-figure 2(a)
le remaining
erts but with

N Parameters Architecture Min
Epochs

Max
Epochs

Average
Epochs

%NC

3 12 (1:3) 3 11 4.85 0
4 18 (2:2,2) 6 13 10.4 20
5 51 (2:3,3) 11 26 16.2 10
6 60 (4:2,2,2,2) 12 29 18.8 20
7 111 (5:2,2,2,2,2) 14 26 23.5 10
8 51 (2:2,4) 50 102 42 90
8 111 (5:2,2,2,2,2) 15 57 34 50
8 210 (6:2,2,2,2,2,2) 13 56 36 33

Table 2: Performance of the HME on the N-Input Parity problem.

3/4 of the data in one expert and 1/4 in the other. In 2(c) the data is distributed over
3 experts with 1/2 going to one expert and the remaining 1/2 shared between the
remaining 2 experts. In 2(d) the data is distributed evenly over 4 experts. It is clear
that 2 (b) is an unsatisfactory solution which would not give good generalisation,
unlike (a), (c) or (d). In a series of 35 trials for HME(1:2), solution (a) occurred in 26
cases while (b) occurred in 9 cases. By using the HME(2:2,2), solution (c) occurred
23 times, (a) 8 times, (d) 3 times and (b) only once. Thus, we have reduced the
probability of solution (b) occuring by adding the extra 2 experts. For larger values

0.5 inpuM ' 0.5 Input 1 1

0^
0 0.5 InpuM 1 0 0.5 input 1 1

Figure 2: The effect of different initial conditions on a HME(1:4) for the XOR problem.

of N, behaviour of this sort may lead to local maxima which give us non-convergent
solutions. The net result of this is that we get many more non-convergent solutions
with tight networks, although there is a large advantage in terms of computation
when using such a network. By relaxing the network and using more levels, and
thus introducing redundancy, we create many more possible configurations which
will give success, as seen by relaxing the XOR problem to using 4 experts instead
of 2. Therefore the number of non-convergent solutions is reduced, and those that
do occur represent states where only a small number of points remain misclassified.
This effect may be seen for 8-input Parity in Table 2. By increasing the depth of the
network and thus increasing the number of terminal nodes, we reduce the percentage

183

of non-convergent solutions.

The Two Spirals Problem

The aim of the two-spirals problem is to train a network to discriminate between
two spirals in the 2-D plane. Each spiral has 97 points and coils three times around
the origin and around the other spiral, without overlapping. The learning set and the
evolution of the output of a binary branching HME with 10 levels is shown in Figure
??. The points in the test set are offset vertically from the points in the learning set
by 0.1. The best solutions to the spirals problem have been obtained using Cascade
Correlation [11]. This is capable of approximating the problem in 1700 epochs
using around 140 parameters. Back-propagation networks have been used to solve
the problem [12] using a 2-5-5-1 network with shortcut connections between layers
in 20,000 epochs using conventional gradient descent with momentum and 8,000
epochs using quickprop, using a similar number of parameters. Using a conventional
2-5-5-1 network without shortcuts took 60,000 epochs of quickprop.

Depth
of Tree

Number
of Parameters

Training Set
Correct/194

Testing Set
Correct/194

M-step
Iterations

Total
Epochs

10 3102 187 184 3 135

10 3102 185 184 1 140

5 111 161 159 1 30

Table 3: Results for the Two-Spirals Problem using binary branching HMEs.

The results in Table 3 demonstrate that the HME is capable of solving the two-spirals
problem to a high degree of accuracy. Although the experiments performed have not
resulted in a complete solution, the number of training epochs for the HME on this
problem are an order of magnitude less than Cascade Correlation networks and two
orders of magnitude less than conventional feed-forward back-propagation networks.
We suspect that the non-convergence of the HME is due to similar effects as those
proposed for the Parity problem. In terms of numbers of parameters, the HME may
appear to be using far more, since for a depth of 10 and common branching factor
of 2 there are 3102 parameters. This is misleading, however, since the number of
terminal nodes which actually remain active is a small fraction of the total number
of terminal nodes present.

CONCLUSIONS

We have described the application of the HME to classification and presented a
number of results on standard benchmarks. In common with the performance of the
HME on regression problems, we have found that it requires fewer epochs to learn
classification problems than conventional feed-forward networks. There are however,
a number of problems associated with the learning algorithm,'including numerical
instabilities caused by the 2nd order M-step update and the existence of local maxima
within the solution sets. We have described solutions to these problems, such as the
use of thresholding of outputs and weights in the M-step, choice of learning rate and
initial conditions to avoid instabilities and local maxima. Future directions for this
work will focus on removing the need for matrix inversion by using some form of
approximation to the inverse Hessian in (1). The use of fast gradient descent methods

184

6.5
Two Spirals Leaning Set

CM

Q.
C

X X * * X v X x0 o o O o x x
X„° VxXv°0 v

X o £ —
OIIXOX

-6.5

O-V0 x
_ X o

o „x^xxxxxxx^/o
oxx°°ooO °"x xo
°o xxxxx O

Q o o Q °
-6.5 0 Input 1

Epoch 45 : 67.5 %

Input 1

6.5

Epoch 18: 61.9%

_6'5 ° Input 1 6'5

Epoch 54: 74.7%

Input 1

Epoch 81 :92.8% Epoch 117: 93.8 7=

Input 1

Epoch 135:94.8 %

Input 1

Epoch 315:96.3%

Input! Input!

Figure 3: Learning set for the two spirals problem and evolution of the decision boundary for
a binary branching HME with 10 levels.

185

such as quickprop [7] would move the HME closer to true connectionist methods
and reduce the computational load of the M-step.

In addition we have described how the use of redundancy in the HME may reduce
the chance of local maxima. In these networks, the redundant experts are typically
inactive after a few epochs, which suggests that they could be 'pruned' using similar
techniques to those developed for CART [3]. Alternatively we may start with a small
network of, say 2 experts and grow the tree using CART principles. We anticipate
that the use of such ideas will improve the performance of the HME in terms of speed
and accuracy and allow us to extend the applications of classification HMEs to real
world problems.

Acknowledgements

Steve Waterhouse is funded by a partnership agreement with Waterhouse Associates.
Tony Robinson is supported by an EPSRC Advanced Research Fellowship.

REFERENCES

[1] M. I. Jordan and R. A. Jacobs, "Hierarchical Mixtures of Experts and the EM
algorithm," Neural Computation, vol. 6, pp. 181-214,1994.

[2] A. R Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from
incomplete data via the EM algorithm," Journal of the Royal Statistical Society
Series B, vol. 39, pp. 1-38, June 1977.

[3] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone, Classification and Regres-
sion Trees. Wadswoth and Brooks/Cole, 1984.

[4] D. H. Wolpert, "Stacked generalization," Tech. Rep. LA-UR-90-3460, The
Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, NM, 87501,1993.

[5] J. S. Bridle, "Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition," in Neuro-
computing: Algorithms, Architectures and Applicatations (F. Fougelman-
Soulie and J. Herault, eds.), pp. 227-236, Springer-Verlag, 1989.

[6] P. McCullagh and J. A. Neider, Generalized Linear Models. London: Chapman
and Hall, 1989.

[7] S. E. Fahlman, "Faster-learning variations on back-propagation: An empirical
study," in Proceedings of the 1988 Connectionist Models Summer School,
Morgan Kaufmann, 1988.

[8] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Ge-
ometry. Cambridge, MA: MIT Press, 1969.

[9] R. A. Jacobs, "Increased rates of convergence through learning rate adaptation,"
Neural Networks, vol. 1, pp. 295-307,1988.

[10] G. Tesauro and R. Janssens, "Scaling relationships in back-propagation learn-
ing: Dependence on predicate order," Tech. Rep. CCSR-88-1, Center for Com-
plex Systems Research, University of Illinois at Urbana Champagne, 1988.

[11] S. E. Fahlman and C. Lebiere, "The Cascade-Correlation learning architecture,"
Tech. Rep. CMU-CS-90-100, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213,1990.

[12] K. J. Lang and M. J. Witbrock, "Learning to tell two spirals apart," in Proceed-
ings of the 1988 Connectionist Models Summer School, Morgan Kaufmann,
1988.

186

A Hybrid Neural Network
Architecture for Automatic

Object Recognition
Thomas Fechner, Ralf Tanger

Abstract

This paper describes the application of a hybrid neural network archi-
tecture for automatic object recognition in inverse synthetic aperture radar
(ISAR) imagery. The architecture employs a cascaded combination of an
unsupervised and a supervised trained Neural Network. The unsupervised
trained Self-Organizing Feature Map is used for object segmentation and
the supervised trained Multi-Layer Perceptron classifies the segmented ob-
jects. The classification result is fed back to the Feature Map Segmentor
in order to improve segmentation and classification. The functionality of
this approach is demonstrated by the use of simulated noisy ISAR images
from different objects.

I. INTRODUCTION

AUTOMATIC object or target recognition (ATR) with neural net-
works is an active research area for military and commercial appli-

cations [1]. Commonly used sensors are based on passive electro-optic
or active radar technology. Electro-optic devices have the advantage of
higher resolution and radar has the advantage of all-weather capability
and a higher range. Although we are working with imagery from inverse
synthetic aperture radar (ISAR), our aim is to develop an architecture
which is capable of processing images which may be produced by differ-
ent sensors.

ISAR-images are produced by radar range/doppler measurements of a
rotating object. ISAR imagery differs from photographic imagery in that
it only exhibits the centers of reflectivity which fluctuate depending on
the aspect angle. Due to the larger wavelength of radar waves, the image
resolution is much lower than photographs. Further, ISAR imagery is
rather noisy. Another problem with real world ISAR imagery is that
due to estimation errors the image may change its scale. In order to
classify objects under such degraded conditions, powerful segmentation
techniques are required. The first section of this paper describes the
functional blocks of the proposed ATR-architecture. The next section
demonstrates the functionality of this approach by an example.

T. Fechner and R. Tanger are with the Daimler Benz Forschungsgruppe Systemtech-
nik, Alt Moabit 91b, 10559 Berlin, Germany. E-mail: fechner@DBResearch-berlin.de,
tanger@DBResearch-berlin.de

0-7803-2026-3/94 $4.00 © 1994 IEEE 187

Fig. 1. Noisy input mage

II. SYSTEM DESCRIPTION

The proposed automatic object recognition system (Fig. 2) works on
2-dimensional intensity images with dimension N x N. A typical input
image is depicted in Fig. 1. The first processing stage is the image seg-
mentor. The segmentor has two tasks: separating the object of interest
from the background and restoring degraded regions in the segmented

4 Classification

MLP-Classifier

t Feature vector

Feature extraction

t Segmented image

SOM-Segmenter

t
Input image

Fig. 2. Hybrid architecture or the automatic object recognition system

188

Threshold,

■u L-->>»>>>v>

Homogeneity- £
Measurement

■Mcknyiii jUUUMMmBoAmwUfe&B

Ctanification Probability

fi ft mi Vi Hi HI i uVi ii 11 jVi

Class Selector ;$

V*"'"* lN"""^'-*!"J^ifadib»w^;

Multi-Layer Perceptron

SKvWKSWKS%WCK5K
 I FeaumVedor

Feature Extraction

Ittofl Image

Cluster Merger

Clustering Feature Map (SOM)

3553333333333305353^3533335«
Input Ima/f

Fig. 3. Block diagram adaptive segmentation

image. The next processing stage is the feature extractor. Although
some proposed neural network recognition systems work directly on the
image pixels, we decided to implement a special feature extraction pro-
cessing stage. The first reason is to reduce the number of input features
in an effort to keep the classifier complexity low. The second reason is
that we are able to integrate a-priori knowledge about the classification
problem by implementing specific features. The feature vector is fed to
the neural network classifier which is implemented as a multi-layer per-
ceptron with two hidden layers. Unlike traditional feedforward classifier
approaches, here the classifier output is fedback to the segmentor in or-
der to optimize the quality of the segmented image and the sharpness of
the classifier's decision.

A. Clustering Segmentation using Feature Maps

Segmentation is the process of separating the object of interest from
the background. Pixels belonging to the object are set to 1 while back-
ground pixels are set to 0. Due to the simplicity, most traditional seg-
mentation techniques are based on thresholding. In this approach, sep-
arate peaks in the intensity histogram are used to construct an optimal
threshold. Unfortunately this method fails when the histogram shows a
unimodal shape. Unimodal distributions are obtained when the image
consists mostly of large background areas with only a small object which
do not exhibits sharp boundaries. Unsupervised clustering segmentation

189

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Clusters

Cluster 11 Cluster 12

■;*/'i?:i'' ■" "i
■ tför^s < *-
'■.- J,'i y,. '■'•'■ :>;■

£r?& >!■;

Cluster 13 Cluster 14

. • '. •' *■

Cluster 15

Cluster 16 Cluster 17
<■■:«!■*■ ■;:'■■

S? ;"t"^;:,.*v,i:f*^ c->."\:-~rr--Ct?

Cluster 18

<Ä?:>*.

Cluster 19 Cluster 20

V^..'.7->r">:' -

wiWw:

;C/: ■££<
;;V. ...,~>-W

Cluster 23
1 ■■-.**: ■'• V "-*•;

•Sf ...
..1.,' .v ■*,>•:

. ■ >* ■4rti
■'•"•W;-

i *1 V * ' ■*■
%7'»•VN-'V-'i'

■ijf.- i:-J:-s->

.'■.-jTr.^-.'.'-A.;

Fig. 4. Clustering the noisy input image of fig. 1, using 25 subclusters

has advantages because the segmentation relies on local features and not
on global thresholds. Also, the unsupervised approach may reveal char-
acteristics that have not been observed by the human. Clustering seg-
mentation techniques assign a feature vector to each image pixel. The
n-dimensional feature space is partitioned into M regions so as to min-
imize a global error function. The idea is that object and background
pixels have dissimiliar features and are therefore associated to different
clusters. The feature vector x(m) with the features {xi(m),i2("i)} is
used to describe each pixel m € N2 : single pixel intensity and mean
intensity within a local neighborhood.

x{m) = { t'o(m), ^2 'oO') (1)

where Vj is a set of the 24 nearest neighbors with pixel m at its center.
Although the goal is to have two clusters (one for the object pixels and

one for the background) it is better to choose a number of sub-clusters
which will be assembled in a hierarchical order to obtain object and
background superclusters. The subclusters are represented by a set of
vectors w(l) with / G [1.. .M]. This vector quantization problem can

190

1 Cluster 2 Clusters 3 Clusters 4 Clusters

* r # *

5 Clusters 6 Clusters 7 Clusters 8 Clusters

¥ ;;'gr;-
9 Clusters 10 Clusters 11 Clusters 12 Clusters

Fig. 5. Expansion of the object-supercluster by subcluster-merging (For demomstra-
tion purposes, we proceed the cluster merging above the optimum)

be solved by using either conventional vector quantization algorithms [2]
or self organizing feature maps (SOM) [3][4]. SOM's have the advantage
that the resulting clusters are topologically ordered. For this application
the SOM is configured as a one-dimensional array of M = 25 laterally
interconnected neuron-elements, each neuron representing one cluster.
The topological order is exploited here in order to dynamically expand
the object-supercluster (fig. 5) by merging neighboured subclusters (fig.
4). After clustering the segmented image sieg is realized as follows:

"seg (m) -{I if
else

x(m) belongs to the object-supercluster
(2)

B. Feature Extraction for the classifier

The primary requirements for features are compactness, informative-
ness and robustness. Two groups of features were extracted: statistical
moments and range bin profiles (py). Moments have been used for many
object classfication tasks e.g. aircraft-identification [5]. The main advan-
tage is their compactness and their invariance properties. The central
moments mu are related to the center of mass and therefore they are
translation invariant. By area-normalization of the central moments the
resulting normalized central moments nu are also scale invariant. Due
to the binarization of the image the moments depend only on the shape
of the segmented object.

N-1N-1

x=0 y=0

191

n«,y = m«.\y/™Üoo (4)

with x = mjo/moo and y = m0i/moo.
The standard-moments m,j are calculated from

N-1N-1
mi-i = 1L Y^ XVW*,2/) (5)

x=0 y = 0

While the moments mainly describe the global object shape, the pro-
files provide information about the object details. For each range-bin x,
the profiles describe the image variation about the center of mass [6].

JV-l

Px = X] (y - Wf s.eg{x, y) (6)
y=0

with

_ ES V*ieg(.X, y)
2/x = —5vn—-—- (7)

Ey=0 S>eg{x,y)

The feature extractor produces 147 features which are fed to the fol-
lowing processing stage.

C. Classification

Classification is the mapping of feature vectors into the decision space.
Simple feedforward network structures using only input and output lay-
ers are very restricted in their capability of realizing the required map-
ping function. The introduction of hidden units give feedforward neural
networks the potential for an arbitrary mapping. The desired mapping
is trained using the backpropagation algorithm on classified examples.
The neural network employed here is a multi-layer perceptron with two
hidden layers (128 and 96 neurons respectively) and an output layer
with 10 neurons; one output neuron for each class. The resulting output
vector is normalized to unity which is required in order to interpret the
outputs as probabilities. Using a training data set with 5000 manually
segmented images from 10 different objects the classifier was trained for
25 iterations, resulting in an error rate of 5%. After training the gen-
eralization capability was tested by an independent data set with 5000
noise free images, which produced an error rate of 13%.

D. Closing the feedback loop: adaptive segmentation

The output o of the classifier and a measure for the homogeneity h
of the segmented image is used for controlling the segmentation process.
The cost function which has to be minimized is defined as follows:

e = (1.0-max(o))2 + /i2 (8)

192

EJll EjLl1 s*eg(i,j) ~ S,eg(i,j + 1)

Ei=l /Lsjzzl s'eg\},3)
(9)

Starting with only one cluster the object-supercluster is expanded by
merging neighboured clusters. The iterative segmentation optimization
is stopped when the cost function is at its minimum.

III. EXAMPLE USING NOISY INPUT DATA

In order to test the robustness of the classifier against noise, gaussian
white noise was added to the image data.

With conventional global threshold segmentation the classification per-
formance has been shown to be very sensitive to noisy images. Even
at moderate signal to noise ratios the classification error increased to
60% and above. Substitution of the global treshold segmentation by
the adaptive feature map segmentation resulted in a clearly recogniz-
able improvement of the classification performance. For training of the
segmentation feature map one noisy image was sufficient. Once the fea-
ture map clusters are trained only the merging of the clusters to one
object-supercluster is dynamically controlled in recall mode. The seg-
mentation is nothing more than a two-dimensional treshold comparison.
Due to the ordering of the feature map clusters the feature map weight
vectors can be considered as a discrete scale of two-dimensional thresh-

Local-Mean
5000

4000 r

3000

2000

1000

0
0 2000 4000

Fig. 6. 2-dimensional threshold scale given by the feature map weight vectors.

■

i i

Object-

* * *

Cluster
*

*

* ■

*

*

*
■

Background-Cluster

6000 8000
Pixel-Intensity

193

Cost Function

0.5-

0 2 4 6

Fig. 7. Cost value for the sequence of subcluster-merging as depicted in fig. 5.

\i i0, 12
Merged clusters

old values (pixel intensity and local mean) (fig. 6). Starting with the
highest threshold given by only one cluster, the threshold is decreased
by increasing the number of merged clusters until the cost function is
minimized (fig. 7).

IV. CONCLUSION

In this paper we presented the architecture of an automatic object
recognition system using a feature map for cluster segmentation and a
supervised trained multi-layer perceptron for the classification. In dif-
ference to conventional feedforward classification systems, the classifier's
decision is fed back to the adaptive segmentor in order to reinforce the
classification result. The ordering property of the feature map provides
an easily realizable adaptive cluster segmentation. While the segmen-
tation ability was demonstrated for some few examples the feedback
mechanism has to be investigated systematically for different signal to
noise ratios in the future.

REFERENCES

[1] M. Roth, "Neural networks for automatic target recognition", IEEE Transactions
on Neural Networks, , no. 1, 1990.

[2] G.B. Colemanand H.C. Andrews, "Image segmentation by clustering", in IEEE
Proceedings, 1979, vol. 67, pp. 773 - 785.

[3] J. Koh and S. Bhandakar, "A multilayer kohonen's self-organizing feature map
for range image segmentation", ICNN, pp. 1270-1276, 1993.

[4] A. DhawanandL. Arata, "Segmantation of medical images through competitive
learning", ICNN, pp. 1277-1282, 1993.

[5] Sahibsingh A. Dudani, Kenneth J. Breeding, and Robert B. McGhee, "Aircraft
identification by moment invariants", IEEE Transactions on Computers, , no. 1,
January 1977.

[6] CM. Bachmann, S. Musmann, and A. Schultz, "Lateral inibition neural networks
for classification of simulated radar imagery", IJCNN, pp. 115-120, 1992.

194

TIME SERIES PREDICTION
USING GENETICALLY TRAINED

WAVELET NETWORKS

Ales Prochazka, Vladimir Sys
Prague University of Chemical Technology

Department of Computing and Control Engineering
Technicka 1905, 166 28 Prague 6, Czech Republic

Phone: +42-2-332 4259, Fax: +42-2-243 11082
E-mail: prochaz@vscht.cz, sysv@vscht.cz

Abstract - The paper presents a contribution to the analysis of
wavelet transfer function use in neural network systems and the
discussion of some possible learning algorithms of such structures.
Wavelets local properties both in time and frequency domains are
stated at first giving motivation for wavelet networks application
and providing bases for their initial coefficient estimation described
recently. The main part of the paper is devoted to the network co-
efficients optimization using genetic algorithms as an alternative
to the gradient descent method. Principles of the evolution tech-
niques are presented for a simple system in this part and then
applied for a given time series modelling and prediction.

INTRODUCTION

Problem of nonlinear time series prediction is studied in various disci-
plines now including engineering, biomedicine and economics [1], [2]. Most
approaches consist in the use of adaptive methods [3] and multilayer neural
networks [4], [5]. Their modification include wavelet transfer function study

[6], [7], [8], [9] and cascade correlation networks [10].
The paper contributes to this problem in the study of links between

wavelets and neural networks presented recently [11], [8]. The emphasis is in
the analysis of the learning process based upon genetic algorithm use [12],
[13] as an alternative to the gradient estimate applied in the backpropagation
method. The goal of the paper is to show advantages of genetic algorithm

approach in this case.
Methods presented in the paper are verified for simulated series to enable

their further use for real signals analysis including those stored in the Signal
processing information base [14] and other physiological signals.

0-7803-2026-3/94 $4.00 © 1994 IEEE 195

Wavelet Functions

0.5,

0- -K/^i
-0.5- U > :V 1.

DILATION 1 -20 T|ME

20

Spectrum Estimation

1,

0.5-

°\Tli
2^

DILATION 1 0

^ 0.5

FREQUENCY

Figure 1:

An example of the wavelet set based on the given initial function
h(x) = —x r~T I2 with its spectrum estimation and relation between
wavelet dilation and spectrum compression.

WAVELET NETWORK CONSTRUCTION

Wavelet functions and Uieir application in signal processing are described
in various papers published recently [15], [16], [17], [18]. These functions in
close connection with the wavelet transform can be used very efficiently both
for signal analysis as an alternative to the short-time Fourier transform and
for signal modelling in wavelet network structures.

Basic properties of wavelet fund ions include their local influence both in
time and frequency domains [19]. The set of continuous wavelet functions
is usually derived from the initial (mother) wavelet h(x) and coefficients of
dilation (d) and translation (/.) defining the function

I'dAp) = !>{(}>-t)/d) = h{wp+b) (1)

for HI = 1/rf and b = -f./d. Using the signal processing point of view it is
possible to consider the initial wavelet as a pass-band filter. Wavelet dila-
tion resulting in its pass-band compression is presented in Fig. 1 for a chosen
wavelet function. Properly constructed wavelets allow in this way signal de-
composition info different frequency bands and their multiresolution analysis
[17].

Basic two-layer neural network structure used for signal prediction is pre-
sented in Fig. 2. Signal pattern is used as a neural network input and the
whole network is trained to evaluate its output close to the target signal
values in the mean square sense. While the output layer transfer function is
usually linear in this case the transfer function of the first layer can be nonlin-
ear and sigmoidal functions are often applied. We shall study the alternative
use of wavelet functions in such a structure now.

Mathematical description of the wavelet network R-SI-S2 is similar to
that of sigmoidal neural network system. Summarizing network coefficients

196

E3

Pattern signal Target signal

Patterns Neuron layer 1 Neuron layer 2

Pz

Coefficient
matrix

W1 (S1xR)

Bias

O^—o/sixl
B1 (Slxl)

F1

Coefficient
matrix

S1x1

WZ (SZxSl)

 Bias

O^—O/SZx1

BZ (SZx1)

FZ

A2

SZx1

Ö

Column
vector of

inputs

Transfer
function
(wavelet)

Transfer
function
(linear)

Figure 2:

Signal prediction based on the two layer neuron network having the out-
put vector A2 = F2(W2 * Al + B2) where Al = F1(W1 * P + Bl).

in matrices

wli.i " • wl\,R

W1SI,H =

_u>lsi,i •• ■ wlSl,R

and bias vectors

bl = [61i, • ■■,blsi]',

W2 S2.S1 :

w2iA

u>2s2A

w2i:si

w2s2,s\

b2=[62ll---,6252]/

permits to employ transfer functions F\ and F2 for the first and the second
layer respectively to evaluate network output

A2 = F2(W2*A1 + B2), Al = F1(W1*P + B1)

While F2(x) - x in many cases of signal prediction there is a choice of the
first layer transfer function in various ways including wavelet functions as

well.
During the learning process the summed square error deviations between

evaluated and target values are minimized. To shorten the iterative learning
process various methods of coefficients initial estimates have been suggested
[5], [11]. We shall restrict our attention to the study the genetic algorithm
approach to the wavelet transfer function case.

197

Gradient Method Genetic Algorithm

Figure 3:

Comparison of the initial part of the optimization process for the wavelet
network having its structure 1-1-1 for a given nonlinear transfer function
Fl(r) = -x e.-* /2 using a gradient search and genetic algorithm opti-
mization approach: (a) Gradient search for two different initial estimates,
(b) Genetic search presenting the initial (o) and final (*) population and
the best individual evolution.

SYSTEM COEFFICIENTS OPTIMIZATION

Analyzing basic problems of wavelet network optimization it is possible to
start with signal approximation of the given pattern and target values by a
single wavelet function F\(x) = -x c-r /2 for unknown dilation a translation
coefficients. Error surface in the vicinity of the problem solution is presented
in Fig. 3. It is obvious that classical steepest descent approach and closely
connected backpropagation method can be very inefficient even in such a
simple case.

On the other hand a genetic approach [12], [20] for system coefficients
optimization can provide more reliable results even for relatively complicated
nonlinear problems. Its general principle resembles a very simplified version
of the natural evolution giving better chance to survive to the best individuals
while others die out, Basic principles of selection, reproduction, crossover
and random mutation can be efficiently implemented in software systems
and applied in various engineering problems as well as wavelet networks.

A space of the parameters (dilations, translations) in wavelet network

198

system presented above can cover the whole region of all possible solutions.
A particular set of these parameters defines a network configuration or an
individual (in genetic algorithm terminology). Solutions assigned to separate
individuals are encoded in binary form to ease the following operations. As
all solutions are expected to approximate the given signal it is possible to
evaluate the mean square error for all of them standing for the fitness number
and giving idea about both the population and each individual performance.
Individuals with a relatively high fitness number obtain a higher probability
for further reproduction and vice versa. The whole algorithm assumes

» the selection process based upon the roullete wheel providing statistically
better chance for reproduction of individuals (defined by corresponding
dilation and translation coefficients) with higher fitness number

t the mating operation based upon a random pairs selection and crossover
application exchanging substring in selected pairs through a random
position choice

♦ the mutation applied with a given probability and resulting in random
switches between zero and one of an individual's element

For a new population fitness numbers are evaluated- again and the whole
process is repeated.

The process of a single wavelet neuron optimization using a genetic ap-
proach is presented in Fig. 3. Comparing initial and final population it is
possible to follow the result of the population mean square error decrease.
The best individual evolution is presented as well.

The probability values essential for genetic algorithm seems to be very im-
portant for the efficiency of the learning process [21], [22]. The mean square
error development for two possible approaches considering constant proba-
bilities and exponentially decreasing mutation rate and increasing crossover
rate is given in Fig. 4.

MSE of a Populatloi USE ol a Population <b)

Figure 4:

Comparison of four mean square errors evolutions over the population for
genetic algorithm search based on: (a) Constant mutation and crossover
rates and (b) Decreasing mutation rate and increasing crossover rate.

199

The Average and the Lowest MSE Evolution

40 50 60
GENERATION

100

Wavelet Neural Network Prediction

"0 10 20
Learning part (MSE=0.02696)

30 40 50
Prediction part (MSE=0.02516)

Figure 5:

The in nan square error evolution over the whole population of 50 indi-
viduals and that of (lie best individual for a given chaotic process using
the wavelet, network of struct lire 1-3 — 1 and result of one step ahead
prediction during both the learning and testing phase.

SIGNAL MODELLING AND PREDICTION

Nonlinear time series modelling and prediction by wavelet networks has
been tested for a common nonlinear time series mentioned in ['2'.]] and defined
by relation x(i + 1) = nx(i)(\ - x(i)) for i = 1,2, 3, ■ ■ •, n = 4 and x(l) = 0.1
as a simple example of a deterministic chaos. Applying the network struc-
ture presented in Fig. 2 restricted to system 1 - 51 - 1 the values x(i) as
patterns and x(i + 1) as targets are considered. The record of the train-
ing by the genetic algorithm and prediction results are presented in Fig. 5.
During several tests the lower mean square error (MSE) has been achieved
during significantly lower number of generations for decreasing mutation rate
and increasing crossover rate in comparison to the same results achieved by
constant, probabilities.

Evaluating further the mean square error in the learning and prediction
part of a signal it- is possible to compare results for various network structures
and for different wavelet functions as well. Signal used to test methods pre-
sented in the paper implied values of the mean square error summarized in
'Jab. I giving these values in the learning part and the prediction part for the
wavelet and sigmoidal neural network. Genetic algorithm approach assumed

200

TABLE I:
COMPARISON OF MEAN SQUARE ERRORS DURING THE LEARN-
ING AND PREDICTION PARTS FOR WAVELET AND SIGMOIDAL
NETWORKS.

Neural Network Mean Square Error

Type Structure Learning part Prediction part

Wavelet Network

Sigmoidal Network

1-3-1

1-5-1

0.0270

0.0358

0.0252

0.0363

population of 50 individuals and 100 generations but similar results were
achieved for other choices as well. Errors of the same order were evaluated
for the wavelet network of significantly lower number of network variables in
comparison with sigmoidal transfer functions use. Genetic algorithms provide
in all cases the method for system coefficient estimation.

CONCLUSION

The paper presented the application of genetic algorithms for wavelet
network optimization process providing the population of individuals with
improving properties evaluated by their fitness numbers. Even though other
algorithms including the gradient descent method may converge faster the
genetic methods avoid to be captured by local minima owing to the mutation
and crossover operations and they are very effective in converging to the
global optimum. Using different mutation and crossover rates it is moreover
possible to affect the evolution speed. The paper presents comparison of these
methods for simulated signals and provides basis for real signals modelling
and prediction.

ACKNOWLEDGEMENTS

The paper has been supported by the Department of Computing and
Control Engineering of the Faculty of Chemical Engineering at the Prague
University of Chemical Technology.

201

REFERENCES

[1] A. Lapedes and R. Färber, "Nonlinear signal processing using neural
networks: Prediction and system modelling. LA-UR-87-2602", Tech.

Rep., Los Alamos National Laboratory, USA, 1987.

[2] M. Ohta and S. Nogaki, "Hybrid picture coding with wavelet trans-
form and overlapped motion-compensated interframe prediction cod-
ing", I FEE Trans. Signal Processing, vol. 41, no. 12, pp. 3416-3424,

December 1993.
[3] S. Haykin, Adaptive Filter Theory, Prentice Hall, Engelwood Cliffs,

N..L, second edition, 1991.
[4] .]. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory

of Ncura'l Computing, Addison-Wesley Publishing Company, Redwood

City, California, 1991.
[5] D. Nguyen and B. Widrow, "Improving the learning speed of 2-layer

neural networks by choosing initial values of the adaptive weights",
i„ Proceedings of Internationale Joint Conference on Neural Networks,

1990, pp. I1I/21-III/26.
[6] B. R. Bakshi and C. Stephanopoulis, "Wavelets as basis functions

for localized learning in rnulti-resolution hierarchy", in Proceedings of
Internationale Joint Conference on Neural Networks, Baltimore, 1992,

pp. 11/140 11/145.
Safhyanarayan S. Rao and Ravikanth S. Pappu, "Nonlinear time series
prediction using wavelet networks", in Proceedings of World Congress
on Neural Networks, Portland, Oregon. July 1993, pp. IV/613-IV/616.

Q. Zhang and A. Benveniste, "Wavelet networks", IEEE Trans, on

Neural Networks, vol. 3, no. 7, pp. 889-899, 1992.

D. E. Newland, "Some properties of discrete wavelet maps" .Probabilistic
Engineering Mechanics, no. 9, pp. 59-69, September 1994.

S. Fahlmanet. al, "The cascade-correlation learning architecture, CMU-
CS-90-100", Tech. Rep., School of Computer Science, Carnegie Mellon

University, USA, 1992.
Q. Zhang, "Regressor selection and wavelet network construction", Tech.

Rep., IR1SA, France, 1993.
12] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning, Addison-Wesley Publishing Company, Reading, Mas-

sachusetfs, 1989.
13] C. H. Chu and C. R. Chow, "A genetic algorithm approach to supervised

learning for multilayercd networks", in Proceedings of World Congress
on Neural Networks, Portland, Oregon, July 1993, pp. IV/744-IV/747.

14] D. H. Johnson and P. N. Shami, "The signal processing information
base", IEEE SP Magazine, pp. 36-42, October 1993.

15] O. Rioul and M. Vetterli, "Wavelets and signal processing", IEEE SP

Magazine, pp. 14-38, October 1991.

[7]

[8]

[9]

[10]

[11]

202

[16] G. Strang, "Wavelets and dilation equations: A brief introduction",
SIAM Review, vol. 31, no. 4, pp. 614-627, December 1989.

[17] M. Vetterli, "Wavelets and filter banks: Theory and design", IEEE
Trans. Signal Processing, vol. 40, no. 9, pp. 2207-2232, September 1992.

[18] D. E. Newland, "Wavelet theory and applications", in Proceedings of
the Third International Congress on Air- and Structure- Borne Sound
and Vibrations, Montreal, Canada, 1994.

[19] I. Daubechies, "The wavelet transform, time-frequency localization and
signal analysis", IEEE Trans. Inform. Theory, vol. 36, pp. 961-1005,
September 1990.

[20] B. Müller and J. Reinhardt, Neural Networks, Springer-Verlag, 1991.
[21] D. Whitley and T. Hanson, "Optimizing neural networks using faster,

more accurate genetic search", in Proc. 3rd International Conference on
Genetic Algorithms, 1989.

[22] D. M. Etter and D. C. Dayton, "Performance characteristic of a ge-
netic algorithm in adaptive IIR filter design", in Signal Processing II,
H.W.Schussler, Ed. Elsevier Science Publishers B.V. (North-Holland),
1983.

[23] J. R. McDonnell and D. Waagen, "Evolving recurrent perceptrons for
time-series modelling", IEEE Trans. Neural Networks, vol. 5, no. 1, pp.
24-38, January 1994.

203

A NETWORK OF PHYSIOLOGICAL NEURONS
WITH DIFFERENTIATED EXCITATORY AND
INHIBITORY UNITS POSSESSING PATTERN

RECOGNITION CAPACITY
(1) (1) (1,2) (1)

E.Ventouras , M.Kitsonas , S.Hadjiagapis , N.Uzunoglu ,

C.Papageorgiou , A.Rabavilas , and C.Stef anis

(1) Microwave and Biomedical Engineering Laboratory, Dept. of Electrical and
Computer Engineering, National Technical University of Athens, 42 Patission
str., Athens, 10682, Greece.
Tel.:++301-3616908,Fax:++301-3691206
(2) INTRACOM S.A., Peania, P.O.Box 68, 19002, Greece.
Tel.:++301-6860311,Fax:++301-6644379
(3) Psychophysiology Laboratory, Aiginiteion Hospital, University of Athens,
74 Vassilissis Sofias, Athens, 11528, Greece.
Tel:++301-7217763,Fax:++301-7243905.

INTRODUCTION

The incorporation of properties derived from the function of
physiological neurons to artificial networks is actively sought in order to
enrich the range of dynamic behavior of the networks. It is subsequently
hoped that such "physiological" networks will respond in a way more suitable
for pattern recognition applications, than networks distanced from biological
reality ["1-4].

In the present work a novel neural network is proposed with different
excitatory and inhibitory neural populations. This property conforms with the
so-called Dale's hypothesis that applies to neurons of the mammalian brain.
[5,6]. The network improves the quality of the associative memory abilities
shown to exist in an earlier model, where synaptic activity derived from a
neuron could be of both types]7].

ARCHITECTURE AND FUNCTION OF THE NETWORK

The model consists of N excitatory (E) and N inhibitory (I) neurons
arranged in 2 "parallel" layers. Each E neuron corresponds to an I one. The
network is receiving external stimuli through the Input Unit (IU), which
projects input patterns to the network. There are 2N input neural units
projecting through stable excitatory connections of strength Rij = 5i:R,

connecting neuron j of IU with neuron I of the network. The input patterns
are identical for both the excitatory and the inhibitory levels. IU is activated
with a central frequency f]F = 1/T1F, but individual input neurons have a
uniformly distributed probability of firing in the temporal window
|(v-l)TIF -ATp,(v-l)TIF+ATp], for the vth activation cycle.

0-7803-2026-3/94 $4.00 © 1994 IEEE 204

A
The state of each neuron i . A=E or I, is described by the membrane

potential U; at the soma of the neuron. The equations governing the evolution
of the potential are:

^ = -^.p^t)oVf(t)) ifUR,üf(t),UT

dUf(t) Uf(t)
else

dt 'R

where i=l,...,N , A=E or I

A

A,., ^ .A ~ ... , t-tLi-TF,

p (t) is the sensitivity function:

pA(t) = 0(t-t^-TF)(l-exp(-
lp/Z

where 0(x) = x if x > 0 or 0(x)=O if x<0

(1.1)

(1.2)

(2)

E laver I layer

Input Unii

Network Unit

Fig.l: The network

The component Af (t) represents the function of spatiotemporal summation
A

of incoming stimuli at the soma of neuron i and is given by the formula:

t-tr t-tj-
Ai

E(t) = Esij
Eexp(—-i=-)+Rexp(- E

j=i

t-t
WE ZsE'exp(-—£■)

JeCi

(3-D

t-t
—) + Re xp(- -

T,', T,

where fa (x) = (1 - r]A)x + tfV , A=E or I

A[(t)= Ss!fexp(-^)+RexP(-^)-fIl Es»exp(-

A^. , „A„2

t-t

7*»
jeCj XU XU LjeCj

(3.2)

(3-3)

and o is the activation function described as:

205

^A if |A?(t)|<A£ with0<>.A<l

aA(AA(t)) = <! ' T if AA(t)>AA (4)

else

A A

In the above equations tu is the time when the last firing of neuron i

is communicated to other neurons and tLPi the time of the last activation of

neuron iP of IU. S;:1 2 is the synaptic strength of the synapse connecting

neuron j, belonging to category A,, to neuron I, belonging to category A2. UT is
the threshold potential and UR the refractory potential. In case Uj reaches UT

the neuron fires and its potential is set to UR.

Each neuron i may exert its influence to all other E neurons of the
network but only to the I neurons which belong to its vicinity Cj, defined by

the maximum acceptable distance between i and j in the parallel planes. The
same restriction applies to all projections emanating from I neurons.

IFF ^
In the network used it was Tc < TIT and o ^ o which enables U to

F.
evolve faster than U . This is extremely crucial for the proper function of the
network since the early firing of I neurons prevents the firing of unwanted E
neurons. It should be noted that the state of the network is defined by the E
neurons solely. This assumption is also physiologically motivated since in the
human neocortex the main research interest concerns long range connections

N

t-tE

of excitatory neurons. The parameter a(t)=a (t)=^exp(- ~-)
i=l Tu

represents the overall activity of the network.
The synapses of the network are modified only during learning

sessions. Each memory pattern is embedded in a separate session. The pattern
is projected through IU. The close temporal association of the activation of IU
neurons belonging to the pattern is the crucial factor for proper
memorization. Furthermore neurons not belonging to the pattern should not
be activated coherently with pattern neurons. The training algorithm can be
classified as a generalized Hebb rule since it enables the strengthening of
synapses of concurrently active neurons and decreases the strength of synapses
between neurons who show uncorrelated temporal behavior.

NUMERICAL RESULTS

We present the case of two patterns described by the set of neuron
A={1-10} and B={9-18}, in a network of N=100 E and I neurons, during the
learning phase the parameters governing the evolution of the network are:

Tu=1.0ms, Tu=0.5ms, TF=5.0ms, Ur=30mV, UR=-15mV, X =0.0189, X.=0.0114,

Ak=15.5, A[=6.05, TI =0, TI=0.9, P=1400, Atp=0.5ms, f1F=50Hz.
The memorization of each pattern is achieved at approximately 600ms, and is
terminated when all the synapses have converged to stable values, which can
only change in subsequent learning phases.

E
In the recall phase the following parameters are modified: R=210, A, =0.087,

A. =0.0110, f]F=33.3Hz. When the input pattern (ip) was the set of neurons

206

(ip)={3,4,5,6,7,8,9,10,13,20,35} the recall of memory A was excellent. By
denoting the emergent network pattern as (enp) it was:

N

(m, (enp).A" =1) > (m, (ipW =0.95) > (m(ip)B=0.85) where mp = 2JPI'P2
for 2 Patterns

i=l

PI and P2. In Fig.2 we present the quantity a (t) during the recall phase.
The network proposed possesses the ability to store correlated-

overlapping patterns and to categorize properly incomplete and noise
corrupted inputs. Furthermore it has the ability to function at realistically low
firing rates, such as those found in the cortex (15-40Hz), and to store sparse
patterns [4,8,9]. Current investigations concern the assessment of the storage
capacity of the network and its application in Massively Parallel Computers
of the MIMD (Multiple Instructions - Multiple Data) type.

6.0

5.0

4.2)z

3.0T

2.0

1 .0-

0.0 i i i ii i i i i | i i i i i'i i J ri i i i i ' i i i i i i ' ' i*i '
20 40 60

time(ms)

1111111' 11111

80 100

Fig.2 : Parameter aE(t) representing the overall activity of the
network in the recall phase

REFERENCES

[1] DJAmit, Modelling Brain Function - The World of attractor neural
networks, New York: Cambridge University Press, 1989.
[2] JJBuhmann and K.Schulten, "Associative Recognition and Storage in a
Model Network of Physiological Neurons", Biol.Cybern, vol.54, pp.319-335,
1986.
[3] J.Buhmann and K.Schulten, "Influence of Noise on the Function of a
"Physiological" Neural Network", Biol.Cybern, vol.56, pp.313-327,1987.

207

[4] J.Buhmann, "Oscillations and low firing rates in associative memory neural
networks", Phys.Rev.A, vol.40, pp.4145-4148, 1989.
|5| J.C.Eccles, "Developing Concepts of the Synapses", J.Neuroscience,
vol.l0(12), pp.3769-3781, 1990.
[6] E.Ventouras, C.Papageorgiou, A.Rabavilas, N.K.Uzunoglu, and C.Stefanis,
"An Event-Related Potentials Generator Model Based on An Artificial Neural
Architecture Incorporating Dale's Hypothesis", 9th World Congress of
Psychiatry, Rio de Janeiro, 1993.
|7] E.Ventouras, C.Papageorgiou, N.K.Uzunoglu, A.Rabavilas, and C.Stefanis,
"An Attractor Network Model for the Generation of Event-Related Potentials
using Integrativc Synapses", in ICANN'93-Proceedings of the International
Conference on Artificial Neural Networks, Amsterdam, 1993, pp.698-703.
[8] B.M.Forrest and A.Loetgers, "Neural Networks with low activity levels",
Z.Phys.B, vol.86, pp.309-315, 1992.
[9] C.J.P.Vincentc and D.J.Amit, "Optimized network for sparsely coded
patterns", J.Phys.A, vol.22, pp.559-569, 1989.

208

Learning With Imperfect Perception

W. Wen and M. Yokoo
NTT Communication Science Laboratories

2-2, Hikaridai, Seika-cho
Soraku-gun, Kyoto 619-02 Japan

Abstract

Machine learning algorithms which adopt a state space representation
usually assume perfect knowledge of what state the system is currently
in. This is to guarantee that rewards and penalties are correctly assigned
to the responsible state. This assumption, however, does not hold in most
real world learning problems due to imperfect perception. In this paper
estimation and control theory is used to classify the systems depending
on the observability of the system states. This observability determines
whether the optimal control strategy of a particular system can be learned,
A novel approach based on enhancing the observability is used to deal with
perceptual aliasing problem. In order to learn to perceive, the perception
actions are directly integrated into the control actions. An example is
shown and further applications to robot learning is discussed.

1 Introduction
Reinforcement learning algorithms learn an optimal control policy through trial
and error. The basic formulation of the problem is closely related to decision
theory. Given a dynamic system described by state vector x G X, a policy
a = f(x), where a £ A is the action vector, and reward r* G R at timestep t,
the total reward(or utility) U for each x G X, following the policy / can be
calculated as follows, U(x) = ^^.07*rt, where 7 G (0,1] is the discount factor.
The problem for the decision theory is to find the optimal policy /(•) which
gives an overall maximum reward for each state x. Apart from very simple and
restricted cases, the above problem can not be solved analytically. Numerical
methods such as dynamic programming can deal with such problems in an of-
fline manner. In the more general case in which the system must operate in real
time, i.e. explore to be rewarded or penalized, no policy can be found before
the system start operating. Two well known reinforcement learning algorithms
are AHC(Adaptive Heuristic Critic) learning[7, 8], which learns an evaluation
function of states, and Q-learning[9], which learns an evaluation function of
state-action pairs. There are no essential differences between these two algo-
rithms and their convergence can be proved given that the certain conditions

are satisfied[10].

0-7803-2026-3/94 $4.00 © 1994 IEEE 209

In most of the real world situations, imperfect perception of the states leads
to the violation of the Markov condition. These problems have been addressed
in work related to active perception[12] and learning with hidden states[3]. In
active perception certain state information may be lost due to the time or cost
constraints of sensing operation. In problems with hidden states reward or
penalty can not be correctly assigned. In both cases the Markovian process
condition is violated due to the undeterministic feature of state transition. In
[12] the lion algorithm is proposed in which a reinforcement leaning agent can
learn to focus perceptual attention on the right aspect of the environment dur-
ing control. Problems with hidden state can also be dealt with using memory
methods.

In this paper we attempt to address these problem in the framework of
statistical estimation and control. The rest of the paper is organized as follows.
In section 2 the limitations of the reinforcement learning algorithms with respect
to the observability and controllability of the underlining system is discussed.
In section 3 a simple example is introduced to illustrate the problem of learning
with imperfect perception. In section 4 a novel approach is proposed to deal with
the problem of learning with perceptual aliasing and hidden states. In section
5 we propose to integrate estimation and control for reinforcement learning and
show how it can be done using the same example. In section 6 we consider
possible applications to real world learning problems.

2 Learning as Estimation and Control

Traditionally the estimation and control of a dynamic system has always been
separated: optimal estimation algorithms are applied to perceive the real world
and control strategies are designed based on the optimal estimated values.
Learning algorithms aim to approximate an optimal control strategy for a dy-
namic system instead of designing it using certain optimal criterion. In learning,
the estimation part is usually omitted through simulation or an direct approach
such as the neural networks are used. In this section, we attempt to categories
various learning methods in the framework of the estimation and control.

2.1 Categorizing Learning Algorithms

In real world learning problems, states must be perceived before reward or
penalty can be assigned. In this paper we categorize learning algorithms into
three classes depending on how perception is dealt with in the learning pro-
Cessna) real world learning; (b) simulated learning; (c) direct learning.

In the most general case, a state space representation is constructed to model
the real physical process. Let X be the vector describing the real state of the
world and X its estimation. It must be noted that only this estimated value
of the real state is available to the learning algorithms. Perceived state and
reward are fed into the control policy which in turn chooses appropriate actions
to change the state of the world. This is referred to as real world learning and

210

Learning
-

Control ...
Policy *(■> .

Reward/
Penalty

R

N
State Space

Representation
Action
a=f(X,R)

t Real World
Percf jption State X

Figure 1: Real world learning

Learning Control
Policy f(0

State Space
Representation Reward/Penalty R

Real World
State

Action
a=f(X,R)

Figure 2: Simulated learning

is illustrated in Figure l.Up to date, work in this field has been few due to the
complex interaction between perception and learning[12].

Most of the algorithmatic machine learning methods assume perfect state
perception. These methods have been successful in obtaining tractable algo-
rithms with proven convergence given some restrictions. Q-learning[9] is re-
garded as one of the most effective algorithms for reinforcement learning. These
will be referred to as the simulated learning algorithms since perfect perception
can not be assumed in real world. Figure 2 shows such learning systems.

The last category is referred to as the direct learning algorithms. Neural
network based approach belongs to this class. No state space representation
is needed. Sensor data is directly fed to the control policy and appropriate
actions are chosen to affect the state of the world. This is illustrated in Figure
3. It could be argued that the perception is somewhere embedded in the neural
networks, but we will show in the next section that why this is not the case.

State Space
Representation

Kew;
Penal an|/

ilty

Control ((i
Policy v'

.
R Learning

Action
a=f(X,R)

Real World
State X

Figure 3: Direct learning

211

Figure 4: 1-dimensional traversing problem

Figure 5: 1-d traversing problem with aliased states

3 Perceptual Aliasing and Hidden States Prob-
lem

The problem of learning with imperfect state perception has been investigated
in [12, 3]. In both cases there exist discrepancies between the real states and
perceived states. They are referred to as the perceptual aliasing problem or
hidden states problem. In this paper the 1-D traversing problem proposed by
Whitehead[12] will be used to illustrate the difficulties associated with learning
with imperfect perception. This example is used again to show how the proposed
learn to perceive approach in this paper can be used to solve this problem.

3.1 A Simple Example

Consider the task shown in Figure 4. In this task, the real world consists of
eight states, SR = {so,si,S2,s3,s4,s5,s6,g}; two actions, A = {ai,ar}; and
a deterministic transition function. Upon reaching the goal state g the agent
receives an award R(g) — 5000. R(sk) = 0 for k = 0 to 6. Assuming that the
sensing system is unable to distinguish S2 from S5, how would the learning be
affected? The new system is illustrated in Figure 5.

The original problem shown in Figure 4 can be learned using 1 step Q-
learning algorithms. Figure 6 shows the learned Q value for action ar and a;
for all states. A normal backpropagation three layer neural network is used. In
fact, the optimal policy is obviously to take action ar in all states.

However, if the sensor fails to distinguish S2 and S5, it can be shown that the
1-step Q-learning can not learn this policy although the optimal policy remains
the same. In this case the learning algorithm will be unstable due to the interac-
tion of the aliased states. For a detailed discussion see [12]. This phenomenon,
however, is not limited to the simulated algorithms. In [3], backpropagation
neural network based learning algorithms also fail to learn the optimal strategy
in the "two-cup collection" problem.

212

Figure 6: Learned Q-value for action ar and a;

3.2 Why it can not be learned?

In [12], Q-learning equations are analysed to show the unstable learning results.
However, the fundamental reason for this problem lies in the estimation and
control theory [4, 1, 2]. Systems such as the 1-D traversing problem shown in
Figure 5 with aliased states are not fully observable1 thus em uncontrollable
in general. Assuming an optimal policy does exist but the optimal actions
associated with the aliased states are different. Unlike the original example
where optimal strategy exists even though aliased states exist, it is impossible
to have an optimal action for the two aliased states since the two optimal actions
for the real states are different.

The same rule applies to direct learning algorithms such as neural network
based learning methods. If perceptual aliasing or hidden states exist, the in-
put data for the neural networks does not contain the full dimension of the
real state space, i.e. the real state is unobservable. In general such system is
uncontrollable.

Learning algorithm learns the optimal control strategy through trial and
error. However, if the system is uncontrollable, it is impossible to learn the
optimal strategy even if it exists.

More often the system described by certain state space representation may be
probabilistically observable. For example, a multi-sensor system provides a set
of alternative perceptions. It is possible that the integration of multi-sensor data
can increase the observability thus making it possible to learn the optimal or
sub-optimal control strategies. Similar arguments goes to the memory methods
used in [3]. Incorporation of past data into the input vector of the neural network
will increase the observability of the system thus learning may become possible.

^he dimension of the state space representation is smaller than that of the dimension of
the real problem space.

213

Figure 7: Observability through state space representation restructuring

4 Learning with imperfect perception

Although in [12] a lion algorithm is developed to deal with perceptual aliasing
problem, it was not applied to the 1-D traversing problem. In fact, it is not
clear how the lion algorithm can be used in general to deal with the perceptual
aliasing problem as it is highly dependent on the sensing system. As it is clear
from the point of view of the estimation and control theory, learning can only
be possible if the system becomes observable.

In this section we present two novel approaches to deal with this problem.
In the first approach the state space representation is restructured so that the
system described by the new state space representation is fully observable. The
second approach deals with the enhancement of the system observability through
incorporating past observations.

4.1 Restructuring State Space Representation

In order for the system described in the 1-D traversing example to be observable,
one more dimension must be added to the state space representation. Let us
assume that the agent always remembers the previous state when it enters a
new state. Furthermore let the aliased state sf

2 5 be divided into two states s13

and s46 depending on the whether the previous state is Si,ss or s4,s6. This
is illustrated in Figure 7. Note that this representation is almost identical to
the original one in Figure 4 and the optimal strategy can be learned. However,
if the agent is not allowed to know the previous state, the system will remain
unobservable, thus no optimal strategy can be learned.

4.2 Memory Methods

The system observability can be improved by incorporating the past observa-
tions. Depending on the system dynamics, different window sizes can be used
to incorporate past observations. In [3] three memory architecture are proposed
to solve a learning problem with hidden states. A simple, recurrent element
is added to our neural network learning algorithm to tackle the 1-D traversing
problem with aliased states.

214

It must be noted that the level of recurrent or the size of the memory win-
dow depends on the dynamics of the system and can not be known accurately
and there is no guarantee that it is always possible to construct such an neu-
ral network architecture so that the system becomes fully observable. It seems
that, although the observability is a necessary condition for the optimal control
strategy to be learned, it is not clear how full observability can be achieved in
general case. The more likely scenario is the so-called probabilistically observ-
able systems. In the next section we attempt to address this problem and show
how learning can still be possible under such conditions.

5 Is It Possible to Learn to Perceive?

In previous sections we have shown that the state representation must satisfy
the observability condition. Otherwise optimal strategies can not be learned
in general. However, most of the real world learning problems can be best
described as probabilistically observable. Take the 1-D traversing problem for
example, assuming that the sensor can recognize state S2 and state S5 with
certain probability, is learning possible under such condition?

As discussed previously, in the most general case, learning must deal with
perception and other control actions at the same time. Mixing perceptual and
control action violates the Marcov condition, hence it is not possible in general
to learn the optimal strategy for such systems. In [12] Whitehead developed
the so-called lion algorithm to learn and use an internal representation that is
complete and consistent. More specifically the learning cycle is divided into
two distinct phases: state identification and overt control. This falls into the
traditional estimation and control paradigm, i.e. the separation of estimation
and control. Inconsistent perceptual policies are detected by monitoring the
sign in the estimation error in the 1-step Q-learning rule.

A detailed look at the lion algorithm shows that, as long as there exists
a consistent representation among the alternative ones, this consistent state
representation can be learned through the detecting of the inconsistent states.
This observation is significant in that, even though inconsistent states are used
during learning, consistent state and optimal strategy can be learned provided
that there exists a consistent representation among the alternatives.

Based on the above observation, we propose an algorithm to fully integrate
perception and learning and we call this learn to perceive. From the estimation
and control theory point of view, if consistent state representation exists among
the alternative representations, the system can be described as probabilistically
observable. Intuitively, if we augment the action set by perturbating the alter-
native perceptual actions and coupling them with the real control actions, the
Q-value for actions associated with inconsistent perceptual actions will lead to
more costly paths. If enough trials are performed, the actions which are associ-
ated with consistent perceptual actions will be selected. From the reinforcement
learning point of view, the reward is directing the choice of consistent perceptual
actions as well as the choice of optimal control actions.

215

• • • I • • • •
1310 1640 2050 4000 2360 3200 5000

Q,(0) Q,0) Q/2.5) Q'(2,5) Qr(3) Qr(4) Qr(6)

• • • • • • •
1045 1050 1310 2560 1635 2045 3185

Q,(0) Q,(D Q'(2,5) Q'(2,5) Q,(3) Q,(4) Q,(6)

Figure 8: Utility function with perception as action

This approach represents a conceptual change in learning as well as in es-
timation and control theory. This shows that it is possible to fully integrate
perception and control. Again we use the 1-D traversing example to illustrate
the algorithm. Assuming the sensing system recognize states «2 and S5 cor-
rectly 50% of the time2. We augment the actions for s'2 5 as follows. Instead
of using {ar,ai}, which is the same as the actions in other states, we define
A'25 = {a2,r,a2,i,a5,r,d5,i}- 02,1 denote the action of choosing perception S2
and traverse left and 02,r denote the action of choosing perception «2 and tra-
verse right and so on. Consequently, Q2(2,5) is the Q value for taking action
02,1 m s2 5 an(^ Qf (2,5) is the Q value for taking action 051 in s'25 etc. The
utility function for the six states(including the aliased state) is shown in Figure

6 Relevance to robot learning

Robot control can be regarded as the ultimate estimation and control problem.
The robot must perceive the dynamic environment in real time and control
its motors to move itself to new locations. Usually certain optimal estimation
algorithm, such as the Kaiman filter[ll], is used to locate the robot and its
surroundings. Pre-defined navigation strategies are applied to direct the robot
to its goal. In reality, strategies thus constructed do not work well and hardly
optimal due to the intractable interactions and uncertainties. Recently learning
has been considered as a way to gradually adapt strategies in order to achieve
better performance.

Our previous investigation into the problem of learning with imperfect per-
ception has concluded that, observability is essential for the successful learning
of optimal control strategies. This observability is the guarantee that consis-
tent state representation can be found either through the incorporation of past

2This probability does not affect the existence of the solution but the time to find one

216

observations or detecting inconsistent states. For robot control problems, in
which multiple sensors provide a large amount of competing and complement-
ing information, learning to perceive is of great importance. Unlike the problem
discussed previous, robot control problems concerns real physical values which
are continuous. So far the question of existence and convergence of learning in
continuous domain has not be satisfactorily answered. Integrating sensing with
learning in continuous domain is, therefore, a very hard problem.

Various researchers have investigated robot learning problems [3, 5, 6]. In
addition to the discrete maze-like problems, navigation and survival problems
in continuous state spaces are also been investigated[3]. Usually the continuous
state space is represented by neural networks. However, the set of actions are
usually discrete. Reinforcement learning has been applied in simulated robot
world but It is not clear that how learning can be conducted using a real robot.

Learning with imperfect perception is intrinsic to robot learning due to the
large and diverse sensor data available to the learning agent. Can the learn io
perceive algorithm proposed in the previous section be used in robot learning?
First we must bear in mind that learning has always been associated with a
finite number of strategies(value function based learning) and finite number of
state-action pairs(Q-learning). Therefore it is natural to limit learn to perceive
algorithm to deal with discrete number of perceptual strategies. Take a mobile
robot fitted with sonar and infra-red sensors as an example, we propose only
three sensing strategies: use sonar data; use infra-red data; use the average of
both. These strategies are then perturbed and coupled with the real robot mo-
tion control action and their Q-values can be learned. Eventually the motion
associated with certain sensing strategy will be selected due to the highest re-
ward it obtains. This, however, has not been implemented and the effectiveness
remains to be seen.

7 Conclusions and Future Work

In this paper we have attempted to address the problem of learning with imper-
fect perception from the estimation and control theoretic point of view. Essential
to this problem is the observability of the state space representation. If certain
aspect of the system is unobservable due to misrepresentation or sensor failure,
reinforcement learning can not learn the optimal strategy for controlling such
system. Two novel approaches, state space restructuring and memory method
have been proposed to enhance the observability. Furthermore, an algorithm
which directly integrate perception and learning is proposed. In this algorithm,
perceptual actions are paired up with actual control actions and their utility
values estimated by reinforcement learning. Consistent perceptual strategy as
well as optimal control strategy can be learned at the same time.

However, it must be pointed out that only finite number of perceptual strate-
gies can be used together with finite number of control strategies. One problem
we propose to address in future work is whether a sub-optimal strategy can be
learned if, given that the system is probabilistically observable, none of the per-

217

ceptual strategies alone provide consistent state space representation. Another
aspect of our future work will be the implementation of the learn to perceive
algorithm on real robot learning scenarios, such as tracking and navigation.

8 Acknowledgment

The authors wish to thank Tsukasa Kawaoka and Ryohei Nakano for their sup-
port during this work at NTT laboratories and Toru Ishida for helpful discus-
sions.

References
[1] Y. Bar-Shalom and T.E. Fortmann. Tracking and Data Association. Academic

Press, 1988.

[2] D. E. Catlin. Estimation, Control, and the Discrete Kaiman Filter. Springer-
Verlag, 1989.

[3] L. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis,
Carnegie Mellon University, 1992.

[4] P. Maybeck. Stochatic Models, Estimation, and Control, volume 1. Academic
Press, 1979.

[5] J. R. Millan and C. Torras. A reinforcement connectionist approach to robot path
finding in non-maze-like environments. Machine Learning, 8:363-395, 1992.

[6] A. W. Moore. Efficient Memory-Based Learning for Robot Control. PhD thesis,
Cambridge University, 1990.

[7] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, University of Massachusetts, 1984.

[8] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9-44, 1988.

[9] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, 1989.

[10] C. J. C. H. Watkins. Technical note: Q-learning. Machine Learning, 8:279-292,
1992.

[11] W. Wen. Multi-sensor Geometric Estimation. PhD thesis, University of Oxford,
1992.

[12] S. D. Whitehead. Reinforcement Learning for the Adaptive Control of Perception
and Action. PhD thesis, University of Rochester, 1992.

218

A LEARNING ALGORITHM FOR
MULTI-LAYER PERCEPTRONS

WITH HARD-LIMITING
THRESHOLD UNITS

Rodney M. Goodman and Zheng Zeng
Department of Electrical Engineering, 116-81

California Institute of Technology
Pasadena, CA 91125

Tel: (818)395-3677, FAX: (818)568-3670
Email: rogo@micro.caltech.edu

Abstract — We propose a novel learning algorithm to train networks
with multi-layer linear-threshold or hard-limiting units. The learning
scheme is based on the standard back-propagation, but with "pseudo-
gradient" descent, which uses the gradient of a sigmoid function as a
heuristic hint in place of that of the hard-limiting function. A justi-
fication that the pseudo-gradient always points in the right down hill
direction in error surface for networks with one hidden layer is provided.
The advantages of such networks are that their internal representations
in the hidden layers are clearly interpretable, and well-defined classifica-
tion rules can be easily obtained, that calculations for classifications after
training are very simple, and that they are easily implementable in hard-
ware. Comparative experimental results on several benchmark problems
using both the conventional back-propagation networks and our learning
scheme for multi-layer perceptrons are presented and analyzed.

1 INTRODUCTION

Single-layer networks of linear threshold units (or hard-limiting units)
known as perceptrons have been shown to have very limited learn-

ing capacity [2]. Although multi-layer systems of such units are much
more powerful than single-layer ones, there has been no known learning
algorithm for such networks.

In recent years, networks with continuous, nonlinear activation func-
tions have been shown to be able to perform much more complicated
tasks than single-layer perceptrons. With the differentiable activation
functions, gradient descent can then be used to train such networks [4].

However, the internal representations of these networks have been
hard to analyze, due to the fact that their activation spaces are contin-
uous, and high dimensional. Multi-layer perceptron networks are thus
still of interest. In addition to easily understandable internal representa-

0-7803-2026-3/94 $4.00 © 1994 IEEE 219

tions, classification rules can be readily obtained from trained perceptron
networks, the operations of the networks after being successfully trained
are extremely simple, and they are easy to implement in hardware.

In this paper, we attempt to solve the problem of training multi-
layer hard-limiting-unit networks by using non-zero values for logic O's
and l's, and by a pseudo-gradient descent learning scheme. Henceforth,
these networks will be called interchangeably, as discrete networks or
perceptron networks throughout this paper.

2 NETWORK ARCHITECTURE

output values

input features

Figure 1: A network of perceptrons with a single hidden layer

Shown in Fig. 1 is a two-layer network of hard-limiting units. Note that
since the output layer is "discretized", such networks are therefore used
for classification or encoding problems. We use S\ to denote the output
value of unit i in layer /, where the Oth layer is defined to be the input
layer, and w\j to denote the weight connecting from unit j in layer / — 1
to unit i in layer I. The operational equations for the network are:

CM'-1),

3

, . . f 0.8 if*>
where D0(x) = j Q2 .fjB<

V/,i,

0.0
0.0.

(1)

(2)

220

Note that the values 0.2 and 0.8 are used here instead of 0 and 1 in
order for logic "0"s to have some power of influence over the next lay-
ers. These values play an important role in the pseudo-gradient learning
which is explained in the following section.

3 PSEUDO-GRADIENT LEARNING
AND ITS JUSTIFICATION

Our learning scheme is based on the standard back-propagation method
[4], but with "pseudo-gradient" descent instead of gradient descent on
the error surface. A learning method based on a similar idea for training
recurrent networks was first introduced in [6, 7].

To explain the pseudo-gradient, we need to introduce another set of
values for the output and hidden layers, which we will call the analog
values of the units, as opposed to the discrete (hard-limited) values
that are actually used during network operations:

!.(') /M°), V/,i,

where

«*i0 = E»i?s?_1)

(3)

(4)

and

/(*) =
1 + e-*

From (1) to (5), it is obvious that

where

(5)

n< \ / °"8 if
D{x) = | 0 2 if

x>0.5
x < 0.5,

For the input layer, define h[0^ — Sf' to be the ith input.
Let L be the output layer, the error function for an input pattern is

defined to be:

i*= 5 I>(J0-«<>'.

where *,- is the desired value for output unit i. For classification and
encoding problems, t{ is either 0 or 1.

221

In a manner similar to back-propagation [4], the error "gradient" with
respect to each weight is computed, but instead of the true gradient, we
compute a value which we define to be the "pseudo-gradient":

dE -fiCOoC-i)
(I) - °i üj V/, i, j, (6)

where

*<'> =
dE

dnet) (')

/'(ne*,-°) Et *t+1)«'i? otherwise.
(7)

Here -^777 is what we call the "pseudo-gradient" of x with respect to

w, (0

Note that from (1), (2) and (6), by making the possible values of

3 O-i) to be 0.2 and 0.8, instead of 0 and 1, the pseudo-gradient dE
dw VJ

will not be reduced to 0 when SJ ' is in the "off' (or logic 0) mode,

thus the heuristic hint provided by 5t-' will not be eliminated.
Note also that had we computed the true gradients, the only thing

that would have been different in the pseudo-gradient formulae (6) and

(7) is that the term f'{net\') in the "otherwise" case in (7) should have
been D'0{net\ '). However, D'0(x) is zero everywhere and non-existent at
x = 0. By using /' instead of D'0, we provide in essence a heuristic hint
of which direction in a; a step up (or down) of Do(x) is, and also of how
far away it is from x.

Consider the case of a single-hidden-layer network. Since for the "out-
put layer" case, i.e., / = L = 2, the pseudo-gradient is in fact the same as
the true gradient, the "inaccuracy" of the pseudo-gradient only exists in
one layer, that is, the hidden layer (/ = 1), thus in the "otherwise" case

in (7), $1 is the true 6^ from straight back-propagation. There-

fore, ^2k6k vrkJ gives us the true value of Et *t X wkj > an(^ since

f'(net\') is always positive, 6] truly gives us a good indication of the
direction, distance or size of a step up (or down) in the discontinuous

error surface E as a function of net)'J, as does g^£ give a similarly

„O good indication in E as a function of «A. .

222

4 EXPERIMENTAL RESULTS

Shown in Tables 1 through 4 are comparative experimental results of
using both the proposed discrete network training method and the stan-
dard back-propagation on the following bench mark problems, respec-
tively: exclusive or, iris data classification [1], sonar data classification
[3] and NETtalk [5]. All experiments are done with two-layer networks.
Detailed parameters are described in the corresponding captions.

#of
hidden
units

discrete networks conventional backprop
#of

successful runs
avg # of

epochs
#of

successful runs
avg # of

epochs
2 5 5000 3 4119
3 10 2920.9 10 1154.4
4 10 1801.5 10 642.6

Table 1: Comparative results on the binary XOR problem. All networks
have 2 input and 1 output units. Both the training and test data set
contain all 4 instances of XOR. The learning rate is 0.5, with no momen-
tum term and no weight decay. Error tolerance is 0.0000001, maximum
number of iterations is 5000. The "number of successful runs" is ob-
tained out of 10 runs with different random weight initializations. The
"average number of epochs" is the averages over the successful runs.

The training set of the XOR problem consists of all 4 examples of the
binary XOR problem. 10 runs are done with different random weight
initializations for each network configuration and each of the learning
schemes. In this experiment, we intend to compare the convergence
speeds of the two methods. A successful run is defined to be such that the
network converged within the given maximum number of epochs (in this
case, 5000) during training and gives correct outputs for all 4 examples.
Note that for networks with 2 hidden units, there are unsuccessful runs
for both learning schemes, which means that each of the corresponding
networks reached a local minimum, instead of a global one. The number
of unsuccessful runs for the two are comparable: 5 for our method, and
7 for standard back-propagation.

The iris data set consists of 3 classes of 50 instances each, where each
class refers to a type of iris plant. Attributes are different measurements
of the flowers. 10 runs are done by partitioning the data set and using
the subsets in a manner similar to cross-validation. In this experiment,
we aim at investigating and comparing the effects of momentum and
weight decay factors on the two learning schemes.

The sonar data set was used originally by Gorman and Sejnowski in
their study of the classification of sonar signals using a neural network
[3]. The task is to discriminate between sonar signals bounced off a

223

#of
hidden
units

mo-
men-
tum

weight
decay
factor

discrete networks convenh onal backprop
avg %
correct

standard
deviation

avg %
correct

standard
deviation

2 0.5 1.0 92.0 4.99 96.0 4.42
3 0.0 1.0 96.7 5.37 97.3 4.42
3 0.5 1.0 96.0 6.11 96.7 5.37
3 0.0 .99 95.3 6.67 94.7 4.99
3 0.5 .99 96.0 5.33 97.3 4.42
4 0.0 1.0 96.7 5.37 94.7 6.53
4 0.5 1.0 96.0 5.33 94.7 5.81
4 0.5 .99 94/0 6.96 97.3 4.42

Table 2: Comparative results on the iris data classification problem. All
networks have 4 input and 3 output units. The learning rate is 0.5, with
different momentum and weight decay factors as shown. Error tolerance
is 0.0000001, maximum number of iterations is 5000. The data set of
150 is randomly partitioned into 10 subsets, each of size 15. For each set
of network parameters, 10 runs are made by leaving out each one of the
subsets as the test set, and using the remaining 9 subsets as the training
set. Performance is averaged over the 10 runs.

metal cylinder and those bounced off a roughly cylindrical rock. There
are 208 patterns in total with 111 belonging to the "metal" class, and
97 belonging to the "rock" class. Again, for each network configuration,
13 runs are done, in a similar manner to the iris data experiment. The
purpose of this experiment is to compare the performances of the two
network structures with different numbers of hidden units. The network
configurations of the first 5 rows in Table 3 are the same as in [3], while
the last 3 rows are additional experiments we did to obtain a comparison
over a wider range.

The task of the NETtalk problem is to train a network to learn to
convert English text to speech. Inputs are windows of 5 letters, with
the letter to be pronounced in the center. Desired outputs are encoded
phonemes. Each input letter is unary encoded by a group of 27 units.
The training set consists of 1000 most commonly used words. The test
set consists of about 4000 words. In this case, the problem is of a par-
ticularly large size: 135 input, 22 output, and 15 to 120 hidden units,
about 5600 training examples, and close to 20,000 test examples. We
used this problem to test the performance of our network on very large
problems.

224

#of
hidden
units

discrete networks conventt onal backprop
avg %
correct

standard
deviation

avg %
correct

standard
deviation

2 73.08 11.60 82.69 8.55
3 72.60 8.33 85.58 6.66
6 80.77 7.93 85.58 6.19

12 85.10 9.02 86.06 6.08
24 86.06 7.00 82.21 8.79
36 83.17 7.10 82.69 10.73
48 78.85 9.35 71.63 20.89
60 77.88 11.91 56.73 21.44

Table 3: Comparative results on the sonar data set. All networks have 60
input and 2 output units. The learning rate is 0.1 for discrete networks,
and 0.2 for conventional backprop, with no momentum term and no
weight decay. Error tolerance is 0.001, maximum number of iterations is
300. The data set of 208 is randomly partitioned into 13 subsets, each of
size 16. For each set of network parameters, 13 runs are made by leaving
out each one of the subsets as the test set, and using the remaining 12
subsets as the training set. Performance is averaged over the 13 runs.

5 DISCUSSION

It can been seen that in general, the performances of the proposed dis-
crete network are comparable to those of the conventional back-propagation
network on all the benchmark problems.

From the results on the XOR problem, it is clear that the pseudo-
gradient training takes longer than the conventional back-propagation,
due to the inaccuracies introduced for gradient descent. However, we
should note that the operations needed for one epoch of training is almost
the same for pseudo-gradient as back-propagation, the only difference
being the discretization operations. The experiments on all the other
larger data sets were done for the same fixed number of epochs (300 to
5000) for both networks, so the comparative results shown in Tables 2 to
4 are in fact of training both networks for about the same time period.

The iris data set results indicate that adding a momentum term helps
to improve the performance of the discrete network but has an opposite
effect on the performance of the conventional back-propagation network.
On the other hand, weight decay helps to improve the performance of the
conventional network but has an opposite effect on the discrete network.
The reason for the phenomena is still under investigation.

For the sonar data experiment, it is expected that the performance of
either of the network structure goes up with the increase of the number of
hidden units, and drops after a peak has been reached. Note that it takes

225

#of
hidden
units

discrete networks conventional backprop
% correct on
training set

% correct on
test set

% correct on
training set

% correct on
test set

15 77.05 68.41 83.72 72.64
30 84.53 71.74 89.72 75.82
80 90.22 72.55 93.65 75.90
120 91.95 73.62 92.52 75.61

Table 4: Comparative results on the NETtalk data set. All networks
have 135 input and 22 output units. The learning rate is 0.1, with the
momentum factor being 0.9 and no weight decay. Error tolerance is
0.001, maximum number of iterations is 1000. The training set consists
of 1000 most commonly used words, with 5603 letters to pronounce in
total. The test set consists of about 4000 words, with 19994 letters to
pronounce in total.

more hidden units for the discrete network to reach the same optimum
performance as that of the conventional back-propagation network. The
reason for this can be that the internal representation capacity of a
discrete network is much less than that of an analog network, the former
having only two possible values for each unit, and the latter having
infinite values theoretically. On the other hand, for the same reason, it
also takes more hidden units for the performance of the former to drop,
after the optimum performance is reached, to the same level as that of
the latter. That is, the discrete network overfits more slowly than the
back-propagation network. Thus we gain the clear understanding of a
network by losing some representational power. However, note that, the
performance differences of the two networks with the same appropriate
number of hidden units are not significant.

The results of the NETtalk experiments show that the discrete net-
work is able to find good solutions for such a large problem, and the per-
formance is comparable to that of the back-propagation network, though
always a little worse.

6 EXTRACTING RULES FROM THE
NETWORK

Using discrete units in the network facilitates the interpretation of the
network representation as discrete rules. For discrete binary inputs,
classification rules are extracted from the discrete network as follows.
Present the trained network with all combinations of inputs in the order
of the Gray code, with one input bit change at a time. For each output
unit, a truth table is thus constructed for the whole input space. Simplify

226

each truth table by the standard Quine-McCluskey algorithm to obtain
a logic expression of a minimum number of terms. Each term is then a
classification rule for the class represented by the corresponding output
unit. Note this rule extraction process guarantees that all rules extracted
cover every point in the input space, and are accurate descriptions of the
network.

For the XOR problem, the following rules are extracted for the single
output unit, with the two inputs represented by the symbols A and B,

respectively:

If A=low B=high then True. If A=high B=low then True.

For larger problems with data sets containing noise, rule extraction
often yields multiple high-order rules that are very specific in describing
the input space region for which they can fire. This means that the
network uses a very detailed partition in the input space for its classi-
fication purposes. It is expected that the less freedom (in terms of the
numbers of units and adjustable weights) the network is given, the less
detail such a partition will contain, and the more general the extracted
rules will be. In addition, training with validation to prevent overfitting
would result in less specific rules as well.

For problems with continuous input attributes, quantization can be
made a priori based on domain knowledge and/or information theoretic

criteria.
This rule extraction method is exhaustive, so all the rules extracted

together make a full description of the network classifier over the whole
input space. However, the computation grows exponentially with the
dimension of the input space. Research is underway to investigate ways
to efficiently generate rules according to, but not strictly based on the
network, and thus allowing more general lower-order rules.

7 CONCLUSION

A pseudo-gradient learning scheme for discrete networks, or multi-layer
perceptrons with hard-limiting units is proposed. For the case of single-
hidden-layer networks, we showed that the proposed pseudo-gradient
always points in the right down hill direction of the error surface. The
experiments on different benchmark data sets show that the discrete
networks have comparable performance to that of back-propagation net-
works. A clear understanding of the network is gained by the discrete
structure at the cost of some loss of representational power. An ex-
haustive method to extract rules that accurately describes the network
as a classifier is presented. The preliminary results are encouraging for
further study of such discrete networks.

227

Acknowledgments

The research described in this paper was supported by ARPA under
grants number AFOSR-90-0199 and NOOO14-92-J-1860.

References

[1] R.A. Fisher, "The use of multiple measurements in taxonomic prob-
lems," Annual Eugenics, 7, Part II, 1936.

[2] M. Minsky, S. Papert, Percepirons, MIT Press, 1969.

[3] R. P. Gorman and T. J. Sejnowski, "Analysis of hidden units in a
layered network trained to classify sonar targets," Neural Networks
Vol. 1, 1988.

[4] D. E. Rumelhart,J. L. McClelland, and the PDP Research Group,
Parallel Distributed Processing, MIT Press, 1986.

[5] T. J. Sejnowski, C. R. Rosenberg, "Parallel networks that learn to
pronounce English text," Complex Systems, Vol. 1, 1987.

[6] Z. Zeng, R. Goodman, P. Smyth, "Learning finite state machines
with self-clustering recurrent networks," Neural Computation Vol
5, No. 6, 1993.

[7] Z. Zeng, R. Goodman, P. Smyth, "Discrete recurrent neural net-
works for grammatical inference," IEEE Transactions on Neural
Networks, Vol. 5, No. 2, 1994.

228

THE SELECTION OF NEURAL MODELS
OF NON-LINEAR DYNAMICAL SYSTEMS

BY STATISTICAL TESTS

D. URBANI, P. ROUSSEL-RAGOT,
L. PERSONNAZ, G. DREYFUS

Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris
Laboratoire d'Electronique

10, rue Vauquelin
F - 75005 PARIS - FRANCE

Phone: 33 1 40 79 45 41 ; Fax: 33 1 40 79 44 25
e-mail: dreyfus@neurones.espci.fr

Abstract - A procedure for the selection of neural models of dynamical
processes is presented. It uses statistical tests at various levels of model
reduction, in order to provide optimal tradeoffs between accuracy and
parsimony. The efficiency of the method is illustrated by the modeling of
a highly non-linear NARX process.

INTRODUCTION

The representation of the behaviour of dynamical processes is a conceptually
straightforward application of neural networks, whether feedforward or
recurrent, as non-linear regressors. In practice, however, the modeling of a
process requires solving several problems:
(i) the choice of the nature of the model (static model vs dynamic model,
input-output representation vs state representation,...) requires an analysis of
the future use of the model (for instance, whether it will be used for
predicting the future evolution of the process, or whether it will be used
within a control system), and an analysis of the a priori knowledge on the
phenomena involved in the process;
(ii) the choice of the structure of the model, defined by the number of its
inputs, by the number of its outputs, by the type of input-output relationship
(linear, polynomial, radial-basis function, multi-layer neural network, etc.),
and by its structural parameters (degree of the polynomial approximation,
number of radial basis functions, number of neurons, etc.);
(iii) the estimation of the optimal set of adjustable coefficients (synaptic
weights in the case of neural net models) of the chosen structure
("identification" in automatic control, "training" in neural network parlance);

The first problem is fully application-dependent: no general statement can be
made. The third problem has been investigated in great depth in the case of

0-7803-2026-3/94 $4.00 © 1994 IEEE 229

linear models [1]; in the case of neural network models, a variety of training
algorithms is available [2], and it has been shown that the choice of a training
algorithm, in the context of dynamical process modeling, is based on the
nature of the noise present in the process to be modeled [3].

In the present paper, we investigate the second problem, namely, that of
model selection, which is a key factor for a model to be successful [4]. We
suggest a pragmatic model selection procedure for dynamical input-output
non-linear models, which features three steps in succession: first, the inputs
(external inputs and feedback inputs) of linear models of the process around
operating points are selected; in a second step, the relevant inputs of the non-
linear model are selected, thereby determining the order of the model;
finally, the structural parameter of the model is determined. An optimized
model of a dynamical process is thus derived.

We describe the selection procedure in the case of stable (within the range of
operation for which a model is needed), single-input-single-output processes.
We assume that the process is NARX:
yp(t) = <J>[yp(t-l),..., yp(t-v), u(t-l),..., u(t-n)] + w(t)
where {w(t)} is a gaussian sequence of zero mean independent random
variables, v is the order of the assumed model, and \i is the memory span of
the control sequence (u(t)}.
The following predictor is used:
y(0 = *P[yp(t-l),..., yp(t-n), u(t-l),..., u(t-m)];
We know from [3] that such a predictor (trained with a directed, or teacher-
forcing, algorithm) is optimal as a predictor for a NARX process.
If n = v, if m = (I, and if ^(O is an accurate approximation of <&(.), then the
predictor is optimal for the process.
In the following, we describe the three steps of the procedure, in the case of a
neural network model.

THE PROCEDURE

First step

In the stability domain of the process, operating points (uj, yj) are chosen.
The process is subjected to time-dependent control sequences of length N in
the ranges [uj + Auj, uj - Auj], such that a linear model of the process can be
considered valid in each of these ranges. For each operating point, we select,
as described below, a linear model which is a satisfactory tradeoff between
accuracy and parsimony. At the end of the first step, the set of all inputs
which were selected is available for use in the second step of model
selection.

230

For each operating point, we make the assumption that the process can be
described as an ARX model:

v H

ypW=X «i yp(t-i)+ X «v+i u(t-i) +w(t).
i=l i=l

where v et n are unknow parameters.

We consider a training set of size N, and a family of predictors of the form:
n m

y(t) = Xeiyp(t-i)+£en+iu(t-i).
i=l i=l

The aim of the procedure is to find a predictor such that n = v, m = |i.
We denote by yp> x1; x2, ..., xn, xn+i xn+m, w, y the N-vectors,
corresponding to the values yp(t), yp(t-l),..., yp(t-m), u(t-l),..., u(t-n), w(t),
y(t), for t=l to N; thus:
y = [xi, ... XM] 6 , whereM = m + n.

We have to find M regressors, corresponding to M independent vectors
{xj, ..., xM} such that the subspace spanned by these vectors is the subspace
of smallest dimension containing E[yp]. In order to find this subspace, we
start with a complete model, whose parameters n' and m' are chosen to be
larger than can be expected from the a priori knowledge available on the
process. We thus make the assumption that the subspace H spanned by the
M'=n'+m' vectors contains E[yp], and we expect to extract the satisfactory
subset of significant regressors from the initial set. This could be achieved by
computing and comparing all possible regressions; however, this method
becomes too expensive for large M'.
In order to decrease the amount of computation, we build from the initial set
{xj, ..., XM'} an ordered set of orthonormal vectors {pi, ..., pM>} such that
the model defined by {ph ..., pjj, for all l<k<M', gives a sum of squares of
errors (SSE) which is smaller than the SSE given by all other models with k
regressors [5].
We first choose, among the M' vectors {xi, ..., xM.}, the vector Xjgiving the
largest square regression Wyf, with p1= Xj/ llxjll. The (M'-l) remaining
{XJ} vectors are orthonormalized with respect to pi.
Consider the kth step of the ordering procedure, where p1(..., pk_, have been
selected. We denote by SSE(k) the SSE obtained with the selected model
having k regressors, thus :

SSE(k-l)-SSE(k) = lpk
TypP>

with:
SSE(O) = llypIP.
This contribution decreases as k increases. This procedure is iterated M'-l
times for p2, P3,... until completion of the list. Thus :

M'

Hypii2=£|p£yp|2+SSE(M')
k=l

where SSE(M') is the sum of squares of errors for the complete model.

231

Subsequently, the above list is scanned in the inverse order of its
construction, and each model is compared with the complete model, using
the Log Determinant Ratio Test (LDRT). The number of models we have to
take into account is at most equal to M'. Note that the comparison between
these models by LDRT is easy (see Appendix for further details about this
test), since the variable used to compare the k-regressor model and the
complete model is :

XLDRT=N l0fSE^
log[SSE(M')] .

We select the smallest predictor model accepted by the test.
In order to further decrease the number of tests, we introduce a simple
stopping criterion during the formation of the subset {p„ ..., pM} : at the k*
step, the procedure is terminated if \p[y J < p |lyp|l . The choice of p is not
critical provided it is small (typically p<108).
In the present work, we use LDRT, but Fisher-Snedecor test, Akaike's
Information Criterion (AIC) test are also available (for a review see [4]) and
lead to similar results.

Thus, for each chosen operating point, a linear model is available, which
achieves a satisfactory tradeoff between accuracy and parsimony. Note that
the techniques which are used in the linear context of this step are not
computationally expensive, so that a large number of external inputs n and
feedback inputs m can be used as a starting model for selection.
At the end of the first step, each regressor which was selected for at least one
operating point is available for consideration in the second step of model
selection.

Second step
In this step, the process is subjected to large-amplitude control signals
corresponding to the conditions of operation which the model is expected to
account for. A non-linear model is defined (e.g. a neural network), whose
inputs are the set of inputs which were determined during the previous step,
and whose structural parameters are deemed to be appropriate for the non-
linear input-output function to be accurately approximated (e.g. a neural
network with an appropriate, possibly too large, number of neurons, trained
by an algorithm which allows an efficient minimization of the SSE). Such
methods tend to be computationally expensive, so that the chosen number of
neurons should not be excessively large. The best subset of inputs is selected
by statistical tests (LDRT or AIC criterion (see appendix)): we compare the
complete non-linear model with all these sub-models with one input less. If
all the models are rejected, this step of the procedure is terminated.
Otherwise, the best submodel is chosen, and compared with all these sub-
models having one input less, and so on.
At the end of this step, a non-linear model Mj is available, whose inputs
have been selected.

232

Third step
The final step aims at determining the structural parameter of the model: in
the case of a neural network model, this parameter is the number of hidden
neurons. Here, the accuracy/parsimony tradeoff is expressed by the fact that
too large a number of hidden neurons leads to overtraining (small SSE on the
training set, large SSE on the test set), whereas too small a number of
neurons leads to poor approximation (large SSE on the training set itself).
The model Mi resulting from the previous two steps is considered as the
complete model, and models with a smaller number of hidden neurons than
Mi are considered for selection. As in the previous steps, statistical tests are
used in order to find a satisfactory tradeoff. Note that most model reduction
algorithms used for neural networks aim at eliminating connections [6],
whereas this final step aims at eliminating neurons.

EXAMPLE

The efficiency of the above procedure is illustrated by the modeling of a
second-order, highly non-linear NARX process, which is simulated by the
following equation:

yP(t) = 50 tanh 2. 10 ^'-^.S-itiLy,^)
+ 0.5u(t-l) + w(t) ,

l+u(t-l)2

where w(t) is white noise with variance (aw)2 . The behaviour of this process
is essentially that (i) of a linear first-order low-pass filter for amplitudes
smaller than or on the order of 0.1, and (ii) of a second-order, oscillatory,
linear (0.1 < lul < 0.5), or non-linear (0.5 < lul < 5) system for larger
amplitudes; it becomes almost static for positive signals of very large
amplitude; in addition, it is not symmetrical with respect to zero. Figure 1
shows the response of the process to steps of random amplitude in the region
of interest, with (aw)2 = 10"2.

First step

The operating points were uj = {-10, -8, -5, -2, -1, -0.5,0.1, 1, 2, 5, 8, 10}. At
each of these points, a uniformly distributed random sequence was added to
the control input, with maximum amplitude AUJ=0.1 (ou

2 = 3.10"3). The
initial model was chosen to have n' = m' = 100. The training sequence was of
length N = 1000. The orthonormalization procedure retained 15 inputs, and
the subsequent LDRT tests (with 1% risk) led to the selection of n+m = 2 to
5 inputs, depending on the operating points.

233

Second step

The training set was a sequence of large-amplitude steps, such as shown on
Figure 1. Mj was a fully connected neural network, with the 5 inputs (n = 3,
m = 2) selected in the first step, and with 10 hidden neurons. After training,
the variance of the prediction error (as estimated by SSE/N) was on the same
order of magnitude as aw , which shows that the network was sufficiently
large, and had been trained efficiently. Subsequently, the networks obtained
by suppressing 1 input, then 2 inputs, etc., were trained and submitted to the
LDRT procedure, as illustrated on Table 1: the full model M] is compared to
M2, M3,..., M6. The test selected only M2 and M4 (the deletion of one input
leads to the deletion of 11 connections; the corresponding value of the x2

variable for a 1% risk is 24.7). Since the SSE of M4 was smallest, it was
selected for comparison with all models smaller than M4'; M7 is the only
three-input model which was selected. All models smaller than M7 were
rejected. Therefore, M7 was finally accepted. The success of the procedure is
shown by the fact that M7 is indeed the only model which has the same
inputs as the simulated process. A similar result is obtained if the AIC test is
used.

Time

FIGURE 1
Sequence of control input and process output.

Third step

Model selection is performed on neural nets having the inputs of M7, and 0 to
10 hidden neurons, with the same training set for all nets. The result of the
selection depends on aw. With aw

2 = 10~2, a model with 9 neurons is
selected. With aw

2 = 10_1, the same inputs are selected by the first two steps

1 Actually, the SSE's of M2 and M4 are very close; if M2 is selected instead
of M4, the same result is obtained, since M7 is a sub-model of both M2 and
M4.

234

Model Vn(t-l) Yp(t-2) Yp(t-3) u(t-l) u(t-2) SSE Xi.nRT

1 X X X X X 19.1

2 X X X X - 19.6 11
3 X X X - X 13.0 832
4 X X — X X 19.5 10
5 X — X X X 31.6 218
6 - X X X X 31.8 221

7 X X X — 19.6 1.2
8 X X - X 97.7 697
9 X — X X 11.8 980
10 - X X X 39.4 1303

11 X X — 25.4 1114
12 X - X 18.7 978
13 - X X 18.2 968

TABLE1
Models labelled by boldface figures are those
whose inputs include the inputs of the process.

and the third step leads to a neural network with 4 neurons. As should be
expected, the procedure selects a smaller number of neurons if the noise level
is high than if it is low.

CONCLUSION

A pragmatic three-step procedure for non-linear dynamical model selection
has been proposed, which uses statistical tests at various levels of model
reduction. It relies on the fact that efficient training procedures are available.
It allows the selection of the delayed external inputs, of the feedback inputs
(hence the determination of the order of the model) and of the structural
parameters such as the number of hidden neurons. Its main shortcoming
seems to be the fact that its application is subject to the availability of two
types of data from the process, namely, small-signal responses around chosen
operating points, and large-signal responses in "normal" operation. Its
efficiency is shown on an illustrative example: the neural modeling of a
highly non-linear NARX process.

APPENDIX

The Logarithm Determinant Ratio Test (LDRT) [4]

The problem of the selection of one model out of two can be formulated as a
statistical testing problem. We suppose that an accurate model Mu described
by the vector of paramters 0, is available to explain a set of N experimental

235

data. The null hypothesis states that a part 92 of the vector parameter 9 is
equal to zero; if this assumption is true, 9 =[9,, 92] can be reduced to 9t. If
the alternative hypothesis is true, then 92 cannot be taken equal to a zero
vector. A very efficient test to solve such a problem is the Likelihood Ratio
Test (LRT), but this test requires the expression of the likelihood function. In
our case, with very large N, it reduces to the Log Determinant Ratio Test
(LDRT) : under the null hypothesis 92=0, with a scalar output, the
distribution of the statistics :

xLDRT=N.ogSSB(ei)
SSE(9)

converges to a chi-square distribution with dim(92) degrees of freedom.

The Akaike's Information Criterion Tests (AIC)

The AIC is an alternative way of selecting a model from a set of models,
using statistical tests. For each model of the set, we compute the AIC value :
AIC = 2 N log(SSE/N) + 2M
where N is the number of data and M is the number of parameters of the
model.
The model corresponding to the smallest AIC value is thus selected as the
best model of the set, with respect to this criterion. This procedure requires
no assumptions on the models. There exist more efficient variants of the
classical AIC [4], such as the AIC*, used in this work :
AIC*= 2 N log(SSE/N) + 4 M

REFERENCES

[1] See for instance:
L. Ljung, System Identification: Theory for the User: Prentice Hall,
1987.
G.C. Goodwin, R.L. Payne, Dynamic System Identification:
Experiment Design and Data Analysis: Academic Press, 1977.

[2] O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, "Neural
Networks and Non-linear Adaptive Filtering: Unifying Concepts and
New Algorithms", Neural Computation, vol. 5, pp.165-197, 1993..

[3] O. Nerrand, P. Roussel-Ragot, D. Urbani, L. Personnaz, G. Dreyfus,
"Training Recurrent Neural Networks: Why and How ? An
Illustration in Dynamical Process Modeling", IEEE Transactions on
Neural Networks, vol. 5, pp. 178-184, 1994.

[4] I.J. Leontaritis, S.A. Billings, "Model Selection and Validation for
Non-Linear Systems", International Journal of Control, vol. l,pp.
311-341, 1987.

236

[5] S. Chen, S.A. Billings, W. Luo, "Orthogonal Least Squares Methods
and their Application to Non-Linear System Identification"
International Journal of Control, vol. 50, pp. 1873-1896, 1989.

[6] R. Reed, "Pruning Algorithms - A Survey", IEEE Transactions on
Neural Networks, vol. 4, pp. 740-747, 1993.

237

Speech Processing

RECURRENT NETWORK AUTOMATA FOR
SPEECH RECOGNITION:

A SUMMARY OF RECENT WORK

Roberto GEMELLO *, Dario ALBESANO *, Franco MANA *,

Rossella CANCELLIERE*§

CSELT - Centro Studi e Laboratori Telecomunicazioni
via G. Reiss Romoli, 274 -10148 Torino - Italy
Tel.: +39-11-2286224 Fax: +39-11-2286207

email: gemello@cselt.stet.it

• Dipartimento di Matematica Applicata
Universita di Torino

via C. Alberto, 10 -10123 Torino - Italy

Abstract. The integration of Hidden Markov Models and Neural
Networks is an important research line to obtain new speech
recognition systems that join a good time-alignment capability and a
powerful discrimination-based training. The Recurrent Network
Automata model is a hybrid of a recurrent neural network, which
estimates the state emission probability of a HMM, and a dynamic
programming, which finds the best state sequence. This paper
reports the last results obtained with the RNA model, after three
years of research and application to speaker independent digit
recognition over the public telephone network.

INTRODUCTION

This paper reports the last results of the CSELT neural network
group in the field of speech recognition.

As Neural Networks (NN) are not yet able to manage well time
modelling, we are presently employing them in integration widi Hidden
Markov Models (HMM).

This approach is currently investigated by several research teams:
Franzini, Haffner and Waibel [9] [10] [13] have introduced the
Connectionist Viterbi Training to enhance HMM based connected digit
recognition; [4] has described Segmental Neural Networks for phonetic
modelling; Bourlard et alii [5] [6] have proposed connectionist
probability estimation to significantly improve a HMM based
continuous speech recognition system.

Our contribution to this line was the introduction of Recurrent
Network Automata (*) (RNA) [1] [2] which integrates recurrent NN with
HMM word modelling, showing the advantages which can be obtained
by exploiting the joint contextual information of feedback hidden units
and time delayed input.

(') patent pending

0-7803-2026-3/94 $4.00 © 1994 IEEE 241

Presently, we are experimenting the RNA framework both for
isolated and connected word recognition [3], trying different training
strategies and architectures and evaluating the impact of some recently
emerged input data pre-processing like parameter high-pass filtering.

The paper reviews the HMM-NN integration proposed by the RNA
model, and focuses on the last experiments.

MODEL DESCRIPTION

The RNA recognition model [1] [2] is a hybrid HMM-NN model
devoted to recognise sequential patterns. Each class is described in
terms of a left-to-right automaton (with self loops) as in HMM, and the
emission probability of the automata states are estimated by a Simple
Recurrent Network [7]. The transition probabilities among states are not
considered. The RNA has an input window that comprises some
contiguous frames of the sequence, one hidden layer with a self-
feedback, and an output level where the activation of each unit estimates
the probability of the input window to belong to an automaton state.

The hidden neuron dynamics is given by the equation:
yi(f) = F(Zj wjj xj(t) + Ek wik yk(t-D)

where yj is the activation of a hidden neuron, XJ is an input unit and F
is the standard logistic function. The hidden neurons are also called state
neurons because thanks to the self-feedback they can encode a
contextual information about the sequence which is being recognised.
The output neurons follow the standard MLP dynamics.

SPEECH MODELING WITH RECURRENT
NETWORK AUTOMATA

The RNA model was principally conceived for speech recognition,
and in particular for modelling words for isolated or connected word
recognition with a small vocabulary. In RNA time modelling takes place
in two ways: first, by an external modelling, through the HMM like time
warping ability of the dynamic programming applied to left-to-right
automata corresponding to words; second, by the internal modelling of
the recurrent network. In fact, the memory capability of the recurrent
network allows to give the states a contextual information, inside the
word automaton, and to give a more stable evolution of emission
likelihoods, inside the state [1].

The architecture of RNA has many degrees of freedom: the
architecture of the NN, the input window width, the number of
automaton states for the different words of the vocabulary. A lot of
experimental activity has been performed to optimise the architecture for
the recognition of small vocabularies (10-20 words) resulting in the
structure depicted in fig. 1. The input window is 3-7 frames wide, and
each frame contains 26 parameters (log Energy, 12 Cepstral Coefficients,
and their first derivatives). The first hidden layer is divided into three
feature detectors blocks, one for the central frame, and two for the left

242

and right context. Each block is in its turn divided into four sub-blocks
devoted to keep into account the four types of different input parameters.
It was empirically found that this a priori structure is generally better
than a fully connected layer. The second hidden layer has a fully
connected recurrence, like in Elman's nets (the double arrow means a
copy of activation values). The neurons of this layer have a twofold
function: first, they represent, together with the first hidden layer
neurons, a space transform between the input parameters and some self-
organised internal features, corresponding to acoustic/phonetic
characteristics (e.g. silence, stationary sounds, transitions, specific
phonemes). Besides, they encode a state information related to the
temporal context the current input is inserted in, as described in [2]. The
output layer estimates the emission probabilities of the states of the word
automata, and is virtually divided in several parts, each one
corresponding to an automaton.

Word hodel 1 Word Model k Word Model N

Output
Layer

Status

00000
Emission
Likelihoods

t
Hidden O O
Layer

Feedback

Speech
feature
vector

Feature
Extraction
Hidden Layer

Figure 1: Architecture of a Recurrent Network Automata devoted to word
recognition

Typical dimensions for a RNA devoted to recognise the ten Italian digits
are:

- 7 frame input window;

243

first hidden layer: central block with 24 units (divided in
2+10+2+10 for the four types of parameters), context blocks
with 36 units (3+15+3+15).
second hidden layer: 70 units, with fully connected
recurrence.
output layer: 63 units, corresponding to 63 automata states,
pertaining to the 10 word automata, and divided
proportionally to the average word length.

TRAINING RNA

RNA training is a complex problem, because we want simultaneously
find the best segmentation of words into a given number of states and
train the network to discriminate that states.

Training is an iterative procedure as follows:

Initialisation:

• initialise the RNA with small random weights;
• create the first segmentation by segmenting the training

utterances uniformly.

Iterations:

• load the present segmentation;
• train the RNA some epochs to implement the automata which

approximates that segmentation;
• obtain a new segmentation by applying the dynamic

programming to each utterance in the training set to re-evaluate
the transition points proposed by the RNA;

• update the present segmentation by using a function of itself and
of the new segmentation: present_segm = F(present_segm,
new_segm);
e.g. F(sl, s2) = asl + (l-a)s2, with a starting from 1.0 and
decreasing during the training.

The input to the RNA is a window sliding on the speech frames,
including a central frame and some left and right context frames. The
targets are generated according to the present segmentation, putting 1.0
for the active state of the right automaton and 0.0 otherwise. All the
automata are trained into a unique net, so performing a discriminative
training. The NN basic learning algorithm is the back-propagation.

Recently a variation of classical backpropagation, called Correlative
Training has been developed and experimented [12]. Briefly, Correlative
Training consists in changing the target definition in function of the
correlation of the outputs of the considered unit and of the target unit.
We redefine the target of a generic output unit k as:

244

tk(ok,oh)
\ tb if h = k

I o,.o,, if h ^ k

where o^ is tlie output of unit k, t^ the target of output unit k, h the
dE

index of the output unit with th = 1.0 This leads to a change in the ——
do.

term of backpropagation for output units, that becomes

y- = (tj(oj,o11)-oj)
j V

^tj(Oj.Oh)) 1

dO;

f-(tj-0j) if j = h
[0j(oh-l)2 if j*h

This change in backpropagation is a simple way to adaptively soften
die strength of discriminative training for classes that cannot be
completely put apart, widiout compromising its power on separable
classes. That results in an adaptive smoothing of discriminative training.

RECOGNITION EXPERIMENTS

Since üiree years we have experimented RNA to face a difficult real
problem, i.e. die speaker independent recognition of die digits over die
public telephone network. This problem has been already faced in our
labs by using Continuous Density Hidden Markov Models [8], so we
already have a large training database and some state of die art results to
compare widi. Preliminary results obtained and a comparison with
HMMs were reported in [2].

Speech Database and Preprocessing
The speech database we used was collected on the Italian public

telephone network, each time using a different switching circuit. It is
suited for speaker independent training as about 1,000 people evenly
distributed between male and female voices contributed to it. The pre-
processing technique consists of a Mel-based spectral analysis followed
by a Discrete Cosine Transform to obtain Cepstral coefficients.
Togeüier widi die cepstral coefficients, die value of the logarithm of the
total energy of each frame is retained as it provides some information
about distinguishing die voiced parts of die speech input from the
unvoiced ones.

A RNA network was trained on a training set containing about 500
repetition for each digit.

Input Filtering
An input pre-processing was experimented by applying a high-pass

filter inspired to RASTA filter [14] directly on cepstral coefficients and
energy.

The filter equation is

245

y(n) = x(n) - x(n-l) + X y(n-l) with 0< X < 1

We tried several values for X, and realised that a value of 0.99, which
cuts off only the continuous frequency component of cepstral parameters
is the best suitable in that case.

The results are encouraging, as can be seen in Table 1: in fact the
input filtering always improves the recognition.

Comparing Feedback nets with TDNN and Feedforward nets
The basic RNA models makes use of a feedback MLP. Of course, in

the same framework other MLP architectures may be inserted, like a
standard feedforward MLP and a TDNN.

In this chapter we will discuss the recognition results obtained with
three different architectures inserted in the RNA framework.

The first is the standard feedback MLP described in fig. 1 and in
chapter 3 (18470 weights). The second is a TDNN a lä Waibel, with 26
input unit (Energy, 12 Cepstral and their first derivatives) with delay = 3,
50 hidden units with delay = 5 and 63 output units, as in the other
models (19650 weights). The third model is a straightforward fully
connected network with input window = 3, one hidden layer of 150 units
and the usual 63 units output layer (21150 weights).

From Table 1 can be seen that all the three models works pretty good
inserted in the RNA framework. The high-pass filter is always useful,
and in particular with feedforward and TDNN networks, where the
improvement is very relevant. The last column (dist 1-2) shows the
average distance between the first and die second choice of the
recognizer, computed as the summation of -log(P(State I input frame))
on die best path, normalised widi die length of die word. P(State I input
frame) is provided by die neural network while the best padi is computed
by the Viterbi algorithm. From this point of view die feedback MLP is
preferable because this distance is greater than in the other models.
Besides, the feedback model obtains die best performance (99.2) widi
less weights than feedforward one.

RNA Architecture Filtering % Train % Test dist. 1-2

Feedback MLP, with feat. extr.

layer and feedback (see fig. 1)

no

yes

98.8

99.7

98.5

99.2

71

75

TDNN a lä Waibel widi 2 layers

of delay units widi d=3 and d=5

no

yes

99.1

99.5

98.4

99.1

50

57

Feedforward fully connected

MLP widi one hidden layer

no

yes

98.8

99.6

97.6

99.2

42

5

Table 1. Recogniton results for diffcrents RNA architectures and input filterings

246

CONCLUSION

A hybrid speech recognition model has been described which
integrates recurrent neural networks with HMM word modelling and
decoding. The model has exhibited a good performance on a difficult
recognition task, showing noise robustness and results comparable with
the mature CDHMM technology, but with the parallelization potentiality
typical of NN. The model has been widely applied to isolated words,
while application to connected words is under development [3]. A
preliminary analysis of its capability to reject extraneous patterns is
encouraging, and could be further improved through the use of closed
decision regions MLP, as described in [11]. Another interesting feature
is the network scalability, currently under investigation, which seems to
indicate that, thanks to the shared information of the hidden layers, the
network dimension grows less that linearly with the number of words.

References
[I] D. Albesano, R. Gemello and F. Mana, "Word Recognition with Recurrent

Network Automata", in Proc. IJCNN 92, Baltimore, June 1992, pp. 308-
313.

[2] D. Albesano, R. Gemello and F. Mana, "Recurrent Network Automata for
Speech Recognition", in Proc. WCNN 93, Portland, July 1993, vol. Ill, pp.
16-19.

[3] D.Albesano, R. Gemello and F. Mana, "Connected Word Recognition with
Recurrent Network Automata, Proc. of ICANN 94, Salerno, May 1994.

[4] S. Austin, G. Zavaliagkost, .1. Makhoul, and R. Schwartz, "Speech
Recognition using Segmental Neural Nets", in Proc. ICASSP, 1992, pp. 625-
628.

[5] H. Bourlard, C.J. Wellekens, "Links Between Markov Models and
Multilayer Perceptions", in IEEE Transaction on Pattern Analysis and
Machine Intelligence, vol. 12, pp. 1167-1178.

[6] H. Bourlard, N. Morgan, Connectionist Speech Recognition: A Hybrid
Approach, Kluwer Academic Publishers, 1993.

[7] J.L. Elman, "Finding Structure in Time", CRL Technical Report #8801,
University of California, San Diego, 1988.

[8] F. Canavesio, L. Fissore, M. Oreglia, R. Ruscitti "HMM modeling in the
public telephone network environment: experiments and results", in Proc.
EUROSPEECH 91, Genova, September 1991, pp. 731-734.

[9] M.A. Franzini, K.F. Lee and A. Waibel, "Connectionist Viterbi Training: A
new hybrid method for continuous speech recognition", in Proc. ICASSP,
Albuquerque,NM, April 1990, pp.425-428.

[10] M.A. Franzini, A. Waibel and K.F. Lee , "Continuous Speech Recognition
with the Connectionist Viterbi Training Procedure: a summary of recent
work", in Proc. IJCNN, Singapore, 1991, pp.1855-1860.

[II] R. Gemello and F. Mana, "An Enhancement to MLP Model to Enforce
Closed Decision Regions", in Proc. IJCNN, Singapore, November 1991,
pp.729-733.

[12] R. Gemello, D. Albesano, F. Mana, "Correlative Training and Recurrent
Network Automata for Speech Recognition", in Proc. IEEE ICNN 94,
Orlando, 1994.

247

[13] P. Haffner, M. Franzini, A. Waibel, "Integrating Time Alignment and
Neural Networks for High performance Continuous Speech Recognition", in
Proc. ICASSP, 1991, pp. 105-108.

[14] H. Murveit. J. Butzberger, M. Weintraub, "Reduced Channel Dependence
for Speech Recognition", in Proc. of Speech and Natural Language
Workshop, February 1992.

248

ACOUSTIC ECHO CANCELLATION FOR HANDS-
FREE TELEPHONY USING NEURAL NETWORKS

A. N. Birkett, R. A. Goubran
Department of Systems and Computer Engineering

Carleton University, 1125 Colonel By Drive
Ottawa, Canada, K1S 5B6

Tel: (613) 788-2600 ext. 5740, Fax: (613) 788-5727
e-mail: birkett@sce.carleton.ca

Abstract: One of the limitations of linear adaptive echo cancellers in hands-
free environments is their inability to effectively cancel nonlinearities which
are generated mainly in the loudspeaker during large signal peaks. The soft-
clipping effect encountered when large signals are applied to the loudspeaker
is modelled in a neural network using a piecewise linear/sigmoid activation
function. A three layer fully adaptive feedforward network is used to model
the room/speakerphone transfer function using the special activation function.
This network structure improves the ERLE performance by 10 dB at low to
medium loudspeaker volumes compared to a NLMS echo canceller.

INTRODUCTION

A microphone placed next to a loudspeaker in a closed loop provides electro-acous-
tic feedback which will spontaneously oscillate at some frequency for which the
modulus of the gain factor is greater than one. This arrangement exists in all hands-
free telephone systems hence adaptive echo cancellation is required to prevent
these oscillations while communicating in full-duplex mode.

Limitations of echo cancellers for speakerphones [4],[8] include (a) acoustic, ther-
mal and DSP related noise, (b) inaccurate modelling of the room impulse response
(c) slow convergence and dynamic tracking, (d) nonlinearities in the transfer func-
tion caused mainly due to the loudspeaker, and (e) resonances and vibration in the
plastic enclosure.

To be commercially attractive, convergence times on the order of 100 ms with Echo
Return Loss Enhancement (ERLE) on the order of 30 dB are necessary. Fast RLS
based adaptive techniques can be used to reduce the convergence time, however,
the ERLE is degraded when the input data is severely non-stationary and it has been
found [4],[5] that for large filter orders and nonstationary environments, LMS type
algorithms will give better overall performance than RLS type algorithms. How-
ever, nonlinear techniques must be employed to deal with system nonlinearities and
IIR recursive structures must be utilized when poles exist in the room/speakerphone
transfer function [6]. In this paper, a tapped delay line feedforward neural network
is employed in an attempt to model only the system nonlinearities.

0-7803-2026-3/94 $4.00 © 1994 IEEE 249

Distortions in the Loudspeaker

A loudspeaker has several sources of nonlinearity including non-uniform magnetic
field and nonlinear suspension system [1]. Nonlinear distortion is often a few per-
cent of the output signal and it is desirable to reduce it. A loudspeaker consists of an
electrical part and a mechanical part as shown in Figure 1. The electrical part is the
voice coil and the mechanical part consists of the cone, the suspension system and
the air load. The two parts interact through the magnetic field. The resulting equa-
tion of motion [2] is:

d x dx m— + rM— +fM = Bli (1)
dt Mdt M

where B is the magnetic flux density in the air gap, / is the length of the voice coil
conductor, x is the cone displacement, m is the total mass of the coil, cone and air
load andfM is the force deflection characteristic of the loudspeaker cone suspension
system, usually approximated by;

fM = ax + $x2 + 8x3 (2)

where a, ß and 8 are modelling constants and x is the displacement of the voice
coil. Suspension system nonlinearity manifests itself as soft clipping at the
loudspeaker output and results in odd-order harmonics under large signal
conditions.

CONVENTIONAL ADAPTIVE ECHO CANCELLER MODELS

Linear Transversal Filter Model

Figure 2a illustrates an acoustic echo canceller (AEC) utilizing a linear adaptive
transversal filter to model the room impulse response to cancel the reflected signal.
The reflected signal is a combination of room echoes, direct path signals, loud-
speaker and microphone transfer functions, and vibration and resonances emanat-
ing through the plastics of the speakerphone as illustrated in Figure 2b. The
normalized Least Mean Square (NLMS) algorithm [10] is the baseline by which
performance of alternative models is measured.

Nonlinear Adaptive Volterra Model

Adaptive volterra filtering can be utilized to deal with loudspeaker nonlinearities
[2], however, filter orders greater than 3 are required to effectively model the
speaker transfer function and this very quickly leads to an unmanageably huge
model [9]. In fact, during the course of this work, a fully connected 3rd order adap-
tive Volterra filter with m 1=600, m2=600, and m3=50 where ml, m2 and m3 refer

250

to the orders of the linear, quadratic and cubic sections respectively, was con-
structed in an attempt to model the loudspeaker nonlinearity. The tap updates were
based on the LMS algorithm presented in [9] but extended to a cubic system. It was
found that no noticeable improvement in converged ERLE could be seen using this
technique. Neural networks offer an alternative method of dealing with high order
system nonlinearities.

NEURAL NETWORK ECHO CANCELLER MODELS

Three separate adaptive AEC networks were constructed. The first AEC uses a two
layer (100,2,1) network placed in series with a 500 tap NLMS adaptive linear filter
as shown in Figure 3a. The 100 inputs are obtained from a tapped delay line. The
hidden layer neuron has a nonlinear activation function and the output neuron is lin-
ear.The neural network in this case is first batch trained on the first 500 points of
data obtained at a medium volume and then tested on loud volume data to ensure
that the network is not overtrained.

The second AEC uses the same network but in this case, the neural network is
placed in parallel with the NLMS adaptive linear filter as shown in Figure 3b.

The third AEC model utilizes a fully adaptive (600,2,2,1) 3 layer feedforward neu-
ral network. The 600 inputs are obtained from a tapped delay line. The two hidden
layer neurons have piecewise linear/sigmoid nonlinear activation functions and the
output neuron is linear. This model is shown in Figure 3c.

In each neural network, a piecewise linear/tan-sigmoid activation function is used
in order to mimic the soft clipping effect and the function response is shown in Fig-
ure 4 along with its corresponding delta function. The transfer function is linear
below a user definable point and then follows a compressed hyperbolic tangent sig-
moid beyond this point such that the output is squashed between +/-1.0. The linear
region was set to +/- 0.75 since it was found that this gave good results.

In all cases, the backpropagation algorithm with a normalized step size is employed
during the training and tracking phase. The stepsize u. is normalized [10] according
to (3).

H= « (3)

2
e +

i = 0

2X
where a is a number between 0 and 2, and in all cases is set to 0.5. £ is a small pos-
itive constant used to prevent the stepsize from becoming too large, M is the num-
ber of delay sections in the tapped delay line (i.e. order of the input section) and xt

251

is the amplitude of the i,h delayed element. The stepsize 11 is updated after each new
sample is shifted into the tapped delay line.

EXPERIMENTAL SETUP

Figure 5 illustrates the test set-up used to obtain the data. A number of commer-
cially available speakerphones were purchased and modified to allow access to
internal signals. The modified speakerphone is placed inside a noise shielded enclo-
sure or anechoic chamber. Filtered "reference" signals are applied to the loud-
speaker and the microphone picks up the reflected or "primary" signal. Both the
reference and primary data signals are recorded on a Digital Audio Tape and later
sampled at 16 kHz and stored to disk for off-line processing.

TEST RESULTS

Converged ERLE for NLMS Case

The NLMS algorithm with 600 taps is applied to the measured data and a number
of ERLE curves are obtained for various speaker volume levels. The algorithm is
allowed to converge for 32000 samples and then the average ERLE is obtained
from the last 8000 output values. The results illustrated in Figure 6, show that the
converged ERLE is low for low speaker volumes where acoustic, thermal and DSP
related noise are significant. This agrees with results presented in [4] and [8]. The
ERLE increases as the reference signal increases but reaches a plateau. Any
increase in reference signal level to the loudspeaker after this point results in a
decrease in achievable ERLE. The NLMS results in Figure 6 are obtained from
three different commercially available speakerphones ranging in price form $32 to
$120.

Convergence Curves for Parallel and Series Models Utilizing Pretrained Neu-
ral Networks

The ERLE convergence curves of the series and parallel structures are illustrated in
Figure 7. Also illustrated for comparison is the 600 tap NLMS case. The series
model has a slightly superior convergence than the NLMS case but eventually set-
tles to the same value of converged ERLE. The parallel structure has a convergence
essentially the same as the NLMS case but settles to a lower value of converged
ERLE. These results were obtained at a high volume of 0.25 W which is equal to
the rated power handling capability of the loudspeaker.

Converged ERLE for the Fully Adaptive Three Layer Neural Network

Figure 8 illustrates the performance of the fully adaptive (600,2,2,1) structure com-
pared to the 600 tap NLMS case. The improvement in ERLE over the NLMS case

252

is significant in the low and medium volume ranges and is greater than 10 dB at
power levels in the vicinity of lmW. However, the fully adaptive model does not
offer significant improvement at high speaker volumes suggesting that there still
exists a deficiency in the modelling of the room/speakerphone transfer function at
these volume levels. A total of three speakerphones were tested. Each speaker-
phone yielded similar results.

DISCUSSION OF TEST RESULTS

It has been shown in this paper that a fully adaptive three layer neural network
offers significant improvement in converged ERLE in the low to medium volume
range where acoustic, thermal and DSP related noise are significant. However,
when feedforward structures are utilized at high volume levels, little or no improve-
ment in converged ERLE is observed for filtered noise inputs, and this is confirmed
by both the Volterra models and the three neural network models presented in this
paper.

It appears that the room/speakerphone transfer function may contain poles when the
loudspeaker is at high volumes. This is most likely caused by resonances in the
plastics of the speakerphone and to a lesser extent poles in the room transfer func-
tion [6]. In order to more accurately model the room/speakerphone transfer func-
tion, a recursive structure may be necessary and this is the thrust for future work.
NARMAX [11] models, recursive neural networks, and nonlinear state-space filters
[12] are all possible candidates.

It is likely that the limitation in converged ERLE at high volumes is a combination
of nonlinear effects in the loudspeaker and undermodelling of resonances in the
plastic enclosure, and that the limitation due to nonlinearity is being masked by the
latter.

SUMMARY

Nonlinear distortions and undermodelling has been found to limit the converged
ERLE of acoustic echo cancellation in handsfree terminals. Loudspeaker distor-
tions include nonlinearity in the suspension system which will result in soft clip-
ping at high volumes. A piecewise linear/tan-sigmoid activation function has been
developed to more accurately model the soft clipping effect and offers a slight
improvement in converged ERLE. A third order Volterra model and three neural
network AEC models have been developed which indicate that a purely feedfor-
ward tapped delay line structure is not sufficient to accurately model the room/
speakerphone transfer function at high volumes resulting in no significant improve-
ment in converged ERLE. However, a 10 dB improvement in converged ERLE can
be obtained in the low to medium volume ranges where the primary signal to noise
ratio is small. It is proposed that at high volumes resonances in the plastic may be

253

masking the nonlinearity of the speaker and that a recursive structure incorporating
poles in the transfer function may be necessary to obtain further improvements in
converged ERLE.

ACKNOWLEDGEMENTS

The authors wish to thank NSERC, Carleton University and the Telecommunica-
tions Research Institute of Ontario for their financial support.

REFERENCES

[1]H.F. Olsen, Acoustical Engineering, Toronto, D. Van Nostrand Company, Inc., 1964.

[2] X. Y. Gao, W. M. Snelgrove, "Adaptive Linearization of a Loudspeaker", ICASSP 1991
Vol. 3, pp 3589-3592.

[3] O. Nerrand, P. Rousr.-1-Ragot, L. Personnaz, G. Dreyfus, "Neural Network Training
Schemes for Nonlinear Adaptive Filtering and Modelling", TJCNN 1991 pp 1-61 to 1-67.

[4] M. E. Knappe, Acoustic Echo Cancellation: Performance and Structures, M. Eng. Thesis,
Carleton University, Ottawa, Canada, 1992.

[5] H. Yuan, Dynamic Behavior of Acoustic Echo Cancellation. M. Eng. Thesis, Carleton
University, Ottawa, Canada, 1994.

[6] Y. Haneda, S. Makino, Y. Kaneda, "Common Acoustical Pole and Zero Modelling of
Room Transfer Functions", IFF F. Transactions on Speech and Audio Proc. Vol. 2, No. 2,
April 1994, pp. 320-328.

[7] Y Pao, Adaptive Pattern Recognition and Neural Networks. Addison-Wesley Publishing
Company, Inc.

[8] M.E. Knappe, R.A. Goubran,"Steady State Performance Limitations of Full-Band
Acoustic Echo Cancellers", Presented at ICASSP 1994. Australia.

[9] C. E. Davila, A. J. Welch, H.G. Rylander, "A Second Order Adaptive Volterra Filter with
Rapid Convergence", IFF. F. Transactions on Acoustics, Speech and Signal Processing,
Vol. ASSP-35, No. 9, Sept. 1987, pp. 1259-1263.

[10] S. Haykin, Adaptive Filter Theory, 2nd ed., Prentice-Hall, Toronto, 1991.

[11] S. Chen, S. A. Billings, "Representations of Nonlinear Systems: The NARMAX
Model", International Journal of Control. Vol. 49, No. 3, 1989, pp. 1013-1032.

[12] D. A. Johns, W. M. Snelgrove, A. S. Sedra, "Adaptive Recursive State-Space Filters
Using a Gradient-Based Algorithm", IFFF Transactions on Circuits and Systems. Vol. 37,
No. 6, June 1990, pp. 673-684.

254

CM m

-nnr> •VW—1

' E=Bldx/dt^ £ fM=BU I dx/dt

Electrical Circuit Mechanical Circuit

Figure 1. Loudspeaker Electro-mechanical Equivalent Model, e indicates the internal voltage
of the generator, r is the total electrical resistance of the generator and voice coil, L is the
inductance of the voice coil, i is the amplitude of the current in the voice coil, E is the voltage
produced in the electrical circuit by the mechanical circuit. B is the magnetic flux density in
the air gap, I is the length of the voice coil conductor, and x is the cone displacement. In the
mechanical circuit m is the total mass of the coil, cone and air load. rM is the total mechanical
resistance due to dissipation in the air load and the suspension system. CM is the compliance
of the suspension and^ is the force generated in the voice coil.

Audio
Amp Loudspeaker

(a)

^ Mic Amp

~\i/ ^-1 ^-n Microphone (Primary)
Hybrid Echo Canceller Acoustic Echo Canceller input

(b)
Echo
Canceller
Structure

Speaker Response
(Non-Linear)

31
Direct Path (Air)

Plastic Box
(Reflections,Vibrat]ons)

♦

Room Response

Figure 2. (a) Adaptive Echo Canceller Structure (b) Room/terminal Transfer Function is a
combination of Speaker Non-linearities, Direct path, Plastic effects and Room response.

255

100 taps

N.N. k?S
500 taps

Prc-trained NLMS

■111

TX.

600 taps in input

2 nodes in first layer

2 nodes in second layer

1 linear node ouput

(a) (b) (c)

Figure 3. (a) Series model has a (100,2,1) 100 tap pretrained 2 layer network in series with
the NLMS adaptive structure, (b) The parallel model has a (100,2,1) pretrained 2 layer net-
work in parallel with the NLMS structure, (c) The fully adaptive (600,2,2,1) three layer net-
work . In all cases the output neuron is linear and the hidden layers have a piecewise linear /
sigmoidal activation function. The inputs are obtained from a tapped delay line.

Piecewise Linear-SiRmoid Activation Function

Figure 4. Piecewise linear/sigmoidal activation function and corresponding delta . The linear
section with a value of +/-0.75 to +/-0.9 gave the best results in this study.

256

dc-3400 Hz

Handsfree
Terminal

d
LPFs

Mic Amp -.
M

A Spkr Amp

\—
1 *■

R

DAT
LPF —,
—.

1 '

M F

l> \—"
' '

h n n -^'z' 4
Computer J ^\ / \ 1

PIONEER
Audio Amp

rv
I BPF

300-3400 Hz
Dtn order e
switched c

mpncal
apacitor BPFs

DVM _ i
Noise
Source

Figure 5. Experimental Setup. Primary and reference signals are recorded on DAT and later
sampled to disk.

Converged ERLE for Three Commercial Hansdfree Terminals

10 10 10
Loudspeaker Power [W]

10'

Figure 6. Converged ERLE vs. loudspeaker power for three different commercially avail-
able handsfree telephone terminals.. An AEC using the NLMS algoritm shows a decrease in
ERLE as the volume increases At low volume levels, noise limits the achievable ERLE..

257

20
Comparison of Learning Curves for NLMS, Series, and Parallel Models

15-

10-

m 5 -

in
_i

w o-

-10-

-15

l; :::::::

a ■ : ; : : : :

I :::::: :
I :::::: :

I :::::: :
I : : : :

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

Figure 7. Convergence curves for the Series (dashed line) and Parallel (dotted line) models.
The NLMS convergence curve (solid line)is shown for comparison.

Converged ERLE for NLMS and 3 Layer Fully Adaptive Networks

10 . 10 10
Loudspeaker Power [W]

Figure 8. Converged ERLE plot vs. loudspeaker volume using a three layer fully adaptive
neural network. Three layer network(solid line) shows over 10 dB improvement in ERLE at
low to medium volumes. The NLMS algorithm (dashed line) is shown for comparison.

258

Minimum Error Training for Speech
Recognition

Erik McDermott & Shigeru Katagiri

ATR Human Information Processing Research Laboratories
Hikari-dai 2-2, Seika-cho, Soraku-gun,

Kyoto 619-02, Japan
tel +81-7749-5-1055; fax +81-7749-5-1008

Abstract

In recent years several research groups have investigated the
use of a new framework for minimizing the error rate of a classi-
fier. The key idea is to define a smooth, differentiable loss function
that incorporates all adaptable classifier parameters and that ap-
proximates the (non-smooth) actual performance error rate. Us-
ing a smoothed version of the actual error rate offers two main
advantages: 1) the loss function can be minimized using gradient-
based minimization methods, and 2) smoothing the error as cal-
culated over a finite training set helps approximate unseen data,
and thus can help generalization. This framework is applicable
to a variety of classifier structures, including feed-forward neu-
ral networks, Learning Vector Quantization classifiers, and Hid-
den Markov Models. Here we describe a particular application
in which a relatively simple distance-based classifier is trained to
minimize errors in speech recognition tasks. The loss function is
defined so as to reflect errors at the level of the final, grammar-
driven recognition output. We show how the loss function can
be made to reflect, not just correctness/incorrectness at the string
level, but also, for instance, a word spotting loss between the rec-
ognized string and the correct string. Thus, minimization of this
loss can explicitly optimize the word spotting rate.

1 Introduction
Within the framework of Bayesian decision theory, the error rate can
be defined along the following lines [4]. Suppose that in a classification
task of M categories, when we observe a feature vector x belonging to
category Ck and classify it as category Cj, we incur a loss 6jk:

6jk = j = k
(1)

0-7803-2026-3/94 $4.00 © 1994 IEEE 259

The expected loss, or risk, corresponding to this loss is

R{Cj\x) = Y.6ikp(Ck\x) (2)

where P(Ck\x) is the a posteriori probability of category Ck given x.
The goal is to choose the category Cj with the smallest risk. The Bayes
rule for classification, in its most general form, is thus

decide Cj if R(Cj\x) < R(Ck\x) for all * ^ j. (3)

For the above zero-one loss, this risk can be written as

R(Cj\x) = 1 - P(Cj\x) (4)

and the Bayes decision rule to minimize the overall classification risk is
to classify x as the category Cj with the largest a posteriori probability
P(C,-|x):

decide Cj if P(Cj\x) > P(Ck\x) for all it £ j. (5)

The implementation of the Bayes decision rule requires that we know
the a posteriori probabilities for the categories in the problem. In most
practical situations, it is difficult to estimate these probabilities, as the
form of the true distributions is rarely known, and even when it is known,
only a finite set of samples is available for estimation.

An approach that has arisen over the past few years is to overcome
the above problems by directly formulating the classifier design problem
as an error rate minimization problem. We refer to this approach al-
ternatively as Minimum Classification Error / Generalized Probabilistic
Descent (MCE/GPD) [9] and, more simply, as minimum error train-
ing. The key idea is to directly relate the design of the classifier to the
quality of the actual classifier performance, or more specifically, to de-
fine in terms of the system parameters a loss function that is both 1) a
close approximation of the real classification error rate, and 2) a smooth,
differentiable function of the system parameters that can be used for
practical optimization. In this paper we describe the theoretical frame-
work of this approach applied to one particular classifier structure, a
prototype-based system which incorporates Dynamic Time Warping'to
link phonetic states according to the grammar of the task at hand.

Note that the second version of the Bayes decision rule results from
the use of the zero-one loss function above. Other losses may imply
different uses of the a posteriori probabilities, according to (2). In speech
recognition, and pattern recognition in general, it may be desirable to
consider certain mistakes as more costly than others*. In this spirit
we show how the MCE/GPD framework can accomodate losses that are
more general than the 0-1 classification loss used so far, and thus capable
of representing more fine-grained differences between categories.

260

Here, we present experimental results illustrating some of the prop-
erties of the minimum error training approach applied to a multi-state,
prototype-based classifier, and show the feasibility of training using the
more general loss function.

2 Prototype-Based Minimum Error Clas-
sifier

We here describe the minimum error training framework, from the per-
spective of a prototype-based application of this framework, the Prototype-
Based Minimum Error Classifier (PBMEC), first described in [11]. This
classifier uses collections of reference vectors associated with sub-phonemic
states to calculate distances between a speech token and the categories
of the task. The states are linked according to the grammar of the task,
and a Dynamic Time Warping process will be used to find the state se-
quence that has the closest, match to a given speech token. This state
sequence will be given as the classification of the token. In the follow-
ing, we represent one such token using a variable xf, which corresponds
to a finite sequence of observations, (xi,..., xt,..., XT), where T is the
duration of the token. T could change from token to token.

The framework for optimization used here, Generalized Probabilistic
Descent (GPD) [6]-[7], is closely related to stochastic descent methods
[5] and to what many researchers refer to as "online back-propagation."
GPD can be described as the following adaptation process. For a given
loss function ^.(x^, A), where xj is an input token belonging to category
k, and where A represents the system parameters, we want to minimize
the expectation of overall loss, £(A), which is the loss lk() integrated
over all M categories and their probability densities:

£(A)
M .

k J

4(xf,A)p(x[|C't)r/x (6)

where P(Ck) and p(x[\Ck) are the class a priori and conditional proba-
bilities respectively. For an infinite sequence of random samples xf (r),
and a suitably chosen step size sequence e(r) [7], adapting the system
parameters according to

A(T + 1) = A(r) - e(r)V4(x?>), A(r)) (7)

has been shown to converge to a local minimum of £(A). Thus, though
the overall loss is never directly calculated, it can be minimized by us-
ing the derivative of the local loss £k(). In practice, as we don't have
an infinite number of training tokens, random samples from the avail-
able training data are presented over and over for a pre-set number of

261

iterations, and the training target is to minimize the empirical error rate,

M Nk 1 "' ").

(8)

where xj(i, k) is the i-th token of category it, Ar is the total number
of training samples and Nk is the number of training samples for each
category k.

Given this approach to optimization, the next question is the nature
of the local loss function tk(x[,A) to use in GPD optimization. If the
goal is accurate pattern classification, Bayes decision theory suggests a
0-1 (0 for correct, 1 for incorrect) loss function, related to 6jk described
above. However, GPD requires that the loss function be a smooth (i.e.
first order differentiable) function of the input token xj and the system
parameters A. The loss function defined in [6]-[7] thus uses a smoothed
version of the "ideal", non-smooth, 0-1 loss. The use of this particu-
lar loss function is referred to as Minimum Classification Error (MCE)
learning; for a smoothed loss that closely reflects the actual 0-1 loss,
minimizing this loss using GPD will ideally yield a classifier that closely
obeys the Bayes decision rule in its classifications, and thus minimizes
the expected classification error rate.

Defining the zero-one classification loss function first involves defin-
ing, for each category j, a discriminant function Hj{xJ) reflecting the
extent to which token xj belongs to the category. This function is de-
termined by the classifier structure and parameters A (we drop the use
of the general term A in the following, and instead refer to specific clas-
sifier parameters). The PBMEC discriminant function for each category
is defined in terms of a DTW procedure to link reference vector based
phoneme models together according to the grammar of the task at hand.
At the lowest, level, the phoneme models are taken to consist of a con-
nected sequence of sub-phonemic states, illustrated in Figure 1. Each
state is assigned a number of reference vectors, analogous to the mean
vectors used in a continuous Hidden Markov Model. These are used to
generate an Lp norm-based state distance e(x,,s), which is a function of
a single feature vector x(at time t and reference vectors belonging to
the state s:

e(xt,s) =
i.

Dte-rn'fsn-1^-!-; (9)

where rf denotes the (adaptable) i-th reference vector of state s, S;' is
an adaptable positive definite matrix corresponding to r', and /, is the
number of the reference vectors assigned to s. For a large C, the state
distance becomes the distance to the closest reference vector, and each
state can then be seen to correspond to a category in a Learning Vector
Quantization classifier [8] [11]. A matrix of distances Dj,r,s is defined to

262

be a matrix where each position (t,s) contains e(xt,s) for the states of
category j. The discriminant function for each phoneme/word/phrase j
can then be defined as:

9j(xT) £[W;,T,S)]~ (10)

where Vg(DjtT,s) represents an accumulated sum, or path distance, along
a possible DTW path 0 through a region of Dj:T,s, and where S is the
total number of states in category j. The decision rule here (rather than
that described in (3) will be to choose the category with the smallest
discriminant, function value:

decide Cj if gj(xj) < gk(xj) for all k / j. (11)

Lp norm of state distances propagated through network

/bl/ /b2/ A>3/ /b4/
sub-phonemic states

Reference vectors
assigned to each state

Figure 1: Structure of classifier at finest grain

Assuming that a token xf of category k is presented to the classifier
for training, and with M as before denoting the number of categories in
the problem, a misclassification measure can then be defined as:

dktf) = gktf)-
M-l E»(*?r*

it*
(12)

For a large ip, this function will be negative for correct classifications
(9k(xi) < 9j(x-i)), and positive for incorrect classifications (öjt(xf) >
9j(xJ))- Depending on the grammar being used, the number of cate-
gories may be extremely large; thus, it is practical to assume a large ip
here, and only consider the top incorrect category, or top few incorrect
categories, in calculating the misclassification measure.

263

A loss function can now be defined in terms of the misclassification
measure rfjt = rft(x^). Many choices exist for this function; for instance,
a simple zero-one sigmoid:

l*{db) 1 + e- -adk
(13)

with a large a. One can see that this loss approximates an ideal binary
loss function well and is continuous.

The adaptation process is then to perform GPD according to equa-
tion 7. By using different grammars, PBMEC can recognize and optimize
at the level of a large variety of speech units, including connected words
and phrases in continuous speech.

3 Practical Application of PBMEC to Con-
tinuous Speech Recognition

3.1 Use of Finite State Machine
A grammar-generated finite state machine linking phonetic states to-
gether is used to embed a grammar into the DTW matching procedure.
This makes it possible to apply PBMEC to a variety of problems in con-
tinuous speech recognition. An example of a finite state machine is given
in Figure 2. The categories of the task are taken to be all strings allowed
by the finite state machine. The discriminant functions i/j for each cat-
egory j are defined over one particular set of paths through the finite
state machine. In practice, though, only the top matching categories
need to be considered.

A time-synchronous DTW pass through the network similar to the
Token Passing algorithm [14] was used, in tandem with an A* based N-
best algorithm. During the learning phase, the top matching N incorrect
categories will be pushed away in proportion to the derivative of the
loss, while the correct category is pulled closer, also in proportion to the
derivative of the loss; furthermore, categories will be pushed away only
along the best within-category path.

3.2 A more general MCE/GPD loss function incor-
porating lexical / syntactic / semantic differ-
ences between categories

In MCE/GPD so far, whenever a category is mis-recognized as another
category, the (ideal) loss is considered to be 1. This corresponds to
the zero-one loss 6jk mentioned above in the description of the Bayes
decision rule. However, other losses can be used in the same Bayesian
decision framework, and there are reasons to believe that the zero-one
loss may be somewhat limited as a measure of performance. It may be

264

©-©-©-©-©

v\®-©-©-©-©^/

Figure 2: The grammar represented in a Finite State Machine determines
how to concatenate different linguistic symbols. This defines the super-
structure of the classifier. With the simple grammar illustrated here,
any word can follow any other word, with the possible intervention of a
garbage model, '*'.

desirable to consider more revealing error counts when comparing correct
and incorrect strings, and to make the MCE/GPD classifier sensitive to
these differences. We refer to these differences as inter-category symbolic
distances. They could represent distances between syntactic parse trees,
or word spotting distances between two strings of phonemes/words, using
one of the usual ways of calculating deletion, insertion and substitution
errors.

We thus take usual zero-one 8jk loss to represent a more general loss,
corresponding to an inter-category symbolic distance of the kind just de-
scribed. The general loss 6jk can then be used to weight the MCE/GPD
loss in a continuous manner. For an input token x of category k with
discriminant function #j;(x), we have the usual misclassification measure
(Equation 12) and typical loss function 4(x) (Equation 13). Then, we
consider the expression

■(«)-

££.«,<*)- (,4)

as a measure of the extent to which the incorrect category i is rep-
resented in the bracketed term of the misclassification measure <4(x),
from (12) above. For a large V», this expression will be close to one for
the top matching incorrect category, and close to 0 for all other cate-
gories. Multiplying this expression, for each incorrect category i, by the
inter-category symbolic distance 5,-t, and summing over all incorrect cat-
egories thus gives an aggregate, weighted symbolic distance between the
correct category k and all other categories. Multiplying this aggregate

265

distance by the usual loss fj.Q gives the new loss (k a

tkAM*)) = ^A/ £*(rf*(x)) (15)

In the simplest ca.sc, if we take if' to be very large, the new loss reduces
to

IkAdkW) = 6ikek(dk(x)), (16)

where 8ik is the symbolic distance between the correct category k
and the best matching incorrect category i. The new loss can be used
for MCE/GPD adaptation in the same manner as before. Note that if
all the inter-category distances, 8u-,i ^ k, are set to 1, the new loss
becomes equal to the old loss.

3.3 Experiments in Continuous Speech Recognition

The experiments we describe here concerned the recognition of speech
from a database of continuously spoken sentences from the ATR confer-
ence registration task, spoken by 9 female speakers. We describe experi-
ments with this task to illustrate the nature of minimum error training,
and to contrast training at the level of word-spotting, using the extended
MCE loss, with string-level training using the usual zero-one loss.

Input speech was sampled at 12 kHz, Hamming windowed using a
window size of 20 ms, and a 256-point FFT computed every 5 ins. Six-
teen Melscale coefficients were then generated from the power spectrum
for each frame. Seventy words were selected from the conference reg-
istration task vocabulary as keywords. A garbage model was used to
describe sequences of phonemes not covered by this 70 word vocabulary.
The grammar of the task was then defined as suggested above, allow-
ing any word to follow any other word, with the possible intervention of
garbage phoneme sequences. MCE/GPD training was performed sub-
ject to two separate criteria: 1) optimal string (sentence) recognition
and 2) optimal word spotting recognition. In the latter mode, the inter-
category symbolic distance 8JU was set to be the word-spotting string
distance between the strings j and k, calculated using a DP procedure.
Thus, 8jic as used in the second criterion is a finer measure of string
similarity than the all or nothing, 0-1 6jk used in the first criterion.

One hundred and ten sentences were available for each of the nine
speakers; half of these sentences were used for training and half for test-
ing. The reference vectors were initialized using K-mcans clustering.
The training procedure was performed for both criteria of optimal string
recognition and optimal word spotting recognition.

Figure 3 shows the actual string accuracy, word spotting accuracy,
and modelled accuracy (derived from the empirical error rate defined in
(8)), for both training and testing data, for PBMEC trained using both
string and word level training criteria. The results show good matches

26S

Training data Testing data

Training criterion
string word modelled
accuracy accuracy accuracy

string word
accuracy accuracy

string-level 56.2 88.2 56.3 14.2 69.8

word-level 48.4 88.9 89.0 14.8 70.3

Figure 3: Recognition accuracies for string- and word-level criteria

between the actual string accuracy and the modelled loss on the one
hand, and between the actual word spotting accuracy and the modelled
loss, on the other.

4 Conclusion

We have described the practical application of MCE/GPD to a prototype-
based classifier. The classifier incorporates a grammar-generated finite
state machine linking different phonetic states together, and can be used
to classify continuously spoken sentences. We have shown how this clas-
sifier can be trained to minimize the classification loss using MCE/GPD
optimization at the level of the final, grammar driven recognition out-
put. We have also described how loss functions reflecting the lexical,
syntactic or semantic significance of different classification mistakes can
be integrated into the MCE/GPD framework. In particular, we have
illustrated the feasibility of directly optimizing the word spotting rate.
A word spotting accuracy of 70% was obtained for a difficult continuous
speech recognition task. Incorporation of additonal constraints into the
classifier, such as penalties for word transitions, may improve this accu-
racy, and reveal greater differences between training to optimize word
spotting performance, and training to optimize sentence recognition.

References

[1] Amari, S. (1967). A Theory of Adaptive Pattern Classifiers. IEEE
Transactions, EC-16, No. 3, pp. 299-307.

267

[2] Chang, P.-C. and Juang, B.-II. (1992). Discriminative Template

Training for Dynamic Programming Speech Recognition Proc IEEE
ICASSP-92, pp. 1:493-6.

[3] Chou, W., Juang, B.-H. and Lee, C.-H. (1992). Segmental GPD
Training of HMM Based Speech Recognizer. Proc IEEE ICASSP-
92, pp. 1:473-476.

[4] Duda, R.O. k Hart, P.E. (1973). Pattern Classification and Scene
Analysis. John Wiley k Sons.

[5] Fu, K.-S. (1968). Sequential Methods in Pattern Recognition and
Machine Learning. Academic Press, 1968.

[6] Juang, B.-H. and Katagiri, S. (1992). Discriminative Learning for
Minimum Error Classification. IEEE Transactions on Signal Pro-
cessing, vol. 40, No. 12, December 1992.

[7] Katagiri, S., Lee, C.-H. and Juang, B.-II. (1990). A Generalized
Probabilistic Descent Method. Proc. of Acoustical Society of Japan,
Fall Meeting, pp. 141-142.

[8] Katagiri, S., Lee, C.-H. and Juang, B.-II. (1991). Discriminative
Multilayer Feedforward Networks. Proc. 1991 IEEE Workshop on
Neural Networks for Signal Processing, August 1991, pp 11-20.

[9] Katagiri, S., Biem, A., and Juang, B.-II. (1993). Discriminative
Feature Extraction, in "Artificial Neural Networks for Speech and
Vision," Chapter 18. Ed. R. Mammone, Chapman k Ball pp 278-
293.

[10] Komori, T, and Katagiri, S. (1992). Application of GPD Method

to Dynamic Time Warping-based Speech Recognition. Proc IEEE
ICASSP-92, pp. 1:497-500.

[11] McDermott, E. k Katagiri, S. (1992). Prototype-Based Discrimina-
tive Training for Various Speech Units. Proc. IEEE ICASSP-92 np
1:417-420.

[12] Rainton, D. and Sagayama, S. (1992). Minimum Error Classifica-
tion Training of HMMs- Implementation Details and Experimental
Results. Journal of the Acoustic Society of Japan, Vol 13 No 6 pp
379-387, November 1992. " '

[13] Su, K.-Y. and Lee, C.-H. (1991). Robustness and Discrimination
Oriented Speech Recognition Using Weighted HMM and Subspace
Projection Approaches. Proc. IEEE ICASSP-91, pp. 1:541-544.

[14] Young, S., Russell, N.H. and Thornton J.II.S. (1991) The use of syn-
tax and multiple alternatives in the VODIS voice operated database
inquiry system. Computer Speech and Language 5 , 65-80.

268

CONNECTIONIST MODEL COMBINATION FOR
LARGE VOCABULARY SPEECH RECOGNITION

M. M. Hochberg G.D.Cook S.J. Renais A.J.Robinson
Cambridge University Engineering Department

Trumpington Street, Cambridge CB2 1PZ, England

Abstract-Recent reports in the statistics and neural networks literature have
expounded the benefits of merging multiple models to improve classification
and prediction performance. The Cambridge University connectionist speech
group has developed a hybrid connectionist-hidden Markov model system for
large vocabulary, talker independent speech recognition. The performance of
this system has been greatly enhanced through the merging of connectionist
acoustic models. This paper presents and compares a number of different ap-
proaches to connectionist model merging and evaluates them on the TEVQT
phone recognition and ARPA Wall Street Journal word recognition tasks.

INTRODUCTION

An acoustic pre-processor or front-end is a common feature of all large vocabulary
speech recognition systems. The front-end maps the sampled waveform onto a lower-
dimensional representation of the acoustic signal. Typically, the specific mapping is
selected as the front-end which performs best on some development test set. Since
different front-ends may provide better representations for different acoustic events
(e.g., phoneme class, talker, etc.), it would seem advantageous to sensibly merge
multiple front-ends and their associated models.

There has been speech recognition research into merging multiple sources of in-
formation. For example, work at BBN has addressed merging the parameters of
speaker-dependent hidden Markov models (HMMs) to obtain a speaker-independent
system [1] and Cohen and Franco at SRI have merged a conventional HMM and
multi-layer perceptron [2]. Recently, model combination has been shown to be a
promising area of neural network research. Techniques such as Generalized Stack-
ing [3] and Bayesian approaches [4] have been explored as a means to most effectively
utilize all the available information. This paper presents an application of connec-
tionist model merging to speech recognition. Multiple acoustic representations are
merged resulting in a significant reduction in the recognition error rate.

THE HYBRID CONNECTIONIST-HMM

The hybrid connectionist-HMM employs the same basic framework as described
in [5], but utilizes a different connectionist component. The speech recognition sys-

0-7803-2026-3/94 $4.00 © 1994 IEEE 269

tem uses a recurrent network to map a sequence of acoustic vectors to a sequence
of posterior phone probabilities. The network outputs are used as estimates of the
observation probabilities within an HMM framework, i.e., the observations are con-
sidered as a stochastic process on a non-observable, first-order Markov chain. Given
new acoustic data and the connectionist-HMM framework, the maximum a posteriori
phone or word sequence is then extracted using standard Viterbi decoding techniques.

The basic acoustic modeling system is illustrated in Figure 1. At each 16ms frame,
an acoustic vector, u(f), is presented at the input to the network along with the
previous state vector, x(f - 1). These two vectors are passed through a single-layer,
fully-connected, feed-forward network to give the output vector, y(r), and the next
state vector, x(f). Forward acoustic context is modeled by expanding the input vector
to cover additional frames and by delaying the target. The state vector provides the
mechanism for modeling the dynamics of the acoustic signal in various contexts.

y(t) x(t)

???

u(t) x(t-1)

Time

delay

Figure 1: The recurrent net used for phone probability estimation.

Each output channel corresponds to a particular phone in the phone set. The use of the
softmax nonlinearity for the output nodes with the cross-entropy training criterion
implies that the outputs can be considered estimates of the posterior probability
of the phones given the (local in time) acoustic data. This network is trained by
back-propagation through time. (A more complete description of the network may
be found in [6].)

THE MODELS

Because the goal of this work is to reduce the recognition error rate through merging
multiple recurrent networks, it is important that each portion of the speech signal can
be modeled by at least one of the individual networks. In the experiments presented
here, the parameters for each network are estimated on the same speech data, but pro-
cessed with different front-ends. Two successful spectral representations have been
found to be a 20 channel mel-scaled filter bank with voicing features [7] and 12th or-
der cepstral coefficients derived from perceptual linear prediction [8]. The filter bank
and cepstra are referred to in this paper as MEL+ and PLP, respectively. In addition,
because the recurrent network is time asymmetric, training the network to classify

270

forward in time will result in different dynamics than training to classify backwards
in time. Based on the above considerations, four networks were constructed from the
possible representations; FORWARD MEL+, BACKWARD MEL+, FORWARD PLP, and
BACKWARD PLP.

MODEL COMBINATION

Probability Domain Merging

The most straightforward approach to merging the recurrent networks is through a
linear combination of the model outputs. In the most general framework, the merged
estimate of the posterior probability of phone i given the acoustic data up to time t is
given by

K

where yf\t) is the estimate of the &th model and ft* are the merging weights. Note
that the weights can be dependent on the input data, e.g., ft* = A*(u(0)- Sufficient
conditions on the ßs to guarantee a statistical interpretation of the output are that
they are tied across phones (i.e., fe = ft), sum-to-one (i.e., Sjtfe = 1)> an0< are
non-negative. With these conditions, the merged output will meet the constraints
needed for interpretation of the output as the posterior phone probabilities. As is
seen in the results section, relaxing these constraints does not necessarily lead to
poorer performance.

Log-Probability Domain Merging

For computational reasons, the mapping of the phone probabilities into recognized
word strings is usually performed in the log-probability domain. This has led to
experiments evaluating merges performed after the conversion of the network output
to the log domain, i.e.,

K

log)-,« = X>*log>f(0. (2)

With this approach, it is difficult to assign a probabilistic interpretation to the merged
outputs. However, if the models are assumed to be independent, then the estimated
joint likelihood of the different data is proportional to the product (or sum in the
log-domain) of the network outputs.

Merge Criteria

Given the connectionist-HMM framework, there are number of different approaches
to determine the J3s. In all cases where training data was required to learn the merge

271

parameters, the data was taken from an independent development set. Although the
amounts of data in the training set was quite large, this approach was taken to further
reduce the chance of obtaining a merge with substantial bias.

Uniform. The first attempt at combining networks assumed the merge weights were
independent of the data with uniform probabilities, i.e., ßik = 1 / K. This approach
maintains the probabilistic interpretation of the merged output in the probability
domain. Good initial results using this simple merging approach [9] has led to the
evaluation of more complex merging techniques.

Linear Regression. Recent work has shown that merging regression predictors
through linear regression (referred to as Stacked Regressions) produce an estimator
that is better than any of the individual estimates [10]. The regression approach
determines the /3s through minimizing the sum-squared error

EE Mo-Eft^« 0)
t i \ k=\)

on a development set. Here, y is the desired target and the regression parameters, ft*,
are assumed to be fixed after training. In [10], Breiman found that constraints on the
j3s improved performance. In this paper, the regression merging is evaluated with
and without constraints such that the merge weights are tied across models and/or
sum-to-one. It was rarely found that any of the merge parameters were ever less than
zero.

Mixture of Experts. This framework (see Figure 2) employs a gating network to
determine data-dependent merge parameters. The approach is equivalent to Jordan
and Jacob's mixture of experts [11] with fixed experts. The data-dependent merging
coefficients can be determined by maintaining a probabilistic interpretation and
employing the expectation-maximization (EM) algorithm [12]. Let U = {u(t)} be
the set of acoustic training data for each frame and let C = {c(t)} be the corresponding
phone. Assuming each frame is independent results in the likelihood L(U) given as

T

Um = P(U\C, Y) = Y[p(u(t)\c(t), y^(0) (4)

where Y = {y^(0} represents the outputs of all the models, i.e, yM(t) = {y(m)(f)}.
The merging comes about by assuming that p(u(r)|c(0,y^(0) is a mixture density
of the form

K

p(u(t)\c(t),yM(t)) = 53/>(SKi|c(0.yflf(0)/»(u(0|a4.c(r),y9f(0) (5)
*=i

where 5W* represents the Mi model. Here, the mixing coefficients /?(5V4|/,y^(0) =
j3,-jt(u(0). As in [11], a generalized linear model is used as the gating network to
compute /3;t(u(f)).

272

Figure 2: Mixture-of-experts framework.

The generalized EM algorithm [12] is an iterative approach used to compute the
maximum likelihood estimates of the gating network parameters. Each iteration
applies two conceptual steps. The E-step computes the posterior probability of each
model

ßiäu(t))y%(t)
p(Mk\u(t),c(t)) =

l£,&.(u(O}>$)(0
(6)

for each pair {u(f), c(f)} in the development set. The M-step estimates the parameters
of the generalized linear model using the Iteratively Re-weighted Least Squares
procedure (IRLS) [11] with u(t) as the inputs and /?(5l4|u(f), c(t)) as the desired
outputs. This procedure results in a method for learning the parameters of the gating
network for each phone. The procedure insures that the merging weights do süm-to-
one.

The standard mixture of experts approach has the weights tied across models. This is
accomplished by assuming /?(5V4|c(f), u(t)) = /?(5l4|u(r)) and results in many fewer
free parameters. A variation of this approach is to replace the input of the gating
network with the output of one of the networks. In the experiments described later
in the paper, the gating network inputs were either three contiguous frames of the
acoustic feature vector or a single frame of a network output.

In addition to the above variations, the case where there are no inputs was also
considered. In this case, the gating network outputs constant values and the EM
algorithm [12] specifies an iterative solution for the maximum likelihood coefficients.
The parameter update equation becomes simply

h-±r. ftoTO
rtf£li/^n)(')

%),; (7)

273

where ß represents the updated estimate and 8 is the Kronecker delta function.

EXPERIMENTAL RESULTS

Recognition Tasks

TIMIT. TIMIT is one of the standard speech corpora for the evaluation of phone
recognition systems. It is divided into 462 training speakers and 168 test speakers.
Each speaker utters two calibration sentences and eight sentences that are used in
these evaluations, giving a training set of 3696 sentences and 1344 test sentences.
In the experiments described here, 1152 of the test sentences were used for cross-
validation estimation of the merging parameters and 192 (the core test) sentences
were used for testing.

Wall Street Journal. The Wall Street Journal (WSJ) is the current ARPA large-
vocabulary recognition task. The training data used was the short-term speakers
from the WSJO corpus consisting of 84 speakers uttering a total of 7,200 sentences.
The November 1993 spoke 5 development test data was used for estimation of the
merging parameters. This data was collected from 10 talkers and 216 sentences
using a Sennheiser microphone. Results are reported for the November 1993 spoke 6
development test. This test has 202 sentences from the same 10 talkers as spoke 5.
The test are from a closed 5,000 word, non-verbalized punctuation vocabulary using
the standard bigram language model [13].

Results and Analysis

Tables 1 and 2 show the TIMIT and WSJ results for the various approaches to model
merging. In the tables, frame rate is the classification rate of the merged system on
the development data, error rate is the phone or word recognition error rate on the
test set computed as

insertions + # deletions +'# substitutions ...
100 x — (8)

phones

and improvement is measured relative to the average error rate. For the EXPERTS
merges, ACOUS., PROB., MEL+, and PLP indicate the type of inputs to the gating
network. For the TIMIT experiment, only the FORWARD AND BACKWARD MEL+
front-ends were merged.

The tables clearly show the benefits of model merging. Each of the networks trained
on different front-ends have similar performance, but the frame rate is substantially
improved by merging the network outputs. This improvement is reflected in the error
rate by a reduction of 9% and 27% for the TIMIT and WSJ tasks, respectively. For
both tasks, the simple uniform merging accounts for most of the improvement and
the best results were achieved by merging in the log-probability domain.

For the regression merge approach, not much variation in either the frame rate
or the recognition error rate is observed across the different types of constraints.

274

Merge Type Constraints Frame Rate % Error Rate % Improv. %

FORWARD ONLY - 65.9 31.7 -
BACKWARD ONLY - 65.7 31.8 -
AVERAGE - 65.8 31.8 -
UNIFORM Tied, Sum 69.3 29.4 7.5

UNIFORM (LOG) Tied 69.2 29.0 8.8

REGRESSION Tied, Sum 69.3 29.3 7.9
REGRESSION Sum 69.3 29.3 7.9
REGRESSION Tied 69.3 29.1 8.5

REGRESSION 69.7 29.3 7.9
EXPERTS (ACOUS.) Tied, Sum 69.3 29.2 8.2
EXPERTS (ACOUS.) Sum 69.5 29.4 7.5
EXPERTS (PROB.) Tied, Sum 69.4 29.1 8.5
EXPERTS (PROB.) Sum 69.0 29.5 7.2

Table 1: TIMIT phone recognition results for different merge approaches. Frame rate is
computed on development data and error rate is computed on test data.

Merge Type Constraints Frame Rate % Error Rate % Improv. %

FORWARD MEL+ - 78.1 15.0 -
FORWARD PLP - 76.6 15.1 -
BACKWARD MEL+ - 73.8 15.5 -
BACKWARD PLP - 76.1 14.4 -
AVERAGE - 76.2 15.0 -

UNIFORM Tied, Sum 82.5 11.4 24.0
UNIFORM (LOG) Tied 82.8 11.0 26.7
REGRESSION Tied, Sum 82.5 11.5 23.3
REGRESSION Sum 82.8 11.3 24.7
REGRESSION Tied 82.6 11.7 22.0
REGRESSION 83.1 11.4 24.0
EXPERTS (MEL+) Tied, Sum 82.7 11.4 24.0
EXPERTS (PLP) Tied, Sum 82.7 11.4 24.0

Table 2: WSJ word recognition results for different merge approaches. Frame rate is computed
on development data and error rate is computed on test data.

275

This indicates that over-fitting of the training data does not seem to be a problem.
Examination of the sum-squared error obtained from (3) in the merge process also
shows little variation for the different constraints or from the uniform case. This
implies that - at least for these networks - little improvement over the uniform
merge can be expected.

TIMIT results obtained with the mixture of experts approach show that a single
gating network achieves better performance than a set of separate gating networks
for each phone. This is most likely due to insufficient training data to estimate the
multiple gating network parameters. Even with large amounts of training data, some
phones occur very infrequently which makes it difficult to estimate the parameters of
a gating network. Conditioning the mixture of experts gating network on the acoustic
signal or network output achieved similar performance on TIMIT For WSJ, using
MEL+ or PLP features as inputs to the gating network had no effect on the recognition
results.

As indicated in Tables 1 and 2, simple model merging improves performance but
the use of more complex merging strategies does not significantly improve the
recognition results. Analysis of the TIMIT task indicates that the different merge
types are all reasonably close to the optimal merge. Figure 3 shows the results of
a line search on the merge parameter with the tied and sum-to-one constraints. It

3? I 1 1 1

31.5 . \ - Probability Domain Merge /-

\\ ■ Log-Probability Domain Merge /

31

30.5

30

\ \ X \ \ '\ \
\ \
\ \

\ \
\ \
\ \
\ \ "\. \ \ \.

Regression Merge Value /

ft
/i

/1
1 i

1 i
j i
f i

J i

29.5
\

N \ / /

29

Y V__^^ / y

28.5 ■ ■ i .
0.2 0.3 0.4 0.5 0.6 0.7

Forward Mixing Weight
0.8 0.9

Figure 3: Error rate versus forward network mixing coefficient for probability and
log-probability domain mixing on the TIMIT task.

is easy to see that the best performance is certainly in the region around 0.5 (the
uniform merge). The regression estimate of the merge parameter shown in the figure
is 0.51 and the mixture of experts has a mean value of 0.52 with variance 0.005. This
implies that better/additional acoustic models are necessary to greatly improve the

276

TIMIT results.

To determine which front-end merge provides the most improvement, forward and
backward models with the same spectral representation were merged. Similar merges
were performed across spectral representations with the same time indexing. The
results are shown in Table 3 and indicate that both the variation in spectral repre-
sentation and processing of different data are important to the merging process. In
addition, merging all front-ends resulted in better performance than any of the subset
of the front-end merges.

Merge Type
AVERAGE FRONT-END MERGE

AVERAGE TIME MERGE

ins. %
1.0
0.8

sub. %
8.5
8.3

del. %
3.4
3.6

errors %
12.8
12.7

Table 3: Connectionist model subset merging results on the WSJ word recognition task.

DISCUSSION

This paper investigated various approaches to merging multiple, different acoustic
models within the hybrid connectionist-HMM framework. Given the chosen acoustic
models (recurrent networks), it was found that

• merging results in a significant reduction in error rate,
• the uniform, linear regression, and mixture of experts approaches all had

similar performance, and
• the log-probability domain merging gave consistently better results.

The results presented here indicate the potential of this model merging approach.
The fact that the linear regression and mixture of experts approaches did not do
much better than the uniform merge may be a result of the selected networks.
These techniques should show more significant gains when merging networks with
different performance levels. As Figure 3 shows, the uniform merge of the log-
domain probabilities may not be the best choice and research is planned in this
area. In conclusion, this work shows model merging within the hybrid connectionist-
HMM framework to be a very powerful mechanism for improving speech recognition
performance. TIMIT results obtained with the merged system are the best known to
the authors. Even with orders of magnitude fewer parameters, the merged system is
competitive with state-of-the-art HMM systems on the WSJ task.

ACKNOWLEDGEMENTS

This work was partially funded by ESPRIT project 6487 (WERNICKE). Two of
the authors (T.R. and S.R.) are supported by SERC fellowships. The authors would
like to acknowledge MIT Lincoln Laboratory for providing the language model and
Dragon Systems for providing the pronunciation lexicon for the WSJ task.

277

REFERENCES

[1] F. Kubala and R. Schwartz, "A new paradigm for speaker-independent training,"
in 1991 International Conference on Acoustics, Speech, and Signal Processing,
(Toronto, Canada), pp. 833-836, IEEE, May 1991.

[2] S. Renals, N. Morgan, M. Cohen, and H. Franco, "Connectionist probability
estimation in the Decipher speech recognition system," in 1992 International
Conference on Acoustics, Speech, and Signal Processing, (San Francisco, Cal-
ifornia), pp. 601-604, IEEE, Mar. 1992. Volume 1.

[3] D. H. Wolpert, "Stacked generalization," Neural Networks, vol. 5, no. 2,
pp. 241-259,1992.

[4] W. Buntine, "Learning classification trees," in Artificial Intelligence Frontiers
in Statistics III(D. J. Hand, ed.), pp. 182-201, Chapman & Hall, 1993.

[5] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A Hybrid
Approach. The Kluwer International Series in Engineering and Computer
Science. VLSI, Computer Architecture, and Digital Signal Processing, Boston,
Massachusetts: Kluwer Academic Publishers, 1994.

[6] A. J. Robinson, "An application of recurrent nets to phone probability esti-
mation," IEEE Transactions on Neural Networks, vol. 5, pp. 298-305, Mar.
1994.

[7] T. Robinson, "Several improvements to a recurrent error propagation network
phone recognition system," Tech. Rep. CUED/F-INFENG/TR.82, Cambridge
University Engineering Department, Sept. 1991.

[8] H. Hermansky, "Perceptual linear predictive (PLP) analysis of speech," Journal
of the Acoustical Society of America, vol. 87, pp. 1738-1752,1990.

[9] M. M. Hochberg, S. J. Renals, and A. J. Robinson, "ABBOT: The CUED hybrid
connectionist-HMM large-vocabulary recognition system," in Proc. of Spoken
Language Systems Technology Workshop, ARPA, Mar. 1994.

[10] L. Breiman, "Stacked regressions," Tech. Rep. 367, Department of Statistics,
University of California, Berkeley, August 1992.

[11] M. I. Jordan and R. A. Jacobs, "Hierarchical mixtures of experts and the EM
algorithm," Neural Computation, vol. 6, pp. 181-214, Mar. 1994.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from
incomplete data via the EM algorithm (with discussion)," J. Roy. Statist. Soc,
vol. B39, pp. 1-38, 1977.

[13] D. B. Paul and J. M. Baker, "The design for the Wall Street Journal-based
CSR corpus," in Proc. Fifth DARPA Speech and Natural Language Workshop,
(Harriman, New York), pp. 357-362, DARPA, Morgan Kaufman Publishers,
Inc., Feb. 1992.

278

NEURAL TREE NETWORK/VECTOR
QUANTIZATION PROBABILITY

ESTIMATORS FOR SPEAKER
RECOGNITION

Kevin Farrell, Stephen Kosonocky, and Richard Mammone
CAIP Center, Rutgers University

Core Building, Frelinghuysen Road
Piscataway, New Jersey 08855-1390

Phone: (908) 445-0573, FAX: (908) 445-4775
email: farrell@caip.rutgers.edu

Abstract - A new classification system for text-independent speaker
recognition is presented. This system combines the output proba-
bilities of distortion-based classifiers and a discriminant-based clas-
sifier. The distortion-based classifiers are the vector quantization
(VQ) classifier and Gaussian mixture model (GMM). The discrimin-
ant-based classifier is the neural tree network (NTN). The VQ and
GMM classifiers provide output probabilities that represent the
distortion between the observation and the model. Hence, these
probabilities provide an intraclass measure. The NTN classifier is
based on discriminant training and provides output probabilities
that represent an interclass measure. Since, these two classifiers
base their decision on different criteria, they can be effectively com-
bined to yield improved performance. Two combining methods are
evaluated for several speaker recognition tasks, including speaker
verification and closed set speaker identification. The results show
the both methods to yield advantages for the speaker recognition
tasks.

INTRODUCTION

Speaker recognition refers to the capability of recognizing a person based on
his or her voice. Specifically, this consists of either speaker verification or
speaker identification. The objective of speaker verification is to verify a per-
son's claimed identity based on a sample of speech from that person. The

0-7803-2026-3/94 $4.00 © 1994 IEEE 279

objective of speaker identification is to use a person's voice to identify that
person among a predetermined set of people. An additional characteristic
of speaker identification systems is whether they are closed set or open set.
Closed set speaker identification refers to the case where the speaker is known
a priori to be a member of a set of N speakers. Open set speaker identifica-
tion includes the additional possibility where the speaker may be from outside
the set of N speakers. Open set speaker identification requires an additional
thresholding step to determine if the speaker is "out of set". This paper pro-
vides results for text-independent speaker verification and closed set speaker
identification.

The classification stage for text-independent speaker recognition is typ-
ically implemented by modeling each speaker with an individual classifier.
Given a specific feature vector, a speaker model associates a number corre-
sponding to the degree of match with that speaker. The stream of numbers
obtained for a set of feature vectors can be used to obtain a likelihood score
for that speaker model. For speaker identification, the feature vectors for
the test utterance are applied to all speaker models and the corresponding
likelihood scores are computed. The speaker is selected as having the largest
score. For speaker verification, the feature vectors are applied only to the
speaker model for the speaker to be verified. If the likelihood score exceeds a
threshold, the speaker is verified or else is rejected.

The more common methods of constructing speaker models for text-
independent speaker recognition use unsupervised training methods. These
approaches include vector quantization [1], hidden Markov models [2], and
Gaussian mixture models [3]. Here, only the data for that speaker is used
to train the that speaker's model. Alternative methods for building speaker
models use supervised training, such as that in multilayer perceptrons [4],
radial basis functions [5], and neural tree networks [6]. Here, a speaker's
model is trained with the data from possibly all speakers in the population.
Speaker models based on supervised training capture the differences of that
speaker to other speakers (interspeaker variability), whereas models based on
unsupervised training use a similarity measure (intraspeaker variability).

The fact that supervised and unsupervised classifiers base their discrimi-
nation on different criteria leads one to believe that they can be combined for
improved performance. This paper evaluates two methods for combining the
output probabilities of the NTN and VQ classifiers and demonstrates these
methods to improve performance for the speaker recognition task. The follow-
ing sections review the VQ and NTN classifiers along with their application to
speaker recognition. The hybrid NTN/VQ systems are then presented. This
section is followed by experimental results and the conclusion of this paper.

280

VECTOR QUANTIZATION

The unsupervised classifier considered here is vector quantization (VQ). VQ
is a clustering algorithms, which falls under the category of unsupervised
training, i.e., the class label is not used. The VQ algorithm uses clustering
to automatically group the training data into its individual modes or classes.
Numerous VQ algorithms exist, including the Linde-Buzo-Gray (LBG) [7]
method, which is used here.

The VQ classifier can be used for speaker recognition [1] as follows. Given
the extracted feature vectors from a speaker, a codebook is constructed for
that speaker. This process is repeated for all speakers in the population. For
speaker identification, the feature vectors from a test utterance are applied to
each of the codebooks. For a given codebook, the centroid, which is closest
to the test vector is found and the distance to this centroid is accumulated
for that codebook. The speaker is selected as corresponding to the codebook
with the minimum accumulated distance. For speaker verification [8], the
test vectors are only applied to the model for the speaker to be verified. The
accumulated minimum distance is computed and normalized to the number
of testing vectors. This normalized distance is compared to a threshold to
decide if the speaker will be rejected or accepted.

NEURAL TREE NETWORK

The supervised classifier considered here is the neural tree network (NTN) [9].
The NTN is a hierarchical classifier that uses a tree architecture to implement
a sequential linear decision strategy. Each node at every level of the NTN
divides the input training vectors into a number of exclusive subsets of this
data. The leaf nodes of the NTN partition the feature space into homogeneous
subsets, i.e., a single class at each leaf node. The NTN is recursively trained
as follows. Given a set of training data at a particular node, if all data within
that node belongs to the same class, the node becomes a leaf. Otherwise,
the data is split into several subsets, which become the children of this node.
This procedure is repeated until all the data is completely uniform at the leaf
nodes, else some pruning criteria is satisfied [9, 10]. Each leaf is assigned a
label belonging to the class majority at that leaf. During testing, a feature
vector is directed through the tree until it arrives at a leaf. The vector is then
assigned the label of that leaf.

The NTN as presented in [9] is strictly a classification tree. Here, the
output of the classifier consists of only a class label. Thus, the posterior
probability estimate of class C, provided by the NTN is a binary value:

PNTN{Ci\x) = {1,0}, (1)

where x is a vector to be classified.
In [6], a modified NTN (MNTN) was presented that allows for a discrete

estimate of the posterior probability. The assignment of probability measures

281

occurs within a technique called forward pruning. The forward pruning algo-
rithm consists of simply truncating the growth of the tree beyond a certain
level. For the leaves at the truncated level, a vote is taken and the leaf is
assigned the label of the majority. In addition to a label, the leaf is also as-
signed a confidence. The confidence is computed as the ratio of the number of
elements for the vote winner to the total number of elements. The confidence
provides a measure of confusion for the different regions of feature space. The
confidence, or posterior probability estimate, provided by the MNTN is:

PMNTN(Ci\x) = M'J , (2)

where Jfe.j is the number of samples of class i in leaf j (as determined from
the training data) and the denominator term corresponds to the number of
samples at that leaf.

A MNTN can be trained for each speaker in the population as follows
[6]. The MNTN for each speaker is presented with the data for all speakers.
Here, the extracted feature vectors for that speaker are labeled as "one"
and the extracted feature vectors for everyone else are labeled as "zero". A
binary MNTN for speaker i is then trained with this data. This procedure is
repeated for all speakers in the population. A trained MNTN can be applied
to speaker recognition as follows. First a sequence of feature vectors x are
extracted from the test utterance. The confidence and labels of this sequence
can then be scored to obtain a likelihood for a given speaker model [6].

HYBRID SYSTEM

Two hybrid systems are evaluated in this paper. The first system embeds the
capabilities of the GMM within the NTN, thus creating a continuous density
NTN. The second system combines the output probabilities of both classifiers
as a weighted sum. This technique is known as data fusion [11]. The details
of both implementations are provided in the following subsections.

Continuous Density NTN

The MNTN described in [6] uses a discrete model for the posterior probability
estimate. This model can be further extended to use a continuous density
estimate, thus yielding a continuous density NTN (CDNTN). Here, a GMM
is used to model the probability density function within the local regions of
feature space, namely the leaves. For a given feature vector x and leaf j, a
GMM can approximate the posterior probability estimate P(C,|x) of class C{
as follows:

282

Pntn(Cjx)
NTN

^r a
P(C|x)

feature vector

<j
^

X

k l-a

)

sakerj

VQ
codebook Pvq(C|x

Sp

Figure 1: Data Fusion Approach

where
M

Pj(x\d) = 53c,-raJV(a;,^,-ro,E,-m),
m = l

and

JV(s ,,/i.E) = ((21r)-<,/2|E|-i)e»p[-i(*-/i)TE-l(x-/i)

(4)

(5)

Here, cjm, /firo, and Sim are the weight, mean, and variance, respectively,
of the mth mixture for class i, N is two for a binary problem, and d is
the dimension of the feature space. The CDNTN can be used for speaker
recognition in the same manner as the MNTN. However, the CDNTN will
obtain the posterior class probabilities from estimated density functions as
opposed to being selected from a discrete set of probabilities.

NTN/VQ Data Fusion Model
The hybrid system considered in this paper is based on data fusion [11]. Data
fusion has been used to combine inputs from multiple sensors in various ap-
plications including robotics [12] and handwriting recognition [13]. Numerous
methods exist for combining the data of several classifiers. One method is to
take a vote among the concurrent outputs of several classifiers and use the
vote winner as the assigned label [13]. For probabilistic outputs, a weighted
sum of the outputs of the different classifiers can be used, as illustrated in
Figure 1. This is the method that will be used to fuse the two classifiers for
this paper. Here, the outputs of the NTN and VQ classifiers are multiplied
by a and l-a, respectively, where a lies between zero and one. Hence, when
a = 0 the system consists of solely the VQ classifier and likewise when a = 1,
only the NTN is used.

To enable the VQ and NTN classifiers to be used in such a system, several
normalization steps must be used. First, the VQ distortion must be converted

283

to a probability. The method used here is to simply use:

Pvq(Ci\x) = e-<-e'->S, (6)

where Cj is the centroid closest to x. The NTN must then be modified such
that it outputs a probability instead of a confidence and a label. The confi-
dence, which lies between 0.5 and 1.0, along with the label can be converted
to probability as follows:

p ir< \ \ — j 0-5 * (1.0 + confidence), if label = 1 . ,
fntn{^i\x) - | 0 5 + jL0 _ confidence^ if labei _ o • K')

This system will be evaluated for text-independent speaker identification and
verification in the following section.

EXPERIMENTAL RESULTS

The database considered for the speaker recognition experiments is a subset
of the DARPA TIMIT database. This set consists of 100 male speakers taken
from the second and third dialect regions. A VQ codebook and MNTN are
trained for each of 50 speakers. The remaining 50 speakers are reserved as
imposters for testing the speaker verification system.

The preprocessing of the TIMIT speech data consists of several steps.
First, the speech is downsampled from 16KHz to 8 KHz sampling frequency.
The downsampling is performed to obtain a toll quality signal. The speech
data is processed by a silence removing algorithm followed by the application
of a pre-emphasis filter H(z) = 1 — 0.95z-1. A 30 ms Hamming window is
applied to the speech every 10 ms. A twelfth order linear predictive (LP)
analysis is performed for each speech frame from which twelve cepstral coef-
ficients are derived.

There are 10 utterances for each speaker in the selected set. Five of
the utterances are concatenated and used for training. The remaining five
sentences are used individually for testing. The duration of the training
data ranges from 7 to 13 seconds per speaker and the duration of each test
utterance ranges from 0.7 to 3.2 seconds. It is noted that the duration of the
test utterances is relatively short and that performance can be improved by
increasing the duration.

Speaker Identification

The data fusion technique as applied to the NTN and VQ classifiers is eval-
uated for closed set speaker identification. Each VQ classifier consists of a
seven bit codebook trained using the Linde-Buzo-Gray (LBG) [7] algorithm.
It was found that the seven bit codebook performed better than the six or
eight bit codebooks. Each NTN is trained with the data for all 50 speakers.

284

94

80.

Speaker Identification: NTN Fusion With 7 Bit VQ

0.0

6 Level NTN

- 7 Level NTN

. 8 Level NTN

0.2 0.4 0.6
Alpha

0.8 1.0

Figure 2: Speaker Identification Using Data Fusion

The maximum NTN level is varied from six to eight levels. The performance
is evaluated as a function of a and is shown in Figure 2.

The individual performance of the VQ and NTN classifiers can be seen
as those points corresponding to a = 0 and a = 1, respectively. Here, it can
be seen that the optimal choice of a for the six level/six bit system yields a
classifier that performs at roughly 93%, which is 4% better than either the
VQ or NTN classifiers used individually.

The CDNTN is also evaluated for the identical closed set speaker identi-
fication experiment. Two sets of CDNTNs are evaluated, where the number
of parameters are held constant for both. Hence, a CDNTN with 128 pa-
rameters can consist of either a seven level tree with zero mixtures/leaf, or
a six level tree with one mixture/leaf (for each class), etc. The performance
of the CDNTN is shown in Figure 3. Here, it is seen that the 128 and 256
parameter CDNTNs perform at roughly 85% and 86%, respectively.

Speaker Verification

The next experiments are performed for speaker verification. Here, the 50
speaker models correspond to the "enrolled" speakers and the 50 remaining
speakers are used as imposters. The data fusion system is evaluated with the
seven bit VQ codebook and the six and seven level NTN. The equal error
rate, i.e., the point when P(false accept) - P(false reject), for the data

285

90

88

86

-84

Speaker Identification: NTN Continuous Density Model
-1 r-

- 128 Parameters

- 256 Parameters

3 4 5
NTN Level

Figure 3: Speaker Identification Using CDNTN

fusion system is evaluated as a function of alpha and shown in Figure 4.
Here, it is seen that the system performance is similar for both systems

and the optimal performance occurs when the system uses just the NTN. The
CDNTN is also evaluated for the identical'experiment for 128 and 256 param-
eters. The results are shown in Figure 5. Here, the best equal error rate is
obtained with the 256 parameter model that uses a seven level NTN with one
mixture/leaf. Note that the plot for the 128 parameter model only extends
to the seventh level, since the eighth level would require 256 parameters.

CONCLUSION

Two methods are evaluated for combining classifiers based on distortion and
discriminant measures. The first system embeds the capabilities of the GMM
within the NTN, thus creating a continuous density NTN (CDNTN). The
second system evaluates both classifiers independently and combines the out-
put probabilities as a weighted sum. This technique is known as data fusion.
Both methods are evaluated for several text-independent speaker recognition
tasks, including closed set speaker identification and speaker verification. For
closed set speaker identification, the data fusion technique provides the best
performance, which is superior to that of either classifier used individually.
For speaker verification, the CDNTN yields the best performance for a model
that uses a NTN with one Gaussian mixture model per leaf.

286

0.08
Speaker Verification: NTN Fusion With 6 Bit VQ

0.03-

0.01

- 6 Level NTN

- 7 Level NTN

0.2 0.4 0.6 0.8
Alpha

Figure 4: Speaker Verification Using Data Fusion

Speaker Verification: NTN Continuous Density Model
0.022

0.021

0.02

0.019
d>
<o
^0.018
g

LU

75 0.017
=> u-

LU
0.016

0.015

0.014

0.013

 1 1 1 1 1 1 1

\. -128 Parameters

t \. — 256 Parameters
V* X^

X X.
** X.

V xv
X Xy^

>^ X.
N. \

N. X. x ^"-^ ?

^^-^ /
X -^^ /

^x ^\ /
v / >> / N

v /
V /

^x /
N. /

' ^ /
""■. /

s. /

 l 1 1 1 1 1 1
6

NTN Levels

Figure 5: Speaker Verification Using CDNTN

287

References

[1] F.K. Soong, A.E. Rosenberg, L.R. Rabiner, and B.H. Juang. A vector
quantization approach to speaker recognition. In Proc. ICASSP, pages
387-390, 1985.

[2] A.E. Rosenberg, C.H. Lee, and F.K. Soong. Sub-word unit talker ver-
ification using hidden Markov models. In Proceedings ICASSP, pages
269-272, 1990.

[3] D. Reynolds. A Gaussian Mixture Modeling Approach to Text-
Independent Speaker Identification. PhD thesis, Georgia Institute of
Technology, February 1993.

[4] J. Oglesby and J.S. Mason. Optimization of neural models for speaker
identification. In Proceedings ICASSP, pages 261-264, 1990.

[5] J. Oglesby and J.S. Mason. Radial basis function networks for speaker
recognition. In Proceedings ICASSP, pages 393-396, 1991.

[6] K.R. Farrell, R.J. Mammone, and K.T. Assaleh. Speaker recognition
using neural networks and conventional classifiers. IEEE Transactions
on Speech and Audio Processing, 2:194-205, January 1994.

[7] Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer
design. IEEE Transactions on Communications, COM-28:84-95, 1981.

[8] A.E. Rosenberg and F.K. Soong. Evaluation of a vector quantization
talker recognition system in text independent and text dependent modes.
Computer, Speech, and Language, 22:143-157, 1987.

[9] A. Sankar and R.J. Mammone. Growing and pruning neural tree net-
works. IEEE Transactions on Computers, C-42:221-229, March 1993.

[10] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. Wadsworth international group, Belmont, CA
1984.

[11] J.J. Clark and A.L. Yuille. Data Fusion for Sensory Information Pro-
cessing Systems. Kluwer, Norwell, MA, 1990.

[12] Henderson and Weitz. Multisensor knowledge systems. International
Journal of Robotics Research, 7(6):114-137, June 1988.

[13] L. Xu, A. Krzyzak, and C.Y. Suen. Methods of combining multiple clas-
sifiers and their applications'to handwriting recognition. IEEE Transac-
tions on Systems, Man, and Cybernetics, 22(3):418-435, May 1992.

288

Parallel Training of MLP Probability
Estimators for Speech Recognition:

A Gender-Based Approach
Nikki Mirghafori, Nelson Morgan, and Herve Bourlard

International Computer Science Institute, Berkeley, California
1947 Center St, Suite 600

Berkeley, CA. 94704
Tel: (510) 642-4274, FAX: (510) 643-7684

{nikki, morgan, bourlard}@icsi.berkeley.edu

Abstract

In this paper we explore the averaging of mixtures of mul-
tiple neiiral network probability estimators in speech recog-
nition. We experiment with different ways of dividing up the
speaker space. A division based on gender seems to be the
most important. The division based on a priori knowledge
(in our case, rate of speech) resulted in lower error rates than
the use of k-means clustering. The overall accuracy of the
Parallel Net architecture is about the same as the monolithic
probability estimator, but communication costs on parallel
machines can be expected to be significantly lower. Addition-
ally, the overall product of patterns times parameters is lower
with such a partitioning, resulting in reduced training time
even on serial machines.

1 Introduction

In previous work, we have examined the factorization of Multi-layer Percep-
trons (MLPs) that are viewed as probabilistic estimators. In two particular
cases, we partitioned out the influence of phonemic context [Bourlard k Mor-
gan, 1992], and of speaker gender [König & Morgan, 1993]. These partition-
ings permitted the evaluation of the posterior probabilities of a large number
of classes without the explicit computation of a huge output layer.

In our current work, we are interested in partitioning not only the network
estimators, but also the training data. This is of increasing relevance as we
move to larger and larger data sets. Cycling through these data requires more
than a linear increase in computation, as the estimators themselves should
(ideally) be expanded to a greater number of parameters in order to take
advantage of the increased coverage in the training materials.

Parallelism is a potential remedy for this increased computational burden,
but depending on the machine and the algorithm, communications costs can
overwhelm any advantage due to numerical parallelization. Training set par-
allelism is a potential cure for this difficulty. If multiple estimators are trained

0-7803-2026-3/94 $4.00 © 1994 IEEE 289

on disjoint elements in the training set, and then combined in some manner,
communication is minimized. Additionally, there is some hope that the right
partitioning and weighting of the separate estimates could provide some im-
provement in performance; for instance, in the gender case, separating male
and female training data has some demonstrable advantages.

There is some evidence that data splitting should at least provide equivalent
performance. In one report at a recent SRS meeting, R. Schwartz of BB&N
described an experiment in which Hidden Markov Model (HMM) Gaussian
mixture parameters were separately estimated for individual speakers and
then averaged [Schwartz, 1993]. The resulting system was comparable in
performance to a more standard estimator that was trained on the pooled
data from all speakers. Of course, this experiment reported the estimation
of data likelihoods and the averaging of Gaussian parameters, and this does
not necessarily show that a posterior estimator like a Multi-layer Perceptron
(MLP) will permit a similar parallelization. However, it suggests that a test
is worthwhile. Recent results in applying the split net strategy in control
theory [Jacobs & Jordan, 1993] are another indication that such approach
may be advantageous.

Another related effort was that of the Meta-Pi network [Hampshire & Waibel,
1990]. In this approach, speaker-dependent estimators for voiced stop conso-
nant probabilities were weighted and summed with gating elements trained
with error back-propagation. For a source dependent speaker (i.e., one of the
six training speakers), the performance of the Meta-Pi architecture on a six
speaker three phone (/b,d,g/) task was comparable to a speaker dependent
system. For a source independent (i.e., unknown) speaker, however, the error
rate was almost tripled.

In the work described here, we also are using an MLP trained with back-
propagation; however, these estimators are trained to be discriminant for
the 61 phone set of TIMIT. We have focused our efforts on the speaker-
independent case. In other words, we would like our mixture of estimators to
perform at least as well as a monolithic estimator (which was trained on all
of the data) when tested on an unknown speaker (which was not present in
the training data).

2 Approach

In our experiments we use estimators that are based on the hybrid HMM/MLP
method as explained in [Bourlard & Morgan, 1994]. The main idea in this
method is to train an MLP (using a squared error or relative entropy crite-
rion) for phonemic classification; such a net can be used as an estimator of
posterior class probabilities, and when divided by class priors can estimate
scaled likelihoods. The MLP estimator has the potential advantage (over
standard Gaussian or Gaussian mixture estimators) of the ability to estimate

290

highly-dimensioned joint probabilities, such as the scaled likelihood of the
data including a large acoustic context. Additionally, the MLP training is in-
herently discriminant, making effective use of parameters for limited training
data, and estimating relatively detailed densities without strong parametric
assumptions. Over the last few years, we have observed in a number of in-
stances that the direct substitution of such an estimator for a tied-mixture
module has resulted in significant improvements.

We are currently using a recognizer called YO (described in [Robinson et al.,
1993]), which uses a single density per phone with repeated states for a simple
durational model. The densities are trained with no explicit incorporation of
phonemic context (e.g., triphones). Our current results on DARPA Resource
Management (RM)1 test sets show a performance that is comparable to that
of much more complex context-dependent systems; the recognition word error
on the February 1989 test set of the baseline hybrid HMM/MLP system, used
here for comparison, was equal to 5.1% (including insertions, deletions, and
substitutions).

In the current experiments, we train multiple networks on separate partitions
of the training set. If Mi represents cluster i, let P{Mi) be the probability
that Mi is a better match than Mk, Vfc ^ i. If all Mi's are mutually exclusive,
and cover all possible cases, X)"=i p(Mi) = *i we can calculate the likelihoods
(within a constant factor P(x)) by:

P{x\qk)- E„=iF(M.)jP(%|M.) K)

where qk is an HMM state, M» represent each of the n MLPs, and P(Mi\x) is
the probability that Mi is the "correct" estimator of the sound class, given the
data x. For instance, in the case of a male/female partition, this probability
would be the probability that the speaker is male or female (2 probabilities
that sum to 1). As an alternative, we calculate a weighted average of the
scaled likelihoods:

In some of our experiments, we have used a simplified form of the above
formula and inserted an equal weight averaging factor of 1/n instead of
P(Mi\x). This amounts to the following two assumptions: that P(Mi\x)
is independent of the data, and that all priors of Mt are equal (i.e., male
prior equal to female prior).

Mixture of experts approaches are most effective when each expert has dif-
ferent statistical properties and biases. Therefore, each of our sub-systems

1This is a speaker-independent continuous speech recognition task that has a vocabulary
of roughly 1000 words and uses a word-pair grammar with a perplexity 60; it is described
in many places in the speech literature, including [Price et al, 1988].

291

(nets) should be trained on subsets of data with different statistical proper-
ties. In all the experiments reported here, we use a speaker-dependent split
in the training data.

3 Pilot Experiments

3.1 Using Pretrained Nets

In our first pilot experiment, we used twelve (five female and seven male
systems) pretrained speaker dependent (SD) estimators, each of which were
trained on data from one speaker of the RM SD November 1989. By pretrained
we mean that the nets were previously trained to maximize the accuracy of
SD recognition. Each net had 1000 hidden units, 61 outputs, 234 input units
(= 26 PLP and delta PLP features2 x 9 frame window size), and trained
with phonetic labels which had gone through two iterations of forced viterbi
realignment. 500 of the SD sentences were used for training, and 100 were
held out for cross-validation. The nets were trained starting with a learning
rate of 0.008, and the training took 4-6 epochs. The word recognition error
rate of each system on the same speaker's test data (RM January 1990 SD
evaluation — 25 sentences per speaker) ranges from 1.8% to 11.3%3, while
the error rate on the RM February 1989 SI evaluation test set (300 sentences,
10 speakers, 4 of which are female and 6 male) ranges from 64.6% to 82.0%.

We averaged (equal weighting) the scaled likelihoods of each of the SD sub-
systems using equation (2) and got 22.6% word recognition error, which is
better than the performance of both the best SD sub-system and the average
of all the SD sub-systems. However, this error rate is not comparable to that
of a monolithic SI system (a net trained on RM November 1989 SI data),
which has an error rate of about 5.1% for the same SI recognition task.

Upon analyzing the results, we came across striking gender effects, as shown
in Table 1. Sub-systems trained on male speech generalized better to male
speech than to female speech; vice versa for female nets. This provided moti-
vation for another experiment: if the test speaker's gender is female (male),
we only allowed the probabilities generated by female (male) systems to take
part in calculating the average scale likelihood. Since this was a pilot experi-
ment, the gender of the test speakers were known to the system. It is possible,
however, to build a gender detector which reliably (approx. 98% accuracy)
detects the gender of the test speaker [König & Morgan, 1993]. Table 1 shows
the strength of this effect. Averaging in a gender-based way further decreases
the overall word recognition error to 16%.

2PLP stands for Perceptual Linear Predictive analysis [Hermansky, 1990]
It should also be noted that these pretrained nets were trained approximately two years

ago so that the raw error numbers are probably somewhat higher than our current systems
would achieve.

292

Gender Effects on Percent Word Error
Training Speaker Test Speaker

Male Female
Male 45.4 111.7

Female 106.4 38.1

Table 1: Gender Effects on Word Error. This table shows the average error
rate of SD Female (Male) nets when tested on SI Female (Male) data. Er-
ror rates of higher than 100% are due to counting insertions, deletions, and
substitutions as errors.

There was an interesting unexpected result: the SD system with the worst
recognition score on its own data generalized best to the speech of unknown
speakers. On the other hand, a system which was almost perfectly tuned
to speech from the same speaker generalized the worst. While not all the
systems obeyed this rule, it was a general trend. This suggested that we
should use SD nets that are not as fully tuned to the same speaker's data.

3.2 Retraining the Experts
In the next group of pilot experiments we examined the effect of using speaker-
independent cross-validation to avoid overfitting to the speaker-dependent
training data. We also reduced the number of parameters in contrast to the
first experiment (again to combat over-fitting). We changed the size of the
hidden layer from 1000 hidden units to 256 hidden units for each net. In
order to reduce the training time, we bootstrapped each of the nets from
a 256 hidden units net that was previously trained on the hand-labeled SI
TIMIT database. Our training data for each net was 600 SD sentences. Same-
gender SI data for cross-validation was chosen from the RM November 1989
SI training set: 460 sentences with 23 speakers for the female set, and 490
sentences with 49 speakers for the male set. We used a lower learning rate (a
= 0.004) than for the ^retrained nets. Each net went through only 1-2 epochs
of training before cross-validation performance indicated that training should
be stopped.

To estimate P(Mi\x), we trained a gating network [Hampshire k Waibel,
1990]. We used a net with 10 hidden units, 234 input units, and n output
units (where n is the number of nets). It was trained with back-prop to
associate each feature vector with the label of the training speaker. In each
of the experiments below, we have run Viterbi decoding on the output of each
SD net and reported the results.

Based on the strong gender dependencies that we observed, we chose one gen-
der (the female set) for the following experiments. The female set comprises
five female SD systems (RM SD training data), and four female unknown test

293

speakers (from RM February 1989 SI evaluation set, as mentioned above).

For a fair comparison between the parallel architecture and a single-net sys-
tem, we trained one net on the aggregate training data of the five SD systems,
and cross-validated the training using female SI data (as explained above).
We chose a 1000 hidden unit net that has about an equivalent number of
parameters as the five female nets altogether. We bootstrapped this net from
a TIMIT net in order to reduce the total training time. The initial learning
rate was 0.008.

A net that was trained on the aggregate data of the SD nets, the female SI
net, has an error rate of 7.4%. All of our experimental nets performed worse
than this, but given a small data set of only 5 speakers, the results were
not considered conclusive. However, the average error rate for the Parallel
Nets using eqn (2) with an equal weight for each SD system is fairly close
to the female SI net, with the Parallel Net having 13.5% more relative word
error than female SI (8.4% versus 7.4%). This is not a statistically significant
difference at the p < .05 level for this test set, so that in some sense there
is no demonstrable difference in performance. The average performance of
the Parallel Net architecture is better than both the average error of the SD
systems' (13.0%) and the best SD system (9.7%) (significantly so for the
average case).

Comparing the performance of our Female SI net with our baseline hybrid
HMM/MLP system, we observe that Female SI has about 40% more relative
error (7.4% versus 5.3%, which is significant at the p < .05 level) than the
gender-independent SI net. This is unsurprising, since the baseline SI net
is trained on over 30 speakers and is trained longer. The Female SI net,
in contrast, is only trained on five speakers and goes through half as many
epochs of training. The obvious remedy would be to train the Female SI
net on more female speakers. In other words, train more SD systems to get
a better representation of the sample space. Another possibility is to train
each SD net on two or more same-gender speakers that are in the same region
of the sample space, creating quasi-SD nets and increasing the coverage of
the sample space that way. This conjecture was the basis for the main set of
experiments.

4 Experiments and Results

In order to get a better representation of the speaker space, we increased
the number of training speakers in the next experiment. We used the male
speakers' data from the RM SI training set (November 1989), consisting of
49 male speakers, each uttering 40 sentences. Since there is little training
data for each speaker, training 49 SD nets was not feasible. Instead, we can
divide the speaker space based on some criterion and train one net on each

294

section of the speaker space. We experimented with two splitting criteria:
rate-of-speech, and k-means clustering.

4.1 Splitting the Speakers
First, we used a priori knowledge about the domain and allocated the speak-
ers to groups based on their rate-of-speech, where (inverse) rate-of-speech is
measured as average number of seconds per word. In the second method, we
use the k-means clustering [e.g., Krishnaiah & Kanal, 1982] algorithm.

4.1.1 Dividing the Space Based on Rate-of-Speech

Two observations motivated us to experiment with this split of the data.
In the most recent ARPA WSJ evaluation, researchers reported significantly
higher error rates on two fast speakers in the evaluation test set. The second
motivation comes from our earlier results (section 3.2). We analyzed the
relationship between the rate-of-speech of the female test speakers & the SD
system's training data and word error rate. In order to have sufficient training
data for each net, we chose to experiment with two and four clusters.

4.1.2 K-means Clustering

For the k-means clustering algorithm, we use a distance measure explained
below. Let X = {Xi,X2, ...,Xn, ...,XN} be the feature vector sequence cor-
responding to the speech of speaker Sx, where each Xn is a vector, Xn =
{xni,xn2, —,xnd,•■•,xnp)t- For each speaker Sk, we calculate a mean vector
p{ = (/**n-.ML.-.MfcD.)' andacovariancevector a{ = {as

kl,^,a{i,...ta{D)ti

for each broad phonetic category j = {1...J}5. Define the distance between
speaker Sx and speakers Sk as:

D(Sx,Sk) = ^minf^ l°s4d + (3)

So, for calculating the distance between two speakers, we use the ß's and CT'S
of one speaker, and the feature vectors of the other. Except for the distance
measure, we follow the standard k-means clustering algorithm.

We can replace the gating network by using this distance measure. In order
to determine the weights to use for each of the scaled likelihoods, we measure
the distance of the unknown test speaker to the cluster centers and use an
estimated probability (computed assuming a Gaussian distribution with a
diagonal covariance matrix), the normalized e~rfistance, as weight.

4Covariance matrix assumed to be diagonal.
5The five broad phonetic categories are based on the phonetic classes in the TIMIT set;

they are fricatives, liquids, nasals, stops, and vowels.

295

Word Recog Percent Error - Male Set

System Rate-of-Speech K-means
2CL 4CL 2 CL 4CL

PN, Eqn (2), eql wgts 8.1 7.0 8.8 8.0

PN, Eqn (2), gating, +smth 7.7 8.1 8.6 8.1

PN, Eqn (1), eql wgt 11.0 11.1 13.5 11.5

Best Net 7.6 7.7 8.2 9.8

Avg of Nets 9.4 9.1 10.6 11.9

Table 2: Word Recognition Percent Error for each of the systems tested
on RM February 1991 SI male evaluation data. The "Best Net" column
represents the error rate of the best single net. The "Avg of Nets" is the
average of word recognition error of the nets.

4.2 Results
We used the male RM SI data for training, as mentioned above. Each of
the nets in the two-cluster experiments were 512 hidden units each, and in
the four-cluster experiments were 256 hidden units, making the number of
parameters to be the same across all systems. Each net was trained on a
partition of the training data with error back-propagation, started with a
learning rate of 0.008, and was cross-validated on male data from February
1989 RM SI evaluation data to determine the stopping point for the training.
The same data was also used for development purposes, for example setting
the word transition penalty.

In order to perform a fair comparison between the Parallel Net architecture
and monolithic net, we trained a 1000 hidden units net on all the male RM
SI data. We tested all the systems on the male speakers of the February
1991 RM SI evaluation data. The word recognition error rate of our standard
baseline system (which is trained on all genders of RM SI training data) was
8.9% for the males only. In comparison, the error rate of the monolithic
all-male system was 7.3%, which is significantly better at p < .05 level.

The results of the Parallel Net architecture, presented in Table 2 are similar to
that of the all-male monolithic net for the four-cluster cases, and the difference
in error rates are not significant (7.0% and 8.0% for the four-clusters versus
7.3% for the male monolithic net). Weighted averaging gives worse results to
the equal weighted averaging approach if the weights of the gating network are
used directly. By introducing speaker continuity constraint and averaging the
weights over a sentence (+smth column), the results of the weighting scheme
improves and approaches that of the equal weighting one. The total training
time for the monolithic net on our special purpose hardware [Morgan et al,
1992] is 18 hours. However, the total training time for the four-cluster case
is 7.5 hours for the rate-of-speech nets and 9 hours for the k-means nets (an
average of two hours per net). The total training time for the two-cluster case

296

the two-cluster case is 18 hours for the rate-of-speech nets, and 11.5 for the
k-means nets (average of 7.5 hours per net).

5 Discussion

In this paper, we have proposed a Parallel Net architecture for reducing the
training time of the hybrid HMM/MLP system. Each of the experts in the
system are trained on one region of the speaker space, hence making each net
a guasi-speaker-dependent probability estimator. In our initial pilot experi-
ments, we observed a strong gender effect. Also, there was strong evidence of
over-tuning to the same category data. These two observations motivated us
to restructure our experiments to reduce over-fitting, and to factor in gender
effects.

We retrained the experts using same-gender SI cross-validation to avoid over-
tuning. Also to further reduce over-fitting to the SD data, we cut the number
of parameters by a factor of four and used a smaller learning rate. We exper-
imented with different averaging schemes: weighted vs. equal, and average
of scaled-likelihoods vs. sum of posteriors divided by sum of priors. The
theory [see also Jacobs & Jordan, 1993] suggest that a non-uniform weighting
mechanism is desirable. However, in our experiments, the weighted average
was similar, if not worse, than an equal weighted average. This may only
mean that we did not develop the correct method for determining the best
weights in these examples; but in any event the evidence we have so far does
not support computed weights, and equal weights in any event seem to work
well enough to support a parallel approach. Also, we consistently got better
results from averaging scaled likelihoods (equation 2 vs. 1).

The average error rate of the Parallel Net architecture was better than both the
best SD system and the average error rate of all the female-SD systems, and
the four-cluster male systems. Furthermore, the performance of the Parallel
Nets was comparable to a single net trained on the aggregate training data.
Given the shorter training time and the potential for taking advantage of
parallel architectures, we believe that the Parallel Net architecture is the
preferable architecture.

6 Acknowledgments

We would like to thank Eric Fosler, Yochai König, and Gary Tajchman for
their help and advice. We also thank the National Science Foundation for its
support through grant MIP-9311980, as well as general support from ICSI.

297

References

[I] Bourlard, H., & Morgan, N. (1992). "CDNN: A Context Dependent Neu-
ral Network for Continuous Speech Recognition", IEEE Proc. Intl. Conf.
on Acoustics, Speech, and Signal Processing, pp. 11.349-352, San Fran-
cisco, CA.

[2] Bourlard, H., & Morgan, N. (1994). Connectionist Speech Recognition,
Kluwer Academic Press

[3] Hampshire, J.B., & Waibel, A. (1990). "Connectionist Architectures for
Multi-Speaker Phoneme Recognition", Advances in Neural Information
Processing Systems 2, D. Touretzky (ed.), Morgan Kaufmann, CA.

[4] Hermansky, H. (1990). "Perceptual Linear Predictive (PLP) Analysis of
Speech", Journal of the Acoustical Society of America, 87:1738-1752.

[5] Jacobs, R., and Jordan M. (1993). "Linear Piecewize Control Strategies
in a Modular Neural Network Architecture", IEEE Trans, on Systems,
Man, and Cybernetics, March/April 1993, vol. 23, nr. 2, pp. 337-345.

[6] König, Y., and Morgan, N. (1993). "Supervised and Unsupervised Clus-
tering of the Speaker Space For Connectionist Speech Recognition" Proc.
IEEE Int. Conf. Acoustics, Speech & Signal Processing,

[7] Krishnaiah, P.R., and Kanal, L.N., eds. (1982). Classification, Pattern
Recognition, and Reduction of Dimensionality. Handbook of Statistics,
vol. 2. Amsterdam: North Holland.

[8] Morgan, N,. Beck, J., Kohn, P., Bilmes, J., Allman, E., and Beer, J.,
"The Ring Array Processor (RAP): a multiprocessing peripheral for con-
nectionist applications," Journal of Parallel and Distributed Computing,
Special Issue on Neural Networks, vol. 14, pp.248-259, 1992

[9] Price, P., Fisher, W., Bernstein, J., and Pallett, D. (1988). "A Database
for Continuous Speech Recognition in a 1000-Word Domain", Proc. IEEE
Int. Conf. Acoustics, Speech & Signal Processing, pp. 651.

[10] Robinson, T., Almeida, L., Boite, J.M., Bourlard, H., Fallside, F.,
Hochberg, M., Kershaw, D., Kohn, P., König, Y., Morgan, N., Neto, J.P.,
Renals, S., Saerens, M., & Wooters, C. (1993). "A Neural Network Based,
Speaker Independent, Large Vocabulary, Continuous Speech Recognition
System: The WERNICKE Project", Proceedings of EUROSPEECH'93,
September 21-23, Berlin, Germany.

[II] Schwartz, R. (1993). Oral Presentation, Speech Research Symposium
XIII, Johns Hopkins

298

LVQ as a feature transformation for HMMs

Kari Torkkola
IDIAP (Institut Dalle Molle D'Intelligence Artificielle Perceptive)

C.P. 609, CH-1920 Martigny, SWITZERLAND
email: karitQidiap.ch

Abstract. We present a new way to take advantage of the dis-
criminative power of Learning Vector Quantization in combi-
nation with continuous density hidden Markov models. This is
based on viewing LVQ as a non-linear feature transformation.
Class-wise quantization errors of LVQ are modeled by continuous
density HMMs, whereas the practice in the literature regarding
LVQ/HMM hybrids is to use LVQ-codebooks as frame label-
ers and discrete observation HMMs to model a stream of such
labels. As decision making at frame level is suboptimal for
speech recognition, the presented method is able to preserve
more information for the HMM stage. Experiments in both
speaker dependent and speaker independent phoneme spotting
tasks suggest that significant improvements are attainable over
plain continuous density HMMs, or over the hybrid of LVQ and
discrete HMMs.

1 Introduction
Hidden Markov models (HMM) are among the most succesfull techniques
in automatic speech recognition with well studied and mature training
algorithms [14]. These techniques can be roughly divided into two main
categories: continuous observation density HMMs (CHMM) and dis-
crete observation HMMs (dHMM) with semi-continuous (tied mixture)
HMMs somewhere in between. Either continuous or discrete, the aim of
the models is faithful representation of the feature vector sequence de-
rived from the speech signal, either directly by mixtures of multivariate
Gaussian or other distributions, or through vector quantization (VQ).
Both the maximum likelihood training algorithms of the HMMs, and in
the discrete case, also the codebook construction algorithms aim at this.

In recent years many ways have been presented to enhance the discrimi-
nation capabilities of HMMs. These include, among others, new training
criteria [18, 2, 7] and hybrids of discriminative methods with the HMMs.
The latter type of systems have been recently dominated by artificial
neural networks (ANN). These hybrids can further be grouped into two
main clusters: ANNs as probability estimators for HMMs [1, 3], or ANNs
as codebooks or labelers [6, 16, 12, 11] for dHMMs.

The present paper is concerned with a novel combination falling into the

0-7803-2026-3/94 $4.00 © 1994 IEEE 299

latter category. The combination is based on Learning Vector Quanti-
zation (LVQ) [9, 10]. In the literature, many such LVQ/HMM-hybrids
have been presented [5, 6, 8, 12, 16, 20], in which LVQ acts as a phone-
mic discriminative labeler. The resulting label stream is then modeled
by dHMMs. This paper extends the previous work by presenting a way
of extracting more information of the LVQ stage followed by continuous
density HMMs. This is founded on viewing LVQ as a feature transfor-
mation.

The structure of the rest of this article is as follows. Section 2 gives
an overview of LVQ and reviews its prevalent use together with HMMs.
In Sec. 3 we present a way of preserving more information of the LVQ
stage, and suggest CHMMs as the tool process that information. In Sec.
4 we describe our experiments in two phoneme spotting tasks, and Sec.
5 is devoted to discussion.

2 LVQ-codebooks in speech recognition
The role of conventional vector quantization algorithms in speech recog-
nition, such as the Linde-Buzo-Gray algorithm, or K-means, is to rep-
resent speech feature vectors with the smallest possible distortion. This
is not the case with the Learning Vector Quantization (LVQ) methods,
which try to aim at discrimination of pattern classes, whatever they
may be [9, 10]. Codebook vectors directly define the class borders in
the feature space according to nearest-neighbor rule. LVQ modifies the
codebook vectors adaptively so that the borders between classes will ap-
proximate Bayes' decision surfaces. Quantization error (distortion) is of
secondary interest.

In literature, the customary practice of using LVQ is as a substitute to
conventional vector quantization. Short time feature vectors act as the
basis for classification, most commonly to phoneme classes. HMMs are
then employed to combine local classification decisions by treating them
just as VQ-codebook indices are treated with dHMMs. In phoneme-
related tasks, training has been done either by single frames [8], or by
concatenating several frames together to represent some context [20, 6,
16, 5]. Further, the whole (phoneme) token has been used in training.
All of the frames or successive shifts of the concatenated frames have
acted as examples. However, this might pose a problem as short-time
segments of the speech signal close to transitions between phonemes
might be extremely confusing and might resemble very much other parts
of other phonemes.

When the task has been speaker dependent and phoneme oriented, sig-
nificant improvements have been observed due to LVQ when compared
against ordinary VQ [6, 16]. Where the task has been word or phrase
recognition, the results have been slightly controversial: no improvement

300

in [20], but significant improvements in [5].

In a recent study it was shown that by taking the local context into
account (as much as 220 ms) in the construction of the pattern vectors,
performance can be significantly increased compared to using a single
frame or a few concatenated frames [12]. Codebooks order of magni-
tude larger than conventionally used are needed to represent variations
in these high dimensional "context vectors". Another LVQ-codebook,
whose purpose is to discriminate phoneme centers from transitions, was
introduced in parallel with the main codebook.

In addition to enhanced discriminative properties, another advantage of
the LVQ over conventional VQ is that the discrete alphabet in phoneti-
cally motivated classification, i.e., the number of classes, is smaller than
the number of codebook vectors in usual VQ (few tens as opposed to
few hundreds). This results in an oder of magnitude smaller amount of
output probability parameters to be estimated for the dHMMs. Com-
plicated smoothing schemes are thus usually unnecessary.

3 Class-wise quantization errors
3.1 Extracting more information from the LVQ
All previous work on LVQ-codebooks in speech recognition has concen-
trated on using the class label of the closest codebook vector only. To de-
code this label stream, discrete observation HMMs have been employed.

However, the normal practice with pattern classifiers, extracting only
the final decision of the classification (the class label) is desirable only
when that really is the final decision stage of the whole task. This is
not the case with the LVQ/HMM hybrids in speech recognition; the
final decision is made by the Viterbi search at the HMM-stage. It is
suboptimal to resort to too early hard decisions at the frame level.

Remaining with dHMMs, an obvious improvement could be to preserve
information about several of the closest classes, possibly weighted in
some manner. Some kind of heuristics is required to convert the distance
of the current feature vector to the closest classes into usable weights or
probabilities. Techniques of fuzzy VQ might be helpful for this stage.
Certainly more information would be acquired from the same amount
of training data. Alternatively, less training data would result in the
same performance, as at each time step, not only the output probability
corresponding to the best label, but many or all of them will be gaining
information.

However, the idea that we pursue here, is to make use of the actual
measure that is the basis of LVQ-classification, the Euclidean distances
to the closest codebook vectors of each class. Although these distances
could be; transformed into weights or probabilities, LVQ is not really

301

designed keeping probability estimation in mind.

A step in this direction was already taken in [12]. In addition to the clas-
sification label stream provided by LVQ, also the VQ error was exploited.
VQ error refers now to the conventionally employed scalar quantity: dis-
tance to the closest codebook vector, regardless of its label. In contrast to
other related work cited in Sec. 2, LVQ was trained by context windows
positioned at phoneme centers only. Since the input representation was
constructed by taking into account a relatively long duration of context,
phoneme borders appear very different from the centers resulting in high
quantization errors at transitions between phonemes. The quantization
error can thus both give indication of the positions of the phonemes, and
of their closeness to the corresponding codebook vector. Multiple input
stream HMMs were used to combine the two sources of information, one
discrete, another continuous valued.

In this paper, we extend the above work by discarding the label of the
closest class. Instead, the distances to codebook vectors of different
classes (class-wise quantization errors), can be used directly without re-
sorting to any transformations to weights or interpretations as proba-
bilities. Continuous observation density HMMs can then be applied to
model a stream of these vectors. Fig. 1 illustrates the computation of
the new feature vectors.

Feature vectors
10 ms apart

Compute distances to all
codebook vectors

^•'A^V-V^Jii*.

I/a/ /a/ M/Y/el hi /e/I/i/l
;/a/ /a/ hl\hl hi h/\fi/\
l/a//a//a/!/o/7ö/Jö//i/;

LVQ-codebook with
phoneme class labels
on the vectors

N [0
3~K ,'' :

IN

/el 0
fit o

5 " ,-.-' Choose the minimum
1 **' distance for each group of

codebook vectors carrying
the same class label

A new transformed feature vector

Figure 1: An illustration of the feature transformation. The stream of result-
ing new feature vectors is then modeled by HMMs.

302

3.2 LVQ as a feature transformation
In pattern recognition one is always concerned with choosing or comput-
ing such a representation of the input data, that enhances class separa-
bility while keeping within-class variability as small as possible. Several
linear transformations, fnat are optimal according to criteria usually con-
nected to between-class and within-class scatter matrices can be found
in pattern recognition textbooks, and they have been applied succesfully
to speech recognition [4].

In the suggested scheme, LVQ can be viewed as a nonlinear, discrimina-
tive feature transformation before the CHMM-stage. A simpler version
of such a transformation has been presented for example in [15, pp. 85-
87], where a new feature vector is formed by computing distances to
fixed points in the feature space. These points represent the means of
pattern classes, while in case of LVQ, there are several such points per
class, and their locations been chosen so as to minimize classification
errors through LVQ-training. Other kinds of non-linear feature transfor-
mations that are derived on the basis of training by examples have also
been used in speech recognition [17].

If the intent is to make a classification decision based on a single feature
vector it does not, of course, make any sense to regard LVQ as a feature
transformation. LVQ can then just simply do the decision. However,
when the feature vectors are parts of a larger entity and when a decision
has to be made taking all parts into account, as in speech recognition,
this is a useful point of view.

3.3 Relation to semi-continuous HMMs
The presented scheme might also resemble superficially semi-continuous
HMMs (SCHMM), but that is not the case. SCHMMs also utilize a
"codebook", but it is a codebook of (Gaussian) distributions without
any concept of classes. SCHMMs try to represent the current feature
vector by making use of a number of the closest codebook entries, while
the presented hybrid uses for every class the codebook entry closest to the
current feature vector. It would not make sense to take into consideration
the second or third closest codebook entries of a class even though they
would be closer than the closest entries of other classes, since LVQ is
trained in view that only the closest one matters.

4 Experiments
4.1 Speaker dependent phoneme spotting
We will now describe experiments to compare the performance of the
suggested method with some established algorithms. A comparison be-
tween four architectures is presented in Table 1. The architectures are:

303

1. conventional CHMMs modeling a stream of cepstral vectors,

2. LVQ/dIIMM-hybrids, where LVQ produces a stream of class labels,
which is modeled by discrete observation HMMs, and

3. the new approach proposed in this paper, where LVQ produces a
stream of class-wise quantization error vectors, which is modeled
by CHMMs, and

4. parallel use of the class-wise quantization error with the cepstral
vectors.

combi-
nation

LVQ
Input

HMM Input stre-
ams

mixts/
stream

covar error
rate

1
- MFCC+A

MFCC+A
2
2

5,3
2,1

diag
full

3.2
2.9

2
MFCC
context

LVQ-best label
LVQ-best label

1
1

- - 8.5
4.6

3
context
context
MFCC

LVQ-qerr+A
LVQ-qerr+A
LVQ-qerr+A

2
2
2

7,7
2,1
2,1

diag
full
full

5.4
2.5
4.9

4 context MFCC+A + LVQ-qerr+A 4 2,1,2,1 full 1.8

Table 1: Comparison between CHMMs (1), LVQ/dHMM-hybrids (2), and
LVQ/CHMM-hybrids (3, 4) in a speaker-dependent task. "MFCC refers to
20 component mel-scale cepstral vectors. A refers to difference coefficients,
"context" denotes the 220 ms context vector described in [12]. "qerr" refers
to class-wise quantization errors computed from the LVQ-stage. In all cases

the HMMs had 3 emitting states.

The task in this comparison is speaker dependent phoneme spotting in
the Finnish language [12, 16]. The database contains four repetitions
of a set of 311 utterances spoken by three male Finnish speakers. Each
set consists of 1737 phonemes. In the original Finnish language, there
are,only 21 different phoneme classes: 8 vowels and 13 consonants. Four
additional phonemes have been adopted with loan words from other lan-
guages, but none of those were represented in the database. There were
thus 22 phonemic classes for the LVQ to differentiate (21 phonemes and
silence), which was also the dimensionality of the class-wise quantization
error vectors. Three of the repetitions were used each time for training,
and the remaining one for testing. Four independent runs were made for
each speaker by leaving one set at a time for testing. Thus all speaker
dependent recognition results presented in this paper are averages of 12
test runs, and based on 20844 phoneme spotting scores.

Speech analysis conditions were the following: 12.8 kHz sampling rate,
pre-emphasis coefficient 0.95, 25.6 ms Hamming window every 10 ms,
and 20-component mel-scale cepstral coefficients (MFCC) computed for
every window. Where difference coefficients (A) have been used, they
were computed from a period of 40 ms. This applies also to the quanti-
zation error vectors.

For context vectors as LVQ input, the codebook size was 2000, and for
the MFCC, it was 500. The context vectors had a time span of 220

304

ms [12]. LVQ-training procedure was exactly the same as described in
[12]: using only phoneme centers, initialization by K-nearest-neighbor,
0LVQ1 for 10000 iterations with a(0) = 0.3, and LVQ1 using a(0) = 0.2
In the LVQ1 stage, the number of iterations was 100 times the number
of codebook vectors. An example of the output of the LVQ stage is pre-
sented in Fig. 2. Phoneme center locations can be clearly distinguished.

*.^*S*

imm;

*SHP*S:

WtMi

fXn ftO« t

I
flOn p*>m

1 L h
PWM flu** ff^P

II
■""- W

Figure 2: An example of the output of the LVQ-stage. From top to bottom:
the speech signal (a Finnsh word /johdosta/), its spectrogram, class-wise quan-
tization errors with the phoneme labels on the left (darker shade denotes small

values), and the labeling of the utterance.

Looking at the results in Table 1, it is obvious that exploiting all class-
wise quantization errors instead of using only the class identity of the
closest codevector preserves more information for the latter decision
stages. This is reflected as the difference between LVQ/dHMM-hybrid
and LVQ/CHMM-hybrid. We can also see that the class-wise quanti-
zation errors are interdependent, since modeling them by diagonal co-
variances produces poorer results. We got our best results by using full
covariance matrices, and two Gaussian mixtures.

Though the LVQ/CHMM-hybrid is better than plain CHMMs, the differ-
ence is barely significant. On the other hand, the LVQ+MFCC/CHMM-
hybrid beats plain CHMMs by a clear margin. Due to a relatively large
number of tests, the confidence limits (99%) are relatively tight: ±0.23%
for the best result (1.8%). This enables us to state that the proposed
architecture is significantly better than a LVQ/dHMM-hybrid (4.6%),
or a CHMM system (2.9%) in this task. In the case of plain CHMMs,
using second order derivatives, increasing the number of mixtures, or
using diagonal covariance matrices with larger number of mixtures did
not improve our best CHMM result.

305

In the LVQ/dHMM-hybrid we used only the label sequence produced by
LVQ; not any other information, as suggested in [12]. Including another
LVQ-codebook for phoneme center/transition classification, or the whole
codebook quantization error, would no doubt improve the performance
of the LVQ/dHMM-hybrid, as it did in [12].

4.2 Speaker independent phoneme spotting

In this experiment, our aim was to find out whether this LVQ/HMM
hybrid is applicable to the speaker-independent case. The database con-
sisted of Swiss-French telephone speech with 56 speakers (about 2 hrs of
speech). Half of the speakers were used for training and the other half
for testing. The vocabulary also varied across the speakers.

Speech was sampled at 8 kHz, and 12-component mel-scale cepstra were
computed each 10 ins. As the input to LVQ, we used slightly narrower
context windows whose duration was 140 ms. The LVQ codebook size
remained as 2000. 36 context-independent HMM phoneme models were
used with 4 emitting states and full covariances throughout this experi-
ment.

combi-
nation

HMM input stre-
ams

mixts/
stream

cor-
rect

accu-
racy

1 MFCC+A 2 2,1 60.9 53.4

3
LVQ-qerr+A
LVQ-qerr+A + AA

2
3

2,1
1,1,1

61.4
63.5

55.8
57.4

4

MFCC+A+LVQ-qerr+A
MFCC+A+LVQ-qerr+A+AA
MFCC+A+LVQ-qerr+A+AA
MFCC+A+(LVQ-qerr)+A+AA

4
5
5
4

2,1,2,1
1,1,1,1,1
3,1,1,3,1

3,1,(1),3,1

63.9
65.3
65.7
67.7

58.0
59.4
60.0
61.7

Table 2: Comparison between CHMMs (1) and LVQ/CHMM-hybrids (3, 4)
in a speaker independent task.

The gain of using LVQ in this (much harder) task is not as dramatic
as in the first one, but comparing the baseline CHMM recognizer (the
first row) to the result on the last row we can see that the improvement
is anyway very significant. In addition to A-coefficients we also tried
2nd oder difference coefficients for the quantization error stream, which
turned out to be advantageous. In addition, it seems that the actual
quantization errors are less important than their difference and 2nd or-
der difference coefficients. In the result of the last row of the table we
dropped that altogether out but kept the A- and AA-streams, and the
results improved.

It must be noted that throughout these comparisons, exactly the same
training conditions and algorithms (embedded Baum-Welch training)
have been used. The basic phoneme model structure has also been
the same throughout each experiment. The comparison is thus actu-

306

ally made between different input representations, and not, for example,
between different HMM-software packages. In all of the experiments we
used a public domain software package LVQ-PAK [10], and a commercial
package HTK [19] for the HMMs. A discrete observation version of the
HTK was written for dHMM-experiments.

5 Conclusion

We have reviewed ways of employing LVQ-based codebooks with HMMs
in speech recognition. We wanted to point out that the prevalent prac-
tice in the literature, using LVQ as a frame labeler, and modeling the
label stream with dHMMs, unnecessarily makes too early hard decisions.
We have demonstrated that modeling class-wise quantization errors by
CHMMs leads to significantly better results, and can even be better than
the mainstream HMM-techniques. Using VQ-error as an indication of
phoneme locations and its use as an input stream to HMMs was intro-
duced in [12], to which this work is a direct extension. Other ways to
employ VQ-error with HMMs have been presented, for example, in [13].

Acknowledgement

The author would like to thank Mr. Albert Klaseboer for running ex-
periments with the Swiss-French database.

References

[1] H. Bourlard, N. Morgan, and S. Renals. Neural nets and hidden Markov
models: Review and generalizations. Speech Comm., 11:237-246, 1992.

[2] W. Chou, B. H. Juang, and C. H. Lee. Segmental GPD training of HMM
based speech recognizer. In Proc. ICASSP, pages 473-476, San Francisco,
CA, USA, March 23-36 1992.

[3] C. Dugast, L. Devillers, and X. Aubert. Combining TDNN and HMM
in a hybrid system for improved continuous-speech recognition. IEEE
Trans, on Speech and Audio Processing, 2:217-223, 1994.

[4] M. J. Hunt and C. Lefebvre. A comparison of. several acoustic represen-
tations for speech recognition with degraded and undegraded speech. In
Proc. ICASSP, pages 262-265, Glasgow, Scotland, May 23-26 1989.

[5] H. Iwamida, S. Katagiri, and E. McDermott. Speaker independent large
vocabulary word recognition using an LVQ/HMM hybrid algorithm. In
Proc. ICASSP, pages 553-556, Toronto, Ca;..ida, Mayl4-17 1991.

[6] H. Iwamida, S. Katagiri, E. McDermott, ,mJ Y. Tohkura. A hybrid
speech recognition system using HMMs with an LVQ-trained codebook.
In Proc. ICASSP, pages 489-492, Albuquerque, NM, USA, April 3-6 1990.

307

[7] S. Kapadia, V. Valtchev, and S. J. Young. MMI training for continuous
phoneme recognition on the TIMIT database. In Proc. ICASSP, pages
491-494, Minneapolis, MN, USA, April 27-30 1993.

[8] D. G. Kimber, M. A. Bush, and G. N. Tajchman. Speaker-independent
vowel classification using hidden Markov models and LVQ2. In Proc.
ICASSP, pages 497-500, Albuquerque, NM, USA, April 3-6 1990.

[9] T. Kohonen, G. Barna, and R. Chrisley. Statistical pattern recognition
with neural networks: Benchmarking studies. In Proc. ICNN, pages 61-
68, San Diego, July 1988.

[10] T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola. LVQ_PAK: A
program package for the correct application of Learning Vector Quan-
tization algorithms. In Proc. IJCNN, pages 725-730, Baltimore, June
1992.

[11] P. Le Cerf, W. Ma, and D. Van Compernolle. Multilayer perceptrons as
labelers for hidden Markov models. IEEE Trans, on Speech and Audio
Processing, 2:185-193, 1994.

[12] J. Mäntysalo, K. Torkkola, and T. Kohonen. Mapping context depen-
dent acoustic information into context independent form by LVQ. Speech
Comm., 14:119-130, 1994.

[13] S. Nakagawa and H. Suzuki. A new speech recognition method based
on VQ-distortion measure and HMM. In Proc. ICASSP, pages 676-679,
Minneapolis, MN, USA, April 27-30 1993.

[14] L. R. Rabiner. A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition. Proc. IEEE, 77:257-286, 1989.

[15] C. W. Therrien. Decision, Estimation, and Classification. John Wiley
and Sons, 1989.

[16] K. Torkkola, J. Kangas, P. Utela, S. Kaski, M. Kokkonen, M. Kurimo,
and T. Kohonen. Status report of the Finnish phonetic typewriter project.
In Artificial Neural Networks (Proc. ICANN), pages 771-776, Espoo, Fin-
land, June 24-28 1991. North-Holland.

[17] V. Valtchev, S. Kapadia, and S. J. Young. Recurrent input transfor-
mations for hidden Markov models. In Proc. ICASSP, pages 287-290,
Minneapolis, MN, USA, April 27-30 1993.

[18] S. J. Young. Competitive training: a connectionist approach to discrim-
inative training of hidden Markov models. Proc. IEE, 138:61-68, 1991.

[19] S. J. Young. HTK: Hidden Markov model toolkit Vl.4 - Reference man-
ual. Cambridge University Engineering Department, October 1992.

[20] G. Yu, W. Rüssel, R. Schwartz, and J. Makhoul. Discriminant analysis
and supervised vector quantization for continuous speech recognition. In
Proc. ICASSP, pages 685-688, Albuquerque, NM, USA, April 3-6 1990.

308

AUTOASSOCIATOR-BASED MODULAR

ARCHITECTURE FOR SPEAKER INDEPENDENT
PHONEME RECOGNITION

L. Lastrucci*, G. Bellesi*, M. Gori*, and G. Social

tDipartimento di Sistemi e Informatica

Universita di Firenze

Via di Santa Marta 3 - 50139 Firenze - Italy

Tel. +39 (55) 479.6361 - Fax +39 (55) 479.6363
e-mail : luca@mcculloch.ing.unifi.it

♦Softeam Applicazioni di Base

Via P. Carpini 1 - 50127 Firenze - Italy

Tel. +39 (55) 422.1494 - Fax +39 (55) 434.126

Abstract - In this paper, we propose a modular architecture where

the interactions among different modules are controled by proper au-

toassociators. The outputs of these modules are computed by sigma

p-neurons whose inputs come from both a feedforward network per-

forming classification and an autoassociator. The outputs of the au-

toassociators are used for performing pattern rejection, thus reduc-

ing significantly the problems due to interaction of different modules.

The proposed architecture is validated by experiments of speaker in-

dependent phoneme recognition on continuous speech with TIMIT

data base with very promising results.

INTRODUCTION

In the last few years many researchers have focussed their efforts in specializ-

ing neural networks more or less related to Backpropagation learning scheme

for phoneme recognition. Unlike the challenging results obtained concerning

phoneme discrimination, so far no enough care has been placed to the scaling

up of similar solutions. This is certainly an important issue for any practi-

cal application. As Jacobs identified [1], there are two problems with mono-

lithic networks, namely spatial and temporal crosstalk, which lead us to believe

that modular systems are necessary for training nets on complex problems like
phoneme recognition. Spatial crosstalk occurs when different groups of units

serve different tasks; in this case hidden units being trained to resolve resid-

0-7803-2026-3/94 $4.00 © 1994 IEEE 309

ual error will receive conflicting information. Temporal crosstalk occurs when

different portions of the training set contain data to separate and conflicting

functions; in this case the hidden units being trained will suffer from overfit-

ting with consequent degraded performance. The separation of complex tasks

into sub-tasks which are handled by a group of cooperating expert sub-nets

allows us to avoid spatial and temporal crosstalk. In fact, each sub-network

is trained only on training data for its particular expert task. Moreover, also

modular schemes built up with similar architectures as modules (e.g. Waibel's

connectionist glue [5]) have a major flaw in the impossibility of guaranteeing

that any module, defined for dealing with a limited number of classes, is able to

reject, effectively patterns of other classes. Rejection criteria based on the error

with respect to the target are not very meaningful, because cases can be found

where that error is very low, whereas the associated pattern has nothing to do

with the classification problem. This happens because the resulting separation

surfaces are not closed and do not "envelope" the examples by capturing their

probability distribution.

In order to overcome this problem, in this paper we suggest using a modular

architecture based on the capabilities of multilayered networks used as autoas-

sociators to offer a reliable criterion for rejecting patterns belonging to classes

not used during the learning. The architecture is based on a set of modules

based on multilayered networks. Each module is specialized for the recognition

of a small phoneme subset. In order to avoid conflicts among modules due to

their limited rejection capabilities, the patterns of the same class are autoasso-

ciated using a multilayered autoassociator. The outputs of the autassociators

are properly processed in order to obtain a single value that is used, together

with the outputs coming from the classification network, for feeding the out-

put neurons of the module that act like sigma-p neurons [2]. In so doing, the

outputs of the modules are close to the outputs of the classification network

only when the autoassociators "enable" the classification. This solution faces

the fundamental limitation of feedforward networks to perform pattern classi-

fication by open separation surfaces, which limits severely the scaling up.

THE MULTILAYERED AUTOASSOCIATOR

Multilayered networks working as autoassociators are forced to reproduce the

input to the output during the training phase. The autoassociators have been

suggested mainly for problem of image compression [6]. In this case the com-

pression is performed at the hidden layer. The information represented by the

310

Figure 1: Nonlinear autoassociators perform pattern autoassociation of closed

regions of the pattern space.

hidden units can be reproduced subsequently by the computation carried out

at the last layer. In this paper, we exploit another nice theoretical property

of autoassociators that can easily be understood by analyzing the separation

surfaces that are drawn by the learning algorithm. Let us consider introduce

the concept of e-autoassociated patterns. A vector A"0 is c-autoassociated if

H**-*°H<P
\\XL\\

where XL = 'H{X0), being H the mapping provided by the autoassociator. If

the neurons are based on squashing functions then there exits \€ > 0 such that

||7i(AA-Q)-AA-0l| _

l|W(AA'0)||
>S VA>A-

This is due to the saturation of the hidden units when choosing "high" val-

ues of A. Notice that this nice property does not hold for linear autoassociator.

Basically, the nonlinear neurons are responsible of the closed surface depicted

in Fig. 1. For this reason, the application of multilayered autoassociators to

problems like speech verification seems adequate and successful [3]. For this

kind of problems the role of the nonlinearity is very clear, whereas for problems

of compression, one may wonder if the use of linear networks can be sufficient

in many cases. However, also for problems of compression, the nonlinearity can

be desirable since one may expect better interpolation capabilities.

AMA: AUTOASSOCIATOR-BASED MODULAR ARCHI-
TECTURE

The problem of speaker independent phoneme recognition has already been

faced with modular architectures by many researchers since it is well known that

311

supervised neural networks ran perform very well on small phoneme sets, but

that the results do not scale up very well with the number of phonemes. One of

the most, successful approaches has been proposed by VVaibel et al. in [5], where

independent, classifiers were merged with a sort of connect ion ist glut. The basic

idea of using separately trained modules and neurons acting as a connectionist

glue is very good, but one basic problem seems to be that the modules use to

react significantly also when fed on patterns of different classes. This makes

the task of the connectionist glue very hard, since the final optimization step

must recover all the module false reactions. The AMA (Autoassociator-based

Modular Architecture) have been conceived bearing in mind this problem that

is faced by the additional introduction of the autoassociators.

In the AMA modular architecture, depicted in Fig. 2. each module contains

as many autoassociators as classes. The output neurons receive the information

from both the module classifier and the autoassociators as follows:

M0 = (—)"V'*(— I"'- (1)

being .I:,.,- and .>■„;. with i = 1 n the i-th output, of the classifier and

autoassociator, respectively. The output of the autoassociator is processed

in such a way to give high score when small distance is reported from input

and output. A possible choice is simiilv .va ,• = ' .. ,.. u\. ,• and (/',, , are the
' 11 A /. — A n 11

corresponding weights and .s,.,, .s„ , are learneable coefficients used for re-scaling

the inputs. The activation is mapped to the output by

!li(t) = f(K*a,(t)~0i) (2)

being f() is the squashing function /(.i) = '_,. The coefficients used in

equation (2) are useful for proper re-scaling of the output neuron activation.

Another possible choice for the output neurons is that of using a threshold-

ing criterion for taking the information of the autoassociators into account:

«/(') = < .. (. . (-3)
I Ü : otherwise

being T,- a threshold related to the i — th autoassociator input/output distance.

In so doing, the output neurons act like an ordinary classifier provided that

the thresholding criterion is met. When this does not hold, the outputs are set

to "()", thus correcting the classifier trend to perform pattern classification no

matter what is the input. The difference between the two solutions (1) and (3)

is that in the first case the correction of the classifier behavior is gradual,

whereas in the second one, it is based strictly on a thresholding criterion.

312

Input franc

Figure 2: Nasal phoneme module: the classifier and 3 autoassociators, one for

each phoneme

The training phase takes place in classifiers and autoassociators indepen-

dently. In the case of output neurons following equation (1), a subsequent

learning step is required for assessing the optimal values of the output neuron

parameters. This can easily and quickly be achieved since we need optimiz-

ing the parameters of a single layer. For the output neurons of equation (1),

one can also perform a final global optimization step for assessing the optimal

value of all the module's parameters. The implementation of such a step is

not very difficult since, because of the layered architecture, it can be based on

Backpropa.gation for gradient computation.

Feature extraction

The experiments were carried out using RASTA-PLP [4] and Bark-scaled FFT

preprocessing schemes.

The PLP speech analysis technique estimates an all-pole autoregressive

model of the auditory-like short-term speech spectrum. PLP has been shown to

be efficient in suppressing speaker-dependent components in the speech signal.

The auditory-like spectrum is obtained by integrating the short-term power

spectrum of speech over simulated critical-band auditory masking curves, re-

sampling the integrated spectrum in approximately 1 Bark intervals, modifying

the spectral amplitude by a simulated fixed equal-loudness curve, and compress-

ing it through the cubic root nonlinearity to simulate the intensity-loudness

power law of hearing. This autoregressive modeling efficiently approximates

the spectral peaks in the auditory-like spectrum. The cepstral coefficients of

313

the PLP all pole model are recursively computed.

An $"' order RASTA-PLP model was used with the same frame length and

overlap than FFT preprocessing thus obtaining 9 component vectors (includ-

ing log power). Delta coefficients were computed for each frame and the 18

components were normalized with respect to their mean value of the training

environment.

When using Bark-scaled FFT preprocessing, the spectra were computed by

the 256-inputs FFT (frame length = 16 ras) with a Hamming window. The net-

work scanned the input, parameters every 64 samples (4 ms), thus considering

overlapped information among contiguous frames. Each input frame was rep-

resented as a (^-component spectral vector, grouping the channels according

the Bark scale. The frames were normalized on a temporal window (with 500

ms), extended in the past starting from the last frame.

The experimental results showed that RASTA-PLP needed fewer coeffi-

cients than (lie Bark-scaled FFT for obtaining comparable performance for the

nasal classifier.

In the following sections we describe the classifier and auto-associators net

architectures and give experimental results obtained with RASTA-PLP.

Nasal Classifier

The experiments were based on a recurrent network classifier having self-loop

connections only trained by BPS learning algorithm [7]. These architectures

are particularly suitable for phoneme recognition since we can guarantee a

forgetting behavior in advance when choosing the self-loop weights properly

[8]. Moreover, their training with BPS is more efficient than using general

algorithms for recurrent networks since it is local in both time and space.

In our experiments, we tested different architectures using simply "trial

and error" to assess the optimal number of hidden units for a given speech

preprocessing. The best results were obtained with a 3 layer fully-connected

net with 18 inputs, 3 exclusive static output neurons and 35 dynamic hidden

neurons with "delay coefficients".

For the training phase, we used nasal phonemes of 36 male speaker each

uttering 10 sentence. After preprocessing the signal a"s previously described.

for each phoneme, we placed supervisions only where there was clear phonetic

evidence. For this reason we avoided supervising the speech signal around

the transition frames. During the learning phase, we weighted the error at

the output neurons to balance the different number of frames for different

phonemes.

314

Table 1: EXPERIMENTAL RESULTS FOR THE NASAL CLASSIFIER.
input/output VI n ng err. n. frames recog. %

m 1487 743 753 1496 2983 49.85

n 476 1171 226 702 1873 62.52

"g SO 144 292 224 516 56.59

Crosstalk 556 887 979

Recognition 54.91%

To test, the classifier, we used a database consisting of 25 speakers. The

results we obtained are reported in tab. 1.

Nasal autoassociators

We tested different autoassociator architectures. The best results were obtained

with a 3 layer feed-forward neural network (20-6-20). We used a 50 male speaker

database for training and we created 3 different learning environments, one for

each autoassociator (i.e. one for each phoneme). The target on the output

units was imposed to be equal to the input.

The autoassociators were tested on 44 American phonetic classes obtained

with the Kai-fu-lee table for a 18 male speaker database. Recognition and

rejection rate results as a function of the threshold value are reported in Fig. 3.

Experimental results for phoneme recognition

We performed some preliminary experiments of speaker independent phoneme

recognition for validating the AM A architecture. The output from the classifier

and auto-associators were combined into 3 output neurons. We tested the

architecture using a model based on both equations (1) and (3).

The experimental results are reported in Fig. 4 for the case of output neu-

rons following the thresholding criterion (3) and equation (1) respectively.

CONCLUSIONS

In this paper, we have proposed a novel modular architecture referred to as

AMA. This architecture has been evaluated with preliminary experiments of

phoneme recognition. Comparing Fig. 4 and Fig. 5, we can see that the rejection

315

I^ua

,r .«*.-

/

\
\
\

V

— -V —

U.IHI •?■ _
Thfuhrid

1M.00
R.jwa»

I - l«^™

x^
\

/ \

M, /
\ [

TfcmfcM

100 DO k.^M .-— >-^._

-V—
60.00 ■■■■- ■■ — / \

 1 ■
1 L.....

\ ■-
 j.-

30 00 - 4 V - - - —_j_.
10.00 /- ------ .._.__!-
10.00 --/-■" — _x^^ "-{'

•
Tfc»*fadd ThnkoMi lr1

TkfttkaU 1 10°

e)

TWwbaUi ir3

f)

Figure 3: Experimental results on the test set for the autoassociators on 44

phonemes of 18 speakers with DFT and RASTA-PLP: A/fig. a), b): /m/ fig.

c), d);/no/fig. e),f).

316

RtJKÜOO

Recognition RMogB^on

/
/ /

40.U0 — 65 00 / 1
(ULM —

L /
~r~

^
/ —
/ '

"--■-■,

Thrtahold i lir3

lOaOO 300.00 300.00 40DJW S00.OU

Figure 4: Experimental results on the test set. a.) Coder using the thresholding

criterion (4); b) Coder using equation (1).

Figure 5: Experimental results of the test for the nasal classifier only, on 44

English phonemes.

317

rate frame by frame for the nasal phonemes was very high using autoassociators

to the prejudice of the recognition rate. The idea on which AMA relies is quite

general, and makes it attractive for any problems of pattern recognitions with

many classes.

References

[1] R. A. Jacobs, M. I. Jordan, A. G. Barto, "Task Decomposition through

competition in a modular connectionis architecture: The what and where

tasks", COINS Technical Report 90-27, march 1990.

[2] D. E. Rumelhart, J. L. McClelland, "Parallel Distributed Processing", vol.

1: Foundations, pp. 425-42(5.

[3] L. Lastrucci, M. Gori, and G. Soda, "Neural Autoassociators for Phoneme-

based Speaker Verification", Proc. of Workshop on Automatic Speaker

Recognition, Identification and Verification, pp. 158-162, Martigny. Switzer-

land, April 5-7, 1994.

[4] II. Hermansky and N. Morgan and A. Bayya and P. Kohn, "RASTA-PLP

Speech Analysis Technique", Proceedings Int'l Conference on Acoustics

Speech and Signal Processing, pp. 121-124, vol. I, San Francisco, California,
1992.

[5] A. Waibel, 11. Sawai, K. Shikano, "Modularity and Scaling in Large Phone-

mic Neural Networks", IEEE Transactions on Acoustics, Speech and Signal

Processing, December, 1989.

[6] G.W. Cottrell, and P. Munro and D. Zipser, "Learning Internal Representa-

tions from Gray-Scale Images: An Example of Extensional Programming",

Ninth Annual Conference of the Cognitive Science Society, pp. 462-473,

Lawrence Erlbaum, Hillsdale publisher, Seattle 1987.

[7] Y. Bengio, R. De Mori, and M. Gori, "Learning the Dynamic Nature of

Speech with Backpropagation for Sequences", Pattern Recognition Letters,

vol. 13, NO. 5, pp. 375-385, may 1992, (special issue on Artificial Neural

Networks).

[8] P. Frasconi, M. Gori, and G. Soda, "Local Feedback Multilayered Net-

works", Neural Computations, vol. 4, No. 1, pp. 120-130. January 1992.

318

NON-LINEAR SPEECH ANALYSIS USING
RECURRENT RADIAL BASIS FUNCTION

NETWORKS

Paul A. Moakes Steve W. Beet
University of Sheffield

Department of Electronic and Electrical Engineering
P.O.Box 600, Mappin Street, Sheffield SI 4DU, UK.

Tel: +44 742 825414 Fax: +44 742 726391
e-mail: P.A.Moakes@sheffield.ac.uk

Abstract - This paper presents a recurrent radial basis function
network as a one step ahead predictive speech signal filter. The re-
sulting non-linear estimation of the signal state space allows accurate
prediction using only three delayed samples of clean speech and in
noisy speech six samples allow this performance to be maintained.
The prediction residual can be used as a powerful speech pitch detec-
tor and the nonlinear network shows significant improvement over
conventional auto-regressive filters, allowing post-processors to make
more accurate estimations of pitch pulse position, the pitch, and
the regions of voiced speech. This represents a new form of pre-
processing for pitch tracking of real speech in a noisy environment.

INTRODUCTION

Speech production can be modeled using an auto-regressive (AR) filter with
an excitation signal comprising of a series of quasi-periodic pitch pulses during
voiced speech and white noise during unvoiced speech. Pitch period and the
fundamental frequency estimation are important for speech coding and recog-
nition, however, accurate pitch detection is considered one of the most difficult
tasks in speech processing. The variability of speech and speaking environ-
ments causes difficulties in pitch determination with low frequency often being
masked or lost in noise.

The location of the pitch pulse in voiced speech is important for linear pre-
dictive coding (LPC) where reduced sensitivity to the fundamental frequency
provides a more accurate estimate of the filter parameters. In frame based
speech analysis this leads to pitch synchronous prediction and in an auto-
regressive moving average (ARMA) model of speech the pitch is incorporated

0-7803-2026-3/94 $4.00 © 1994 IEEE 319

into the production model [12]. The pitch pulse can be detected directly from
physical measurements of the speaker using an electroglottograph or laryngo-
graph. This results in a two channel speech analysis system where the physical
information is used to improve the speech model [6]. This paper proposes a
method of pitch extraction based solely on the sampled time series of speech.

The ability of neural networks to estimate non-linear functions and to predict
time series [2,10] is well known and the application of neural networks for the
identification and interpretation of speech signals is of particular interest due
to the non-linear and non-stationary nature of speech [8]. However, neural
network applications in speech signal processing have tended to focus on using
extracted feature spaces such as LPC coefficients for their inputs [9], mainly as
a result of the importance of LPC parameters in vocal tract identification.

Lowe and Webb [7] have trained neural networks to model the dynamics
of isolated vowels and fricatives based on the speech time series and Town-
shend [13] has used LPC prediction residuals for the identification of non-linear
speech elements [13]. This paper extends this work to the use of RBFNs as a
non-linear AR filter with minimal a priori signal information. The filter is im-
plemented for on-line adaptive prediction of speech signals in the time sample
domain and the prediction residual is investigated for use as an accurate pitch
detector.

RADIAL BASIS FUNCTION NETWORKS

RBFNs [1] arc one-hidden-layer neural networks. The hidden layer contains
nodes which perform a non-linear transformation of the input data using a pa-
rameter vector called a centre and the output layer consists of linear combiners
which calculate the weighted sum of hidden layer nodes.

At each iteration the Euclidean distance, ||a: —Cj-||, between each node centre,
Cj, and the input vector, x, is calculated. The result is passed through a non-
linear function, $(.), to generate the node output, hj

hj = *(\\x - c;\\) (1)

In this paper the thin-plate spline function, $(«/) = z/2log(i/), is chosen for
its non-localised response. This has been shown to achieve excellent approxi-
mation ability due to the characteristic <j>(x) — oo as x -► oo [2] and readily
accommodates the rapidly changing speech state-space. The network output y
is given by

y = ^iihi (2)

where rjj are the node weights and nh is the number of hidden nodes.

An RBFN can approximate arbitrarily well any continuous function on a
compact domain if sufficient basis functions are used. The changing complex-
ity of the speech dynamics implies that, the number of nodes required will vary
depending upon the speech frame, so Kolmogorov's theorem [5] is used to fix

320

Speech

S0C-1)
Radial Basis Function

•
•

+

1

Recurrent Path

s(k)
z"n Delay •

Line * A I Prediction
y W +1 Residual

Sflr-1
1

1 ^ t - T/O1* ».«r/V»

1 1
j i z-m Delay .

Line *

1

Figure 1: An output feedback recurrent radial basis function network

the number of nodes arbitrarily at 2d+ 1, where d = n + m is the dimension
of the input vector x.

Recurrent Networks

Recurrent RBFNs (RRBFNs), figure 1, incorporate network parameters in
the input vector, in this paper the input vector is augmented with output
feedback. The input vector x at sample k is thus

Xk = (s*-i, •• •, «*-n,y*-i, • ■ • ,2/fc-m) (3)

where n is the number of lagged speech samples, s, and m is the number of
lagged RRBFN predictions, y.

The speech characteristics do not change rapidly outside of the sample win-
dow and the introduction of output feedback adds context to the input vector
without increasing the size of the speech window. In noisy speech corrupted
samples are augmented with prediction outputs with a reduced noise content,
allowing improved recovery of the pitch pulses.

Centre Clustering

Network approximation ability is dependent upon the RRBFN centre lo-
cations. The centres are initially selected randomly within the bounds of
the speech state-space and clustered using a variation of the Kohonen Self-
Organising feature Map (SOM) introduced by Huntsberger and Ajjimarangsee
[3] and extended by Zheng and Billings [14]. This fuzzy clustering approach
avoids the sensitivity of /c-means clustering to the initial centre positions, pre-
venting false minima being found.

321

The clustering algorithm used here is

1. Set an initial clustering gain of Q0 = 0.2 and an initial number of neigh-

bours Ne = nh — 1.

2. Use a decaying clustering gain of a = a0(\ — t/T), where T is the total
number of iterations during training and t is the current iteration.

3. Select 30 input vectors, a;,-, from the speech at random.

4. Calculate the distance of the centres from the input vector a;,-.

5. Adapt closest centre Cj and its Nr nearest neighbours, cvj, using

c. VJ cvj + Qfiv(xi- cvj) (4)

where //„;- is the fuzzy membership function.

6. Reduce the number of nearest neighbours, Nc = Ar
c — 1, and repeat from

step 2 until Nc = 0.

The fuzzy membership function used here is

1, if \\x, "VJ |

N ~ { (Er=\ fe^f)"1' VH*> - C'H ^ ° otherwise (5)

During on-line adaptation the centres are adjusted using the «-means clus-
tering technique to adjust to the changing speech dynamics [4]. It also allows
the correction of the recurrent elements of the centres which during initial clus-
tering are assumed to receive an input equal to the speech samples, i.e. the
network has no prediction error and y(k) = s(k), due to the unavailability of
network predictions. At each sample the closest centre to the current input
vector, Cj, is updated according to

CJ - Cj + aK(x - c.j) (6)

where aK is the learning rate. Using a small value of aK allows weight adapta-
tion to be considered independently of centre adjustment.

Weight Adaptation

The response of the RRBFN is linear with respect to the node output weights
resulting in an output error surface with only one global minimum if the centres
are fixed. This allows the weights to be updated using a covariance matrix
approach based on the Kaiman filter (KF) and results in a rapid convergence

322

to the optimum weights required to minimise the mean squared prediction
r. The KF equations for updating the hidden layer weights [11] are error.

Kk = Pk-itk (*k + 4%Pk-itk) (7)

ft = i-(ft_i-*t#ft-i) (8)

efc = ejfe_i + uffcc* (9)

where Kk is the KF gain and Pk is the RRBFN inverse covariance matrix. 0*
is the vector of hidden layer weights TJJ, ik is the vector of node outputs hj,
and ek is the prediction error sk-yk-

\k is a variable forgetting factor (VFF) which allows the KF to estimate
time-varying system parameters by exponentially windowing the speech, with
an effective memory of 1/(1 - Afc) samples. \k is based on the filter error
information content [12], defined as the weighted sum of squares of the residual
errors, Vk, and which can be expressed recursively as

Vk = \kVk-i + el(l-fäKk) (10)

Applying a constraint of constant error information, Vk = V*_i = Vi, allows
the VFF to be defined from (10) as

Xk = 0.99-yet (l-4lKk)/Vi (H)

where Vx can be taken as the average filter error information.
A lower limit of Xk = max [A* ,0.9] and a gain factor of j = 0.15 give Xk

the range 0.9 < A* < 0.99 as suggested by Salgado [11] for a compromise of
adaptive speed and memory. The error information content is constant for a
signal with a Gaussian driving source, but large values occur when the source
signal changes, such as at pitch pulses [12]. This results in a small A, and
the KF estimates are then based on a shorter window of speech allowing rapid
adaptation to the changing dynamics. This creates a sharp error at the point
of glottal closure which when observed against the average filter error provides
a good indication of the onset of the pitch pulse. Simple post-processing tech-
niques can then be used to select the most likely pitch positions from these

pulse candidates.

SPEECH PREDICTION

The performance of an RRBFN for the one step ahead prediction of speech
was compared with that of a RBFN and a linear AR filter for the noise free
utterance of the word "five" sampled at 20kHz. The RRBFN had an input vec-
tor of dimensions n = 3, m = 3, hence a network size of nh = 13 was selected
to satisfy Kolmogorov's theorem [5]. In order to obtain a fair comparison^
RBFN also had 13 hidden nodes, but used an input vector of n = 3, m - 0,

323

JUJJJLJJJLIJL.UJÜUJJUL _

JJwülUlJl
Speecti ÄMWfff^

Figure 2: Normalised voice source estimates for the noise free word "five"

and the AR filter used 13 lagged speech samples. The weights in all three
networks were updated using the KF approach (7-9) with a VFF defined by
(11). The basis function centres were positioned initially using fuzzy cluster-
ing and adapted on-line using «-means clustering (6), with an adaptive rate of
or* = 0.01.

Voice Source Estimation

The accumulated squared prediction residual for the filters was calculated
over an eight sample window to generate an estimate of the speech voice source.
The normalised voice source estimates are shown in figure 2. Even though the
KF has a speech window four times wider than the RBFN, the RBFN can
detect the change in signal driving function at the pitch pulse with greater
precision than the KF and has a lower noise floor between pulses. The increased
contextual information inherent, in the RRBFN is a marginal improvement over
the RBFN, but its most significant contribution occurs when noise is present
in the speech signal.

The networks were tested using the word "five" corrupted with additive noise
to give a signal to noise ratio (SNR) of 3dB. Due to the poor performance of all
networks using only 3 speech samples the speech windows were increased. The
RRBFN was extended to n = 6, m = 3, nh = 19, the RBFN to n = 6, m = 0,
nh = 19, and the AR filter used a 19 sample speech window. Figure 3 shows
the resulting voice source estimates. The AR filter residual becomes lost in the
noise floor, making pitch prediction difficult even with a large speech window.
The RBFN fares better, with distinguishable peaks at pitch pulses and an even
noise floor. However, the RRBFN is better still with more distinctive peaks
and a lower noise floor.

324

JUUJLLUJULIJI^^

Speedi

Figure 3: Normalised voice source estimates for the word "five" with an SNR of 3dB

Speech

Figure 4: Pitch candidates for the word "five" with an SNR of 3dB

Pitch Detection

Pitch detection was achieve by thresholding 15ms windows of the voice source
estimate at twice the standard deviation of the voice source over several several
windows. A pitch candidate is observed when the voice source rises above the
threshold and figure 4 shows the pitch candidates obtained from the three fil-
ters in noisy speech. The improved peaks at pitch events and the reduced noise

325

500

0.8 1
Time (s)

Figure 5: Pitch track and spectrogram for a male TIMIT speaker

floor of the RRBFN ensure that fewer peaks on the voice source estimate are
classed as pitch candidates. Therefore the RRBFN is a better filter for voice
source estimation with more consistent pitch candidate statistics which allow
the easy elimination of false candidates.

Pitch Tracking

An RRBFN pitch detector of the type used for noisy speech was applied
to real speech obtained from the DARPA TIMIT continuous speech corpus.
Using a sliding window of 15 pitch candidates, the speech was classified as
voiced when the median pitch period exceeded the standard deviation of the
pitch period within a given window. The median was preferred as it is resilient
to extreme pitch estimation errors. Figure 5 shows the pitch frequency tracks
of voiced speech obtained when this method is applied to the phrase, "Don't
ask me to carry an oily rag like that", spoken by a male.

The tracks have been laid over the FFT derived spectrograph for compari-
son and can be seen to lie along the fundamental resonance in the spectrogram
which suggests the correct determination of the pitch period. The algorithm
provides a very clear indication of the areas of voiced speech, with no obvious
mis-classification of unvoiced speech as voiced. The largest errors occur in quiet
speech where the SNR is lowest and the speech dynamics are changing which
could be overcome by incorporating an overall signal power weighting into the
algorithm.

326

DISCUSSION

This paper has demonstrated the ability of RRBFNs to estimate the non-
linear system dynamics of both noisy and continuous speech. The prediction
residual provides a powerful pitch pulse detector and the improvement com-
pared with a linear AR predictor supports the proposition that a non-linear
speech model is more accurate. Signal noise causes significant deterioration of
this result in an RBFN filter which is overcome by incorporating output feed-
back which inherently offers a reduced noise content into the input vector of
an RRBFN.

Despite the use of a simple pitch post-processor, the pitch candidates pro-
duced by the RRBFN have provided excellent pitch tracks for continuous speech
using only the time domain representation of the signal and limited a priori
information. These pitch candidates are suitable for pitch synchronous esti-
mation, although it is preferable to use the initial voice source estimate as a
more accurate guide to the areas of consistent dynamics within speech. This
will enable future work to concentrate on the incorporation of the pitch into a
non-linear ARMA model of speech which will be adapted on-line.

The prediction of speech using only three sample also provides a firm basis
on which to investigate further the underlying non-linear dynamics of speech.
The final objective of this work will be the extraction of a minimal feature
space for use in speech recognition, encoding, noise reduction, and synthesis.

ACKNOWLEDGEMENTS

The authors wish to thank DRA Malvern, UK, for the CASE Studentship
associated with this work.

REFERENCES

[1] D.S. Broomhead and D. Lowe, "Multivariable functional interpolation and
adaptive networks," Complex Systems, vol. 2, no. 3, pp. 321-355, 1988.

[2] S. Chen, RM. Grant, and C.F.N. Cowan, "Orthogonal least squares learn-
ing algorithm for training multioutput radial basis function networks,"
IEE Proc-F, vol. 139, no. 6, pp. 378-384, 1992.

[3] T.L. Huntsberger and P. Ajjimarangsee, "Parallel self-organising feature
maps for unsupervised pattern recognition," Int. J. General Systems, vol.
16, no. 4, pp. 357-372, 1990.

[4] T. Kohonen, "The self-organising map," Proc. IEEE, vol. 78, no. 9, pp.
1464-1480,1990.

327

[5] A.N. Kolmogorov, "On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and ad-
dition," American Mathematical Society Translation, vol. 28, pp. 55-59,

1963.

[6] A.P. Lobo and W.A. Ainsworth, "Evaluation of a glottal ARMA model of
speech production," in Proc. IEEE ICASSP 92, San Francisco, CA, USA,

23-26 March 1992, vol. II, pp. 13-16.

[7] D. Lowe and A. Webb, "Adaptive networks, dynamical systems, and
the predictive analysis of time series," in Proc. First IEE Int. Conf. on

Artificial Neural Networks, London, 16-18 Oct. 1989, pp. 95-99.

[8] S. McLaughlin and A. Lowry, "Nonlinear dynamical systems concepts in
speech analysis," in Proc. EUROSPEECH 93, Berlin, GERMANY, 21-23

Sept. 1993, pp. 377-380.

[9] S. Moon and J.-N. Hwang, "Coordinated training of noise removing net-
works," in Proc. IEEE ICASSP 93, Minneapolis, USA, 3-5 Aug. 1993,

vol. I, pp. 49-54.

[10] M.A.S. Potts and D.S. Broomhead, "Time series prediction with a radial
basis function neural network," in SP1E Proc. Adaptive Signal Processing,

San Diego, CA, USA, 1991.

[11] M.E. Salgado, G.C. Goodwin, and R.H. Middleton, "Modified least
squares algorithm including exponential setting and resetting," Int. J.

Control, vol. 47, no. 2, pp. 477-491, 1988.

[12] Y.T. Ting and D.G. Childers, "Tracking spectral resonances," in Proc.
IEEE 4th ANN Workshop on Spectrum Estimation, Minneapolis, USA,

3-5 Aug. 1988, pp. 49-54.

[13] B. Townshend, "Nonlinear prediction of speech," in Proc. IEEE ICASSP

91, Toronto, Canada, 1991, vol. I, pp. 425-428.

[14] G.L. Zheng and S.A. Billings, "Radial Basis Function Network Training
Using a Fuzzy Clustering Scheme," Dept. of Automatic Control, University
of Sheffield, Research Report 505, February 1994.

328

WORD RECOGNITION USING A NEURAL
NETWORK AND A PHONETICALLY BASED DTW

Yoshihiro Matsuura*, Hideki Miyazawa* Toby E. Skinner**
♦Meidensha Corporation **Adaptive Solutions, Inc.

2-1-17 Ohsaki Shinagawa-ku 1400 N.W. Compton Drive Suite 340
Tokyo 141 JAPAN Beaverton, OR 97006 U.S.A

Abstract: We have developed a speaker-independent, isolated-word recognition
system using a neural network to recognize the underlying sequence of phonemes
and a DTW technique to time-align the recognized sequence of phonemes with
corresponding lexical sequences of phonemes. A significant feature of this system
is the ability to easily change the vocabulary, since the lexical entries are simply
derived from their phoneme sequences.

INTRODUCTION

Because of its ability to time-align two perceptually-equivalent spoken words,
Dynamic Time Warping (DTW) is a technique that is often used in speaker-
independent, isolated-word recognition systems [1][2]. As initially formulated, the
DTW technique compares the sequence of spectra comprising a spoken word with
the corresponding spectral sequences from each word in the lexicon. The most
similar lexical entry, as measured by the minimum amount of distortion in both
time and frequency, is declared to be the recognized word. However, it is well
known that two spectral sequence patterns of the same word spoken on different
occasions by the same speaker or by two different speakers may differ appreciably
in both duration and frequency aspects. Duration variations are implicitly
accounted for by using the DTW alignment technique. Frequency differences are
minimized by averaging the component spectral patterns of multiple versions of
each word spoken by multiple speakers. Creating the average patterns of spectral
sequences for each word in the vocabulary to be recognized requires exemplars of
actual speech, including multiple versions of each word spoken by multiple
speakers. This requirement makes it very difficult to change the vocabulary of the
recognition system, perhaps intractable for large vocabularies. In this paper we
will present a word recognition system to solve the difficulty in changing the
vocabulary.

DESIGN OF THE WORD RECOGNITION SYSTEM

Outline of Design

To overcome the problem inherent in vocabulary modification, we have developed
a speech recognition system (Fig. 1) which uses phoneme recognition as a prelude
to word recognition. Phoneme recognition is accomplished using a neural network,

0-7803-2026-3/94 $4.00 © 1994 IEEE 329

with spectral patterns as input and recognized phonemes as output. Word
recognition is achieved by applying a DTW technique, which aligns phoneme
sequences rather than spectral sequences of the spoken word with the words in the
vocabulary. A simple method is applied to calculate the distance between two
phonemes, instead of calculating Euclidean distance between two spectra. The
feature extraction, phoneme recognition by a neural network and word recognition
by DTW matching are realized on CNAPS, which is a parallel processing system
[6].

PHONEME RECOGNIITONT

SIGNAL CAPTURE

I SPEECH DATA

FEATURE EXTRACTION |

I SPECTRUM

^HONEME RECOGNIITON

WORD RECOGNITION

PHONEMES

)ICTIONARY> WORD RECOGNITION |

t WORD

FIGURE 1. SYSTEM ARCHITECTURE

Phoneme Recognition Component

The speech recognition system operates over the telephone. The received analog
signal is sampled at 8 kHz, and translated into a sequence of 27-component mel
spectral feature vectors by Hanning window for window widths of 16 ms. advanced
at 12 ms intervals. Each feature vector, together with the two preceding and two
following feature vectors, is fed to a back propagation neural network (NN). The
outputs of the NN arc the 23 possible phoneme categories, with the category
receiving the highest activation being the identity associated with the center
input feature vector. The total architecture of the NN is 135 input units (27 x 5),
220 hidden units (as determined by experiment), and 23 output units (Figure 2).
The NN was trained using 2 repetitions of each of the 101 words in the vocabulary
by 15 different male speakers. The vocabulary is determined so that it covers all
possible consonant-vowel, vowel-consonant vowel-vowel phonemic environment
in Japanese. During the recognition of an unknown word, the phoneme
recognition component uses the trained NN to determine the first and second
candidate phoneme identities corresponding to each feature vector, which it passes

330

on to the word recognition component.

•aiueo
?«oooooooooooooc 23 OUTPUT

iCXXXXXXX3000C>C>OOOOOOOOOOOOOC)OOOb 220 HIDDEN

27x5 INPUT

FIGURE 2. NEURAL NET FOR PHONEME RECOGNITION

Word Recognition Component

The word recognition component receives the sequence of first and second best
phoneme guesses from the phoneme recognition component. This input sequence
is compared with each of the phonemically-encoded templates of the words in the
current vocabulary, and the most similar one is declared to be the recognized word.
Since the domain of representation of the unknown word and the vocabulary
templates is phoneme sequences, a simple method is used to perform the
comparison (DTW matching) instead of the Euclidean distance. If the first and
second guesses of the i-th frame data of a spoken word are P,(i) and P2(i), and the
j-th phoneme of the template t is Pt(j), then the distance at (i, j) is decided
according to (1).

d(i,j)-if
P,(i)-P,(j)
Pi(i)-P,(j) andP2(i)-Pt(j)

P^O-P.Ü) andP2(i)*Pt(j)

then (1)

The DTW path algorithm allows three choices: right-one, right-one-and-up-one,
and right-one-and-up-two, all with the same weight. In other words, when
calculating the accumulated distance g(i, j) at (i, j), (2) is used.

g(i,j)-min
g(i-lj)
g(i-lj-l)
g(i-lJ-2)

+ d(i,j) (2)

Templates

To create the phoneme sequence representation for a word in the recognition
vocabulary, the required information is a phonemic transcription, and the duration
of each of the component phonemes. The phonemic transcription is a trivial
matter especially in Japanese, and the associated duration is defined by a technique

331

for speech synthesis technology [4]. It determines the duration of the phoneme
considering the one preceding phoneme and one following phoneme using a table,
which was beforehand obtained from duration information of real spoken words.
The duration is calculated with the table and a rule according to the length of the
word. The duration L(P^,)of the i-th phoneme P^ of a word w whose mora is
Mw is calculated by (3).

L(P;) - *(p;', p;, p;+1) MW +b(p;', P; , P;
+1
), (3)

where k(x, y, z) and b(x, y, z) are coefficients for the phoneme y between the
phoneme x and z. Those coefficients were beforehand obtained from duration
information of real spoken words.
Finally a phoneme sequence like "zzzeeerroooo" is generated from a transcribed

word "zero" and its duration information obtained by the technique.

RECOGNITION EXPERIMENT

Phoneme and Word Recognition Experiment

An experiment was conducted to measure the performance of this speech
recognition system. As already mentioned above, the NN for phoneme recognition
was trained using 2 repetitions of each of the 101 words by 15 male speakers
(training speaker set 1 as seen in Fig. 3). The data for testing consists of 2
repetitions of the 101 words by 5 male speakers excluded from the training of the
system (testing speaker set 1 as seen in Fig. 3). Table 1 shows the results of
phoneme recognition. Each recognition rate is the average of those of the 23
phoneme categories. Table 2 shows the results of word recognition.

TABLE 1. PHONEME RECOGNITION RESULTS
SPEAKER SET FIRST GUESS (%) SECOND GUESS (%)

TRAINING SPEAKER 1 82.63 89.63
TESTING SPEAKER 1 70.10 83.10

TABLE 2. WORD RECOGNITION RESULTS (101 WORDS)
SPEAKER SET RECOG. RATE (%)

TRAINING SPEAKER 1 98.45
TESTING SPEAKER 1 97.23

Open Word Recognition Experiment

Another word set was also tested as open word recognition test. It has 100 words
different from the 101 words used for the above experiment. It consists of 2
repetitions of the 100 words by 6 male speakers. The content of 6 speakers is 3
training speakers out of 15 training speakers and 3 testing speakers out of 5 testing

332

speakers (training speaker set 2 and testing speaker set 2 as seen in Fig. 3).

TABLE 3. WORD RECOGNITION RESULTS (100 WORDS)
SPEAKER SET RECOG. RATE (%)

TRAINING SPEAKER 2 98.00
TESTING SPEAKER 2 97.50

Incidentally, the word recognition rate was calculated with the data of the 101
words only by the 6 speakers which are same as those of this experiment. The
results are shown in Table 4.

TABLE 4. WORD RECOGNITION RESULTS (101 WORDS)
SPEAKER SET RECOG. RATE (%)

TRAINING SPEAKER 2 98.35
TESTING SPEAKER 2 97.69

As seen in the tables, over 97% recognition rate is achieved with testing speakers
and over 98% for training speakers. Since there are few differences between the
results of 101 word-set and those of 100 word-set, it can be said that the system
has vocabulary independence.

TRAINING SPEAKER 1

m

TRAINING SPEAKER 2
3

TESTING SPEAKER 1
\

<

TESTING SPEAKER 2
111

J

FIGURE 3. SPEAKER SET
SHOWS NUMBER OF SPEAKER

CONCLUSION

A speech recognition system has been developed which achieves 97% isolated-
word, speaker-independent recognition for an untrained word vocabulary. A
significant feature of this system is that the vocabulary templates are represented
as phoneme sequences, which enables the capability to easily change the
vocabulary.

REFERENCES

[1] H. Sakoe and S.Chiba, "Dynamic programming algorithm optimization for
spoken word recognition.", IEEE Trans. Acoust. Speech, Signal Processing,

333

ASSP-26, pp.43-49, Feb. 1978.

[2] H. Ney, "The use of a one-stage dynamic programming algorithm for
connected word recognition", IEEE Trans. Acounst., Speech & Signal Process.,
ASSP-32, 2, pp. 263-271, 1984

[3] T. J. Sejnowski and C. R. Rosenberg, "Parallel Networks that Learn to
Pronounce English Text", Complex Systems, 1, pp. 145-168, 1987.

[4] A. Waibcl et al., "Phoneme recognition using Time-Delay Neural Networks."
IEEE Trans, on Acoustics, Speech and Signal Processing, vol.37, No. 3, pp.328-
339. March 1989.

[5] N. Suda et al., "Text to Speech Synthesizer Based on Residual Wave Excitation
of Acoustic Tube Model", Spring meeting of Acoustical Society of Japan, pp. 215-
216, March 1990 (in Japanese).

[6] T. Skinner et al., "Massively parallel DSP technology as applied to speech
Recognition.", DSP Applications, pp. 29-36, August 1993.

334

A MONOLITHIC SPEECH RECOGNIZER BASED
ON FULLY RECURRENT NEURAL NETWORKS

Klaus Kasper, Herbert Reininger, Dietrich Wolf and Harald Wüst
Institut für Angewandte Physik, der J.W.Goethe-Universität Frankfurt

Robert-Mayer-Straße 2-4, D-60054 Frankfurt a.M., FRG
Tel.: +49 69 798 3490, Fax: +49 69 798 8510
e-mail:kasper@apxOO.physik.uni-fr ankfurt.de

Abstract. In this contribution we report about investigations concern-
ing the application of fully recurrent neural networks (FRNN) for speaker
independent speech recognition. In a phoneme based recognition system
separate FRNN are used for feature scoring as well as for compensat-
ing variations in time durations of speech segments. A recognizer with a
FRNN for feature scoring achieves the same recognition rate as a recogni-
tion system where the context information is provided. The performance
of the FRNN used for time alignment is comparable to that of a viterbi
based alignment with durational constraints. Additionally, a monolithic
speech recognizer is realized by FRNN which directly classifies feature se-
quences. The performance of this FRNN is comparable to that of speech
recognition systems which are based on discrete Hidden Markov Models
and use a sophisticated durational modeling. Furthermore, simulation
experiments revealed that FRNN are able to extract relevant informa-
tion for speech recognition from noise contaminated speech and thus
achieve a robust recognition performance.

1. INTRODUCTION

Speech recognition sytems (SRS) are faced with two basic problems. Ex-
ploiting of contextual information between feature vectors during the fea-
ture scoring and compensation of variations in time durations of speech
segments.

In SRS feature scoring is the process of assigning a feature vector
likelihood values characterizing its belonging to the phoneme or word
categories. The more contextual information about a feature vector is
taken into account in this process the more uniquely the likelihoods
indicate a specific category. Speech recognizers based on Hidden Markov
Models use time derivatives of feature vectors to incorporate contextual
information. SRS with artificial neural networks (ANN), like time-delay
neural networks (TDNN) [1, 2], use a sliding window containing several
consecutive feature vectors as input and delayed versions of hidden layer
activities in order to exploit dependencies of these vectors.

The variations in time durations of speech units are usually compen-
sated during the calculation of word hypotheses by means of a dynamic

0-7803-2026-3/94 $4.00 © 1994 IEEE 335

programming method which is usually the viterbi algorithm. In the time
alignment via viterbi algorithm the feature scores are mapped onto the
phoneme sequence denning a word in such a way that the accumulated
scores achieve a maximum value.

As a consequence, the different algorithms for feature scoring and the
time alignment lead to a heterogeneous structure in realization of SRS.
In this contribution we report about investigations to realize SRS with
FRNN. FRNN is the most general type of recurrent network because all
neurons are connected to all other neurons and to itself. Therefore, the
performance of FRNN is not limited due to structural constraints. Two
different FRNN based recognition approaches are investigated. Firstly, a
phoneme based recognizer in which the feature scoring as well as the time
alignment is performed by FRNN. The performance of the FRNN used
for feature scoring is compared to that of a TDNN with optimized delay
structure in order to evaluate the capability of FRNN to extract contex-
tual information. The performance of the time alignment network FRNN
is compared to that of viterbi alignment procedures including different
types of phoneme duration modeling. Secondly, a monolithic SRS con-
sisting of a FRNN which directly classifies feature vector sequences and
thus combines feature scoring and time alignment is presented. The ro-
bustness of this FRNN against additive noise contaminating a speech sig-
nal is discussed in comparison to SRS based on discrete Hidden Markov
Models.

2. FULLY RECURRENT NEURAL NETWORKS

Time discrete FRNN are neural networks with dynamic behaviour. Be-
cause of the fully connected recurrent structure, each connection has a
minimum time delay of one time step. With each input pattern x(t) the
activities of all neurons are updated and an output pattern is emitted.

To distinguish between different types of neurons, the indices of the
input neurons are denoted as I, the indices of the internal neurons as U,
and the indices of the output neurons as O. The activity of neuron j at
time t + 1 can be calculated as

hj(t + l)= J2 «WO. w
tewuz

xj(t + l) = Fj(hj(t + l)) . (2)

with W = {wij} denoting the weigth-matrix, F, a differentiate activa-
tion function and x,(t) the activity of neuron i at time t.

The dynamic behaviour of a FRNN up to time t can be equivalently
described by a feedforward multi-layer-perceptron (MLP) with t layers
[3]. Therefore, the weights Wij can be calculated using a modified version
of the gradient descent algorithm error back-propagation (EBP). In con-
trast to MLP-networks, the input, the output, and the target patterns

336

are functions of time t. The time parameter t is equivalent to the layer
index / of a MLP. EBP through the layers / can be interpreted as an
"error backpropagation through time" (BPTT) [4].

The error-function which has to be minimized is the sum of the
quadratic errors of the network over the time period ta to te, i.e.

(3)

where Zk{t) denotes the desired target function.
In BPTT the weights are changed in direction of the error-gradient

de(ta,te)

^ dE(t)

For t-- = te the gradient can be written as

d-^ = -ei{te)F<(hj{ie))xi{te-l) , (4)

with

e*w ~ { 0 k £ 0

and
6j(U) = ejiQFJihjiU)). (5)

The weight change arising at time te can be written as

Awij(te) = T)8j(te)xi(te-l) . (6)

For earlier time steps two forms of errors have to be considered. First,

(7)

the error which corresponds to the error in the hidden layers of a
and second, the error resulting from the output pattern which is
by

6](t) = ej(t)Fj(hj(t)) .

MLP
given

(8)

Denoting the sum of these two error components as

= ei{t)Fj(hj(t))+ £ *»Mt + l)Fj(hj(t)),

337

an analog weight change formular for times ta < t < tt

Awij(t) = T)6j(t)xi(t-l)

results. Starting at time t = te, the actual weight change can recursively
be calculated for all times t < tt. Applying BPTT iteratively leads to a
decrease of (3) till a minimum is reached.

For efficient implementation of BPTT the gradient calculation is lim-
ited to a time-period tr and BPTT is initiated only once after every
tv < tr time steps. In this case, Sj(t) has to be calculated according to

es(t)Fj{hj(t)) ;t = tB

ejMFjihjtt)) + £ wik6k(t+l)F}{hj(t))

;t -tv < t < tB

Yd
wi^k{t+l)F'j{hj{t))-tB-tr<t<tB-tv

Sj(t)={

where tB denotes the time when a BPTT has been initiated [5]. The
gradient resulting in this so called truncated BPTT is an approximation
to the real gradient. The discrepancy depends on the parameters tr and
tv. Therefore, tr and tv have to be optimized empirically for each task.

3. SPEECH DATA

The system vocabulary consists of the 10 German digits, the word Zwo,
and 12 telephone command words. The speech signals were limited to
telephone bandwidth and sampled with 8kHz. From these signals fea-
ture vectors were extracted every 12ms, each consisting of 12 cepstral
coefficients derived from LPC parameters.

In the case of phoneme based recognizers for training of the net-
work parameters the hand-labeled feature vectors of 50 utterances of
each word, from different male and female speakers, were used. In the
case of word based recognizers for the computing of the SRS parameters,
feature vectors from 100 utterances of each word spoken from different
male and female speakers, were used. In both cases speaker independent
recognition rates were measured on the same disjunct set containing 100
utterances of each word from speakers not included in the training set.

4. FRNN FOR FEATURE SCORING AND TIME ALIGN-
MENT

First, feature vector scoring with FRNN was investigated. Networks
with two different input constellations were considered. In the network
FRNN1 an input pattern consists of a single feature vector, while in

338

R[%]

internal neurons

Figure 1: Recognition results for FRNN with different number of internal
neurons in comparison to TDNN

the network FRNN2 two consecutive feature vectors are combined to
an input pattern. The networks have 24 output neurons, one for each
phoneme category. For an input pattern the target output pattern used
in the training of the connection weights contains a 1 in the place of the
correct phoneme and a 0 in every other place.

To evaluate the capability of FRNN to exploit automatically con-
textual information, the recognition rates of the FRNN based SRS were
compared with the rates of a SRS using TDNN with optimized delay
structure. Word recognition rates were measured by feeding the out-
put activities into a viterbi based time alignment including minimum
phoneme duration constraints. The TDNN use a window of 3 consec-
utive feature vectors as input and 40 hidden neurons, which activities
together with the delayed activities, were connected to 24 output neu-
rons.

Figure 1 shows the recognition results of SRS with FRNN1 and
FRNN2 for different numbers of internal neurons and for comparison the
rate obtained with TDNN. As can be seen, using FRNN1 with about 115
neurons for scoring of the feature vectors yields a recognition rate compa-
rable to that achieved with TDNN. For adjusting the 15500 connection
weights of FRNN1 150 training epochs were needed. In comparison to
the TDNN, for which 2000 training epochs were necessary to optimize
the 3400 connection weights, the training time is reduced by the factor

339

Table 1: Word recognition rates (WR) for different realizations of time
alignment

Alignment WR[%]

TAFRNN 96.9

VIT 96.0

VITMD 96.9

VITPDM 97.8

of 2. With FRNN2 the recognition rates of the SRS with FRNN1 or
TDNN for feature scoring are achieved with only 45 neurons. This result
indicates that in FRNN1 some neurons are required for storing input
information. Increasing the number of neurons in FRNN2 increases the
recognition rate only slightly. The highest recognition rate of 96.9% was
achieved by a network with 121 neurons after 200 epochs of training.
Due to the decimation of the number of input vectors by a factor of 2,
the training time of FRNN2 is also reduced by a factor of 2 as compared
to FRNN1. These results indicate that both FRNN variants are able to
extract contextual information automatically.

In further simulation experiments it was investigated whether a
viterbi alignment procedure could be replaced by a FRNN. This time
alignment network, further denoted as TAFRNN, was trained to map
the feature scores onto word scores. Therefore, the TAFRNN has 24 in-
put neurons in which the phoneme scores of FRNN2 were fed in and
11 output neurons, one for each word of the system vocabulary. Word
hypotheses were generated by accumulating the activities of the output
units over the duration of an utterance.

In order to evaluate the performance of TAFRNN, viterbi based align-
ment procedures using different types of phoneme duration modeling
were simulated. VIT is a time alignment module consisting of an uncon-
straint viterbi algorithm. In VITMD minimum phoneme durations are
forced by transition constraints applied to the viterbi-path. VITPDM
includes a sophisticated phoneme duration modeling. Each phoneme is
modeled with a markov chain. The transition probabilities between the
states of a markov chain are chosen in accordance with the duration
distribution of the corresponding phoneme [6].

As can be seen from Table 1, using TAFRNN with 120 neurons a
recognition rate of about 97% is obtained. TAFRNN outperforms VIT
and achieves a result comparable to that of VITMD. Only VITPDM
achieve with about 98% a higher rate than TAFRNN.

The results of these simulation experiments indicate that the task of

340

time alignment in an SRS can be accomplished with FRNN. However,
further investigations are necessary to see what network sizes have to be
considered for larger system vocabularies.

5. SPEECH RECOGNITION ON THE BASIS OF MONO-
LITHIC FRNN

5.1 Configuration and Performance of a Monolithic Recognizer

In a second set of simulation experiments it was investigated whether
FRNN are able to combine feature scoring and time alignment in a
single network, further denoted as MFRNN. In these experiments the
system vocabulary was extended to 23 words which arise in a telephone
task. To evaluate the performance of FRNN, two SRS (Dl, D2) based
on discrete Hidden Markov Models were realized . While in the case of
Dl 12 weighted Cepstral coefficients are used as feature vectors, which
are quantized using 128 codebook vectors, in the case of D2 12 Delta co-
efficients, which are also quantized with 128 codebook vectors, are used
in addition to the cepstral coefficients. A word model consists in both
systems of 5 states each with 5 substates. This allows a sophisticated
modeling of state duration and is comparable to VITPDM.

The MFRNN was trained to estimate word probabilities for each in-
put pattern consisting of five consecutive feature vectors. As in TAFRNN
word hypotheses were generated by accumulating the word probabilities
represented by the activities of the output units over the duration of
an utterance. Therefore, MFRNN has 60 input neurons and 23 output
neurons. Experiments concerned with the optimization of network size
revealed that about 160 internal neurons are sufficient to manage the
task. This MFRNN achieves a recognition rate of 96.7% and thus out-
performs Dl which achieves only 95.2% on the same task. Obviously,
MFRNN is able to exploit automatically information about the dynamic
of the feature vectors. This is also confirmed by the fact that D2, which
uses DCep for representing dynamical information of the feature vectors,
achieves with 97.3% about the same recognition rate as MFRNN.

In Figure 2 the activities of the output neurons representing the digits
are shown during recognition of the utterances Zwei, Eins, Neun, Null,
Sieben, and Sieben. This string of digits is arranged in order to investi-
gate the capability of MFRNN for continuous speech recognition. The
word Zwei and the word Eins share the same phonetic unit / al/ at their
boundary as well as the words Neun and Null share /n/. As can be seen
from Figure 2, at both boundaries the output neuron belonging to the
preceding word shows a high activity for a small number of input pat-
terns. Nevertheless, the activity of the output neuron belonging to the
right word is dominant. The last word pair consists of two utterances
of the word Sieben. Obviously, this is a hard task for MFRNN because

341

fB5 GW?

3R.. fif^

Zwe« 1/ ßj'ns UNeun]fNull \jsieben\l Sieben

Null -•-
Eins -•-■
Zwei -B-
Zwo -*-

Drei -*-
Vier -■*-

Fuenf ••♦••
Sechs ---»--
Sieben ••«■•
Acht -*-
Neun --*-•

WB —

0 10 20 30 40 50 60 70

Figure 2: Activities of the output neurons representing the digits during
recognition of the utterances Zwei, Eins, Neun, Null, Sieben, Sieien with
MFRNN

it could be expected that the output neuron corresponding to the word
Sieben will show an activity near the value 1 during both utterances. As
can be seen from Figure 2, the curve representing the activity of the neu-
ron belonging to the word Sieben has a minimum at the boundary which
is remarkable because MFRNN receives no explicit information about
word boundaries. These results indicate that MFRNN is a promising
tool for continuous speech recognition.

5.2 Evaluation of the Monolithic FRNN Recognizer in Noisy
Environment s

In order to assess the robustness of MFRNN utterances distorted by
additive white gaussian noise (WGN), office noise (ON) recorded at a
big computer fair, and running car noise (RCN) recorded in the cabin of
a running car at different speed and driving situations were recognized.
The noise was added such that a signal-to-noise ratio (SNR) of OdB,
lOdB, and 20dB for each word resulted. As can be seen from Table 2,
the recognition performance of MFRNN break down when confronted
with noisy speech while Dl and D2 are more robust. Especially, for
speech signals distorted by ON or RCN with a SNR of 20dB D2 achieves
recognition rates of about 93%. However, for speech with additive noise
at OdB all sytems reach only very poor results.

In former work [7] it has been shown that SRS based on discrete
Hidden Markov Models yield good recognition results if the model pa-
rameters were trained with noisy speech. Therefore, noise classification
methods have been developed for SNR independent classification of the
noise type. Using the noise classifier a robust speech recognizer can be

342

Table 2: Recognition rates for the speech signals of the test sequence
contaminated with WGN, ON, and RCN with SNR values of OdB, lOdB,
and 20dB for non adapted and noise type adapted SRS

non adapted noise type adapted
SNR Dl D2 MFRNN Dl D2 MFRNN

WGN
clean 95.2 97.3 96.9 95.1 96.7 95.7
20dB 58.7 78.7 19.1 88.0 93.3 93.4
lOdB 16.7 29.1 6.5 77.3 83.4 86.4
OdB 5.3 6.1 4.4 39.7 48.0 64.6

ON
clean 95.2 97.3 96.9 94.8 96.5 94.7
20dB 91.2 94.7 34.0 93.5 96.2 93.8
lOdB 62.3 73.0 9.5 79.4 87.1 83.2
OdB 18.6 25.0 3.7 31.7 38.9 35.5

RCN
clean 95.2 97.3 96.9 93.9 96.6 95.2
20dB 91.0 95.1 31.3 93.3 95.8 93.6
lOdB 59.7 79.8 6.2 80.0 89.3 84.8
OdB 21.8 34.4 5.2 32.5 46.9 52.0

realized by switching between noise type adapted SRS. Here we inves-
tigated the capability of MFRNN to adapt to a noise type by using a
mixture of 40% clean speech signals and 60% noisy speech signals, con-
taining OdB, lOdB and 20dB signals, in the training sequence. It has
to be noticed that the paramaters of the noise type adapted SRS has
not been enlarged. As can be seen from Table 2, the adapted SRS show
significantly improved recognition results for noisy speech while recog-
nition rates for clean speech decrease only slightly. Especially, MFRNN
outperforms Dl after adaptation. Moreover, in the case of WGN the
recognition rates of MFRNN are substantially higher than those of D2.
But in the case of ON or RCN the results of Table 2 show that D2, which
receives explicit information about the dynamic structure of the feature
vectors, achieves higher rates than MFRNN.

These experiments demonstrate the capability of MFRNN to ex-
tract relevant information for speech recognition from noise contami-
nated speech and thus achieve a robust recognition performance. Further
experiments to train MFRNN for recognition of speech signals contam-
inated with different noise types as well as different SNR levels show
promising results.

343

6. CONCLUSIONS

The investigations show that FRNN are trainable whithin reasonable
training time to solve basic problems of speech recognition. It has been
revealed that FRNN are able to exploit contextual information of fea-
ture vectors automatically as well as to compensate the variations in
time durations of speech segments. Furthermore, it has been shown that
incorporating feature scoring and time alignment in a single FRNN is a
adequate concept for realizing a monolithic SRS for small vocabularies.
The monolithic FRNN achieves recognition rates which are comparable
to SRS based on discrete Hidden Markov Models using Cep and DCep
feature vectors and a sophisticated modeling of state duration. Moreover,
monolithic FRNN show a great capability to adapt to a special noise
type. These results indicate that FRNN are powerful tools for robust
recognition of isolated words and a promising concept for recognition of
continuous speech. Especially, the monolithic SRS consisting of a single
FRNN is well suited for an efficient hardware implementation.

Current investigations are concentrated on using DCep feature vec-
tors as additional input patterns in FRNN. In further investigations
problems important for hardware realization of monolithic FRNN will
be considered.

This work is supported by the Deutsche Forschungsgemeinschaft in the
research program 'System- und Schaltung st echnik für hochgradige Paral-
lelverarbeitung'.

REFERENCES

[1] Waibel,A., Hanazawa,T., Hinton,G., Shiano,K., and Lang.K., "Phoneme
Recognition using Time-Delay Neural Networks", in Proc. IEEE Int.
Conf. on ASSP, 1989.

[2] Kasper,K., Reininger,H., and Wolf,D., "Phoneme Based Isolated Word
Recognition Using Neural Networks for Prediction and Classification", in
Proc. EUSIPCO-92. Brussels, pp.427-430.

[3] RumelhartjD.E., and McClelland,J.,L., Parallel Distributed Processing,
Exploration in the Microstructure of Cognition, vol.1: Foundations, MIT
Press,1986.

[4] Werbos,J.P., "Backpropagation Through Time: What It Does and How
to Do It", Proc. IEEE, vol.78 no.10, pp.1550-1560, 1990.

[5] Williams,R.J., and Peng.J., "An Efficient Gradient-Based Algo-
rithm for On-Line Training of Recurrent Network Trajectories",
Neural Computation 2, pp.490-501, 1990.

[6] Nicol.N., et.al, "Improving the Robustness of Automatic Speech Rec-
ognizers Using State Duration Information", in Proc. Speech Processing
in Adverse Conditions, Cannes 1992, pp. 183-186.

[7] Nicol.N., et.al., "Noise Classification using Vector Quantization", in
Proc. EUSIPCO-94, Edinburgh, in print.

344

FUZZIFICATION OF FORMANT TRAJECTORIES
FOR CLASSIFICATION OF CV UTTERANCES

USING NEURAL NETWORK MODELS

B.Yegnanarayana, C.Chandra Sekhar and S.R.Prakash
Department of Computer Science and Engineering

Indian Institute of Technology, Madras, India
e-mail: chandra@iitm.ernet.in

1. INTRODUCTION

Fuzzy neural networks are known to be better classifiers than non-fuzzy neural
networks in speech recognition [1][2]. In this paper we show that fuzzification of
formant data of a sequence of frames in the transition region of a CV utterance
improves recognition of CV utterances. Reliable spotting of CV segments in
continuous speech can significantly improve the performance of a speech-to text
system [3]. CV segments also form the basic speech production units in most
languages, and as such carry significant information content about the message in
the speech utterance. Formant transitions in the transition region of a CV segment
provide important clues for recognition of stop consonant CV segments [4]. There-
fore, it is necessary to obtain a suitable parametric representation of speech data
in the transition region of a CV segment to be used as input to a classifier. In the
next section we discuss the choice of formants as features representing the CV
segments and the fuzzy nature of these features. The details of a fuzzy neural
network classifier based on the ideas in [1] are discussed in Section 3. We present
methods for fuzzification of formant trajectories in Section 4. We present the results
of studies on recognition of CV segments using different methods of fuzzification
of formant data in Section 5.

2. FUZZY NATURE OF FORMANT FEATURES

In continuous speech the same CV may occur in different contexts. Moreover,
there will also be variability in speech production due to different speakers.
Therefore there may be variability in the features of the utterance due to variability
in speech production as well as due to context. All these factors lead to feature
data that can best be described in linguistic terms, such as 'low5, 'medium' and 'high',
which in turn can best be expressed as values of membership functions of fuzzy sets.

It is necessary to represent the production information in the speech signal in

0-7803-2026-3/94 $4.00 © 1994 IEEE 345

suitable parameters or features for input to a classifier. Parameters like spectral
coefficients, ccpstral coefficients, etc., are likely to be influenced by the nature of
signal processing as well, besides the natural variations in the production process.
Variations due to signal processing operations contribute to distortion and noise,
rather than fuzzincss. Therefore it is preferable to consider articulatory or related
acoustic parameters like formants as features representing the CV segments.
Formants are relatively easier to extract compared to the articulatory
parameters[5]. Formant features also reflect the dynamics of the vocal tract system
in the form of formant trajectories. Therefore the formants were selected as
parameters to represent the CV segments in this study.

Speaker variability is caused due to differences in the dimensions of the vocal tract
systems. In order to compensate this to some extent, ratios of formants may be
considered as features. Since we are considering in this study only data from two
speakers, we have decided to consider only the formant values as features. Formant
data is collected for successive frames of speech signal data in each CV segment.

Formants are resonances of the vocal tract system, and hence any natural varia-
tions in the shape of the vocal tract are reflected in these resonances as well. Since
variability due to speech, context and speaker is all reflected in the formant
trajectories, the formant data can be assumed fuzzy, and the data is fuzzified before
feeding it to a neural network classifier for training and testing.

Fuzzification of formant data involves several issues. For example, one could
fuzzily the features individually in the frequency and time domains. But it appears
more logical if the fuzzification could be done knowing that the three formants
should occur together as a set in each frame. Also the formants in successive frames
are not independent. Hence this dependency should also be considered in fuzzi-
fying the input data to the neural network classifier.

It is natural to expect that the class labels will not be crisp either, due to significant
overlap of features across the different classes of CV segments. Therefore, for
effective classification, it is preferable that the output classes are fuzzy. In the next
section we describe a fuzzy neural network classifier that takes fuzzy input data.

3. FUZZY NEURAL NETWORK CLASSIFIER

It was shown in [1] that fuzzification of input data and the output class label data
improves the classification performance of a multilayer perceptron network for
recognition of vowels using formants as features. The network takes as input the
values of fuzzy membership functions for each of the three formants. Each input
feature Fj in quantitative form is expressed in terms of membership values to each
of the three linguistic properties 'Low', 'Medium' and 'High'. The membership
function is used to assign membership values for the input features. The member-
ship function in one-dimensional form, with range [0,1], is defined as given below.

346

f 2(l-(| x-c |/r))2, forr/2 < | x-c| < r,

ji (x:c, r) = \ 1-2 (| x-c | /r)2, for 0 < | x-c | < r/2, (1)

0, otherwise,

where x is a pattern point, r is the radius of thejt function and c is the central point.

The fuzzy sets for the linguistic properties 'Low', 'Medium' and 'High' for each
formant are represented by membership functions x_, jrMand Jt H respectively.
The parameters of these membership functions are defined below.

Let Fjmax- and Fjmin be the upper and lower bounds of feature Fj in all pattern
points. For the three linguistic property sets, parameters are defined as

rM(Fj) = 0.5 (Fjmax - Fjmin) (2a)

CM(FJ) = Fjmin + rM(Fj) (2b)

ri/Fj) = (cM(Fj) - Fjmin)/fdenom (2c)

CL(Fj) = cM(Fj)-0.5rL(Fj) (2d)

rH(Fj) = (Fjmax - CM(Fj))/fdenom (2e)

CH(Fj) = CM(Fj) + 0.5rH(Fj) (2f)

where 'fdenom' is a parameter controlling the extent of overlapping.
The three n membership functions are defined for each of the three formants and

for each of the N frames in the transition region of a CV segment. Thus a CV
segment is represented by an Nx9-dimensional matrix of membership values. Such
Nx9-dimensional patterns derived from formant feature vectors of CV segments
are used as input to a neural network classifier.

During the training phase, the desired output vector is expressed as the desired
membership values, lying in the range [0,1]. To obtain these membership values,
the distance of a training pattern F from the average pattern Ok for the kth class is
defined as

<= v ~ 2 i (F(ij)-ok(ij))
2 Zk= v <wv if. .if CWJ-<^W) <3)

The membership value for the training pattern F to the kth class is defined as

347

ä,(F) = fe

where the positive constants fd and fe control the amount of fuzziness in the
class-membership set. The desired output vector for a training pattern is obtained
by computing the membership values for the pattern to each of the classes and used
in training the multilayer perceptron network.

In fuzzification of the input data, the formant features for each frame are fuzzified
independently. But, there is a sequence of frames in each CV segment, and the data
in each frame depends to some extent on the adjacent frames. This fact must be
used in fuzzification of formant trajectories. Two methods of fuzzification of
sequences of formant data are presented in the next section.

4. FUZZIFICATION OF FORMANT TRAJECTORIES

The formant data for one frame is dependent on the adjacent frames. This
time-dependency can be incorporated in the fuzzification of the trajectories by
reducing the variability allowed for the subsequent frames given the variability of
the current frame. The reduction in variability allowed for subsequent frames can
be realized by decreasing the radii of the membership functions for fuzzy subsets
of features in those frames, and correspondingly modifying the centers of the
functions.
The parameters of the membership functions for the features in the first frame

are defined as in (2). The parameters of the functions for subsequent frames are
obtained from those of the first frame as follows:

riM(Fj) = (1 - a) * r (i-i)M(Fj) (5a)

CiM(Fj) = Fjimin + ß * riM(Fj) (5b)

riL(Fj) = (l-«)«r(i-i)L(Fj) (5c)

CiL(Fj) = CiM - 0.5 * ß * riL(Fj) (5d)

riii(Fj) = (l-a)*r(i-i)H(Fj) (5e)

Cin(Fj) = ciM + 0.5 * ß * riH(Fj) (50

where i is the frame number and 2 < i < N. The constants a and ß are chosen
such that the distance between the average patterns of the classes is maximum.
Typical values for the constants a and ß are 0.075 and 1.30, respectively.

Another way of incorporating the time dependency is to use multi-dimensional
membership functions for groups of adjacent frames. The parameters for the
multi-dimensional membership functions are obtained from the parameters of the

348

one-dimensional membership functions of features for individual frames. The
definition of one-dimensional function in (1) is extended for an n-dimensional
function of a group of n adjacent frames as given below:

r2(l-(|| x-c || IT))
2
, for r/2 < || x-c || < r,

jr(x:c,r)=« 1-2 (||x-c || /r)2, for 0< || x-c|| < r/2, (6)

0, otherwise,

where x is the vector of values of a feature in n adjacent frames, c is the mean vector
of x's for all patterns, and r is the radius of the n-dimensional function. The radius
of the n-dimensional function is obtained from the radii, T\, of one-dimensional
functions of feature in individual frames.

-VT 2>? (7)
i = l

A two-dimensional K function was used in our studies on recognition of CV
segments in continuous speech. We present the effects of the methods of fuzzifica-
tion on the performance of a classifier for CV segments in the next section.

5. STUDIES ON RECOGNITION OF CV UTTERANCES

Speech data for the studies described in this section was collected from utterances
of several sentences in Hindi (an Indian language) spoken by two male speakers.
From these utterances, occurrences of CV segments are manually excised by visual
inspection of the speech signal waveform and by careful listening of the segmented
data. Data for the following 9 CV classes have been collected: /ka/, /ke/, /ko/, /ga/,
/ta/, /to/, /dha/, /pa/ and /ba/. The choice of these classes was mostly dictated by the
availability of sufficient numbers of these segments in the speech data collected for
several sentences.

For each CV segment only a fixed 40 msec portion around the vowel onset point
was considered. This portion generally reflects the transition of the vocal tract
system from the place of articulation corresponding to the consonant position to
the shape of the vocal tract corresponding to the following vowel, including some
steady vowel part. Formants were extracted using linear prediction analysis for
each frame of size 128 samples at 10 kHz sampling rate, with a shift of 32 samples.
The formant contours were hand edited and smoothed to remove spurious peaks.
From the resulting smooth contours the first three formants were obtained for each
of the 10 frames in a CV segment.

The formant data is fuzzified using methods discussed in Sections 3 and 4. Thus
for each CV segment, a 90-dimensional vector of membership values is generated.
This representation is used as input to the classifier. The desired output data is also

349

fuzzificd as discussed in Section 3 for training the neural network classifier.
The classifier is a multilayer feedforward network trained using back propagation

algorithm. Three hidden layers were used in the network. The number nodes in
each of the hidden layers was chosen as 50. A total of 150 patterns belonging to 9
CV utterance classes were used for training the network using backpropagation
algorithm. A total of 150 patterns were used as test data. The classification
performance on test data for different methods of fuzzification is given in Tablel.
The performance is given for two cases of deciding the correct class: (1) correct
class is the class with the highest output and (2) correct class is amongst the classes
with the highest and the second highest outputs.

TABLE 1: COMPARISON OF CLASSIFICATION PERFORMANCE FOR
DIFFERENT FUZZIFICATION METHODS

Fuzzification Method Casel Case2

Non-fuzzy inputs

Fuzzification of individual frames

Fuzzification by variability reduction

Fuzzification using 2-dimensional function

29.5

62.9

70.2

73.5

46.3

82.1

84.8

85.4

6. CONCLUSIONS

The studies reported in this paper show that fuzzification of input and output
data improves the recognition accuracy of CV segments. In particular, fuzzification
of input data taking into account the fact that the formant data is for a sequence of
frames, improves the recognition of CV segments significantly. In these studies only
a simple method was used to implement the dependence of fuzziness on the
sequence. But a more sophisticated data dependent approach for determining the
fuzzy membership values for data both along frequency and along time may improve
the recognition performance still further.

REFERENCES:

1. S.K.Pal and S.Mitra, "Multilayer perceptron, fuzzy sets and classification," IEEE
Trans, on Neural Networks, vol.3, no.5, pp.683-697, September 1992.

2. Y.H.Kuo, C.I.Kao and J.J.Chen, "A fuzzy neural network model and its hardware
implementation," IEEE Trans, on Fuzzy Systems, vol.1, no.3, pp.171-183, August
1993.

350

3. H.Sawai, A.Waibel, M.Miyatake and K.Shikano, "Spotting Japanese CV-syll-
ables and phonemes using time-delay neural networks," Proceedings of ICASSP'89.
pp.25-28, May 1989.

4. K.N.Stevens, "Models for production and acoustics of stop consonants," Speech
Communication, vol.13, nos.3-4, pp.367-375, December 1993.

5. J.Schroeter and M.M. Sondhi, "Techniques for estimating vocal-tract shapes
from the speech signal," IEEE Trans, on Speech and Audio Processing, vol.2, no.l,
part II, pp.133-150, January 1994.

351

MINIMUM ERROR CLASSIFICATION OF

KEYWORD-SEQUENCES

Takashi KOMORFand Shigcru KATAGIRI**

* INTEC Systems Laboratory inc.,

3-23 Shimoshin-machi, Toyama 930, Japan

Tel.: +81-764-44-1111, Fax.: +81-764-44-8126

e-mail: komori@isl.intec.co.jp

** ATI! Interpreting Telecommunications Research Laboratories,

2-2 Ilikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

Abstract — A novel spotter design method, i.e., Minimum
Error Classification of Keyword-Sequences (MECK), is pro-
posed. In contrast with conventional approaches, the proposed
method directly aims at reducing errors of classifying keyword-
sequences (strings of prescribed keyword categories) through a
mathematically proven, GPD-based optimization process. Ex-
periments in Japanese keyword spotting tasks clearly demon-
strate the utility of a MECK-trained, prototype-based spotter.

1 Introduction
The recognition of natural and spontaneous speech utterances is an
important issue for realizing a user-friendly human-machine interface.
Since natural speech often contains ill-conditioned phenomena such as
hesitations or repetitions, it has been considered that a word-by-word
modeling approach to recognition is insufficient (e.g., [1]). Recently,
keyword spotting has been studied as an alternative to this conventional
approach with increasing vigor [2]-[5].

The goal of spotting is to correctly spot (detect) all of the prescribed
keywords included in an input utterance; in other words, to correctly
classify the input as one of the possible keyword-sequences (strings of
prescribed keyword categories). The keyword-sequence itself can be an
input to a post-end process such as context, modeling or semantic mod-
eling. Spoiler (spotting system) performance should thus be evaluated
by the classification accuracy of the keyword-sequences instead of the
accuracy of individual spotting decisions. However, as seen in litera-
ture [2]-[5], recent, efforts have actually been made in reduction of indi-

This study was conducted while (lie authors worked at ATR Human Information
Processing Research Laboratories.

0-7803-2026-3/94 $4.00 © 1994 IEEE 352

vidual spotting decision errors and also been entailing no optimality in
the sense of minimum error classification of keyword-sequences.

In light, of this, we propose in this paper a novel design method
for spotters, i.e., Minimum Error Classification of Keyword-sequences
(MECK). Key concepts of this method are 1) to formalize the spotting
process as a. smooth and trainable functional form with the design objec-
tive being the keyword-sequence classification accuracy, 2) to formulate
an individual keyword spotting as a two-class segmentation/classification
by using the a posteriori odds-based discriminant function, and 3) to in-
troduce a mathematically proven, GPD-based optimization to achieve
the optimal (minimum keyword-sequence classification error) status of
the spotter.

MECK is quite general and can be applied to any reasonable spotter
structure, including artificial neural networks. By way of example, we
present a prototype-based spotter whose structure has been widely used
in the Learning Vector Quantization (LVQ) application, and evaluate
this one in several Japanese keyword spotting tasks.

2 Definition

2.1 Problem formalization

Classification is a simple process to assign one of the possible classes to a
given pattern, and it does not include a process to segment (extract) the
pattern from its background's wider or larger signal. Similarly, spoken
word classification is defined as a process to classify a word segment pre-
segmented from a continuous speech utterance as one of the possible word
classes. Obviously, for continuous speech recognition, this simple-minded
classification is insufficient and an appropriate link of segmentation and
classification is required. Spotting can be considered the very framework
to achieve this link directly. However, in reality, these two processes
are designed separately, entailing no guarantee of the resulting spotting
optimality. A main effort in our formalization is therefore to embed this
complicated process in a unified functional form that is suited for the
use of mathematically proven optimization techniques.

For clarity of presentation, in addition to the term of keyword-sequence
classification (word-sequence classification for short), we define here the
following two terms: 1) keyivord-sequence spotting (word-sequence spot-
ting for short) being used to decide whether a sequence of keywords is
included in a given utterance and the location of these keywords, and 2)
keyword-spotting (word-spotting for short) being used to decide whether
a. keyword exists in a preset segment.

Assume that our task is to classify a. given speech utterance X as one
of C possible keyword-sequence classes, each consisting of only prescribed
keyword names. Each utterance is represented in the form of an acoustic
feature vector sequence; A' = {xif..., a;,;,..., xj). We denote the entire
set of prescribed keywords by W = {wi,..., wt,..., wj<} and the entire
set of possible keyword-sequence classes by Q = {Qj,..., fic,..., Qc}.

353

Let us focus on the Jfc-th word w*.'s spotting decision in the segment
XI = {xs,xs + i,.. .,xc-\,xe}. We denote this decision for wu as a.k,e-
The ak,c is a kind of indicator function that becomes one (1) for a correct
decision and zero (0) for an incorrect decision. This indicator function
can be defined in principle for all s, e, and lc. Nevertheless, due to
several realistic restrictions on combinations of s, e, and k, the functions
are defined in a set of limited cases, which is denoted by Q.

In this view, one word-sequence classification decision can be consid-
ered a sequence of word spotting decisions a = {ak,e}, each are included
in a word-sequence class, e.g., Qc. Therefore, the goal of the spotter
design should be to achieve a state of adjustable spotter parameters, de-
noted by A, that emulates the following Bayesian decision theory-based
rule [6]:

c(A') = c ifc=argmaxPr(fh|A), (1)
c

where Pr(Sh | A") is the a posteriori probability of the word-sequence
class Qc given A, and c(X) denotes the operation of making a word-
sequence classification decision. Note that this c(A') is known to lead to
the minimum error classification.

To define our design algorithm in a practical and effective fashion,
we embody several operations/concepts in a mathematical form.

First, we approximate the a posteriori probability of a word-sequence
class Pr(fic | A') by the a posteriori probability of the dominant (most
probable) word-sequence spotting in the class:

Pr(fic|A')« maxPr(a|A), (2)
at Ac

where AC(C G) is a set of word-sequence spotting decisions, each corre-
sponding to fic, and Pr(o | A) is the a posteriori probability of a given
A. Accordingly, (1) becomes equivalent to

c(A') = c if arg max Pr(o | A) = Q, (3)
a£Ae

where
a = arg max Pr(o | A'). (4)

This rule more closely represents an actual spotting procedure.
Second, on the assumption that all of the individual a posteriori

probabilities of wk.'s existence in A!f, i.e., Pr(»7- | AJ)'s, are independent
of each other, we represent. Pr(o | A") as

Pr(n | A) = H IM«* I \V""' {1 - IM«!* I -V.:)}1-"1", (5)

which is rewritten as

'" Pr<« I A') = E «*« '« l-Pr(!k7l) + E hl{1 - Pr(

(6)

354

Now, Pr(a I X) is represented by a set of more elemental a posteriori
probabilities. However, in practice, even these a ■posteriori probabilities
are rarely known and thus we must further replace these probabilities
with some proper estimate that is a function of A. Note here that the
first term on the right-side of (6) includes the a posteriori odds

^^-l-PrKlA-) (?)

that have been widely used in artificial intelligence and statistics. Natu-
rally, we then use a keyword possibility score, denoted by T]A(u>k | XI), as
the estimate of the logarithmic a posteriori odds, which is a function of
A. Moreover, to find a, we can ignore the second term of the right side
of (6) that always takes a constant value. Therefore, we can simplify (4)
to

a — argmaxYA(« | A'), (8)

where
YA(a | A) = }2 a*«»M(u>* I *')> (9)

k,s,e

and accordingly rewrite (1) to

c(A') = c if c = argmax(7A(A'), (10)
C

where gA(X) is defined as a generalized discriminant function for fic,
i.e.,

»*<*> =) 1" \TT\ E «P(^A(« I A)) , (11)

with £, being a positive constant and YA(a\X) being referred to as a
word-sequence spotting score for a. Note that g%(X) expresses an aggre-
gate possibility that A" includes fic.

Consequently, g%(X) is used in place of Pr(fic | A); similarly, (10) is
used in place of"(l)'. Now it turns out that finding the optimal status of
A is our design target.

As in conventional classifier designs, there are two main approaches to
the design of A: 1) the maximum-likelihood design, and 2) the discrim-
inant function method. Taking account, of the findings of MCE/GPD
studies [7],[8], we chose to use the second approach. Therefore, we next
define the loss function

£(X ; A) = 1 (-gZ(X) + maxr/A(A)J , (12)

where
r 0, if x < 0

l(x)= { 0.5, if a: = 0 (13)
1, if x > 0,

355

and c* is the correct word-sequence class index. This loss is zero (0)
for a correct, word-sequence classification; one (1) for correct. This loss
represents an ideal error count but is discontinuous in A and causes
mathematical problems in formalization as discussed in [7]. In our ap-
proach based on the MCE/GPD concept, we therefore use a smooth loss
defined as

C(X ; A) = 1 (-gA\X) + I]„ I ^ £ exp(C,A(A)) 1 j , (14)

where 1() is a smooth step function such as \(x) = (1 + exp(-r/c))-1

with <r being a positive constant and (," a positive constant.
In principle, the loss must be evaluated over all of the possible sam-

ples. We thus introduce the expected loss

L(A) = EX[((X;\)] (15)

as the design objective to be minimized, where Ex is the expectation
over the A'-space.

2.2 Computation reduction

The design problem is now formalized as the minimization problem of
the expected loss. However, full computation of YA(a | A) is hopelessly
time-consuming. There is a clear need for reduction of the computation.
A natural way of such attempt is to focus the computation on plausi-
ble word-spotting decisions (remove probably incorrect decisions before-
hand). In light of this, we introduce a pruning function wA(u't | A'/) that
indicates zero (0) when the corresponding word-spotting decision should
be ignored and one (1) otherwise. Then Y'A(o | A) is replaced with the
following practical version of the score:

VA(« I A') = J2 «*« {'M(«'t I A'/) + \nuA(wk | A/)} . (16)
k,s,e

Note that u>A(wk | A'*) being zero makes the above practical score YA(a | A)
negative infinity, which means that the corresponding word-spotting de-
cision does not contribute to computing the sequence-spotting score, and
that YA(a | A) can be substituted for VA(o | A) in (10) and (11) without
any serious mathematical drawback.

The choice of pruning function still affects the computation. If the
number of hypotheses pruned by this function is small, computing the
scores problem would be still resource-consuming because of combination
explosion, especially in a large-vocabulary case. Since an attempt to
solve this problem in a separate, heuristic manner, such as the beam-
search algorithm, does not allow one to achieve a consistent minimization
of the loss, we also consider another attempt of reduction by introducing
the loss

. f(A';A)=]Ta;A(ua.|A7) (17)
k,),e

356

that approximates the number of keyword hypotheses being not pruned.
If this number is counted as loss (cost) in the same manner as (12), one
can reduce the computation by explicitly attempting to decrease this
count. Consequently, incorporating this new loss, the expected loss can
also be re-defined as

Z(A) = EX [£(X ; A) + 7I(X ; A)], (18)

where 7 is a controllable weighting factor.

2.3 Optimization algorithm

In accordance with the adaptive adjustment rule of GPD, we use

At+1=At-etUVAe(Xt;\t), (19)

which has been shown to lead to the optimal state of A that corresponds
to at least the local minimum of the expected loss, where A* denotes the
parameter set at the t-th iteration, et is a learning factor that satisfies
J2^1 j it = 00 and Yluzi €t < °°> U m a positive definite matrix, VA is
the gradient symbol with respect to A, and Xt denotes the t-th speech
utterance given randomly for training.

3 Implementation
MECK can be applied to any reasonable spotter structure such as a
prototype-based system or an IIMM system. Each keyword can be ei-
ther directly modeled (represented in spotter parameters) or indirectly
modeled by concatenating subword models. Among these many choices,
this paper specially presents an implementation example for a prototype-
based spotter consisting of subword models; \j (C A) denotes a. class j
subword model consisting of a sequence of acoustical feature vectors.

3.1 Log Estimate of A Posteriori Odds

Due to our preference for using subword models, we shall first define
a subword-based log a posteriori odds estimate. Our prototype-based
spotter basically computes the distance D(X%, Xj) between the subword
model and a speech segment. We thus need to convert this distance
measure to the a posteriori odds form. Among many possible ways of
doing so, we use the following function form:

IJA^- I X't) = </>j0 + 4>jiD{Xl, A,-), (20)

where cj>jo and <j>j\ are constants. The use of this form is motivated
by the estimation of Pr(Aj | A'*) using a logistic function of D(Xe

s,\j).
Each subword model is represented by a set of reference vectors and the
distance D(Xe

s,\j) is defined following McDermott's formalization [9]
and our previous work [5]. A word-level log a posteriori odds estimate,
il,\{wk\Xe

s), is then denned by accumulating ??A(AJ |Ar«)'s considering
time warping variations. In both cases, similar to (11), smooth functional
form is used. See the detail in [10].

357

3.2 Pruning Function

Pruning always suffers from the risk of a decrease in accuracy because it
often misses some of the correct word-spotting hypotheses. Therefore,
the pruning function must be designed carefully. Our actual pruning
strategy is summarized as follows; i.e., u)A(wk | A'3

e) is set closer to zero,
if one of the following manifolds is correct.

1. A'*; (*' ^ s) is more likely than A'' for spotting wk.

2. Xf, («' is arbitrary, e' ^ e, and e' « e) is more likely than Xe
s for

spotting wk.

3- I]A{WI.- I A's
e) is less than a preset threshold hk.

This pruning criterion has actually been used in conventional spotting
techniques using starting-end-frce dynamic time warping and is not so
specific one. Rased on our policy of formalizing the process rigorously,
we define the pruning function uA(((> | A'f) as the product of three
continuous auxiliary pruning functions, uj\(wk | A'/), w\(wk | X$), and
WA ("'<•• 1^7)- eafn approximating one of above three conditions in a
smooth functional form, e.g.,

WA(«'* I xt) « 1 ('?A(«'A- I A;) - max VA(ivk \ A\e)) , (21)
V *€St(e) ' /

where l(-) is a step function defined in (13) and Sk(e) is the entire set of
possible beginning endpoints of key word wk, given the ending endpoint
e. See [10] for details of u\(ivk | A/), ^(«'t | A'/) and ul(wk\X;).
Similar forms to (11) and a smooth step function 1() are again used
in these approximations. Consequently, the resultant pruning function
WAI'I'I' I A'') is also a continuous and differentiahle function.

3.3 Simplification for Practical Use

MECK is not sufficiently easy to perform in practice yet. In our ex-
periments described in the next section, we used following simplification
techniques: 1) letting the power parameter of all L,,-norm function (e.g.,£
in (11)) go to infinity, 2) using a piece-wise smooth step function for rep-
resenting pruning function uA(wk | AJ), 3) tying some parameters, and
4) using a finite, LVQ-like adjustment [11].

4 Experiment

We conducted evaluation experiments for a task of spotting samples of 10
keyword-classes, i.e., kaigi, kokusai, denwa, kyoulo, liappyou, tsuuyaku,
nihongo {nippongo), touroku, jimukyoku, and ronbun, from 115 different
Japanese sentences, each spoken by 10 female and 10 male speakers.
Speech was converted to a 1 r2-dimensional acoustic feature vector every
5 msec based on a spectral analysis. The sentences were divided into

358

Table 1: Characteristic of Speech Corpus

Set 1 Set 2 Set 3 Set 4 Total
Sentence
Keyword

500 500 500 800
480 620 1320 300

2300
2720

Table 2: Initial Spotter Performance

Set 1 Set 2 Set 3 Set 4 Total
Correct-K-S
Possible-K-S
Spotted-W

58 93 23 250
491 489 476 791

20241 15612 23147 17932

424
2247

76932

4 independent sets; Sets 1-3, each consisting of 25 sentences, and Set
4 consisting of 40 sentences. Each Set included at least one sample for
every keyword class. Three Sets were used for design and the remaining
Set was used for testing; e.g., Set 1-3 for design and Set 4 for testing.

The reference vector set of subword models was initialized by run-
ning it-means clustering over manually selected phoneme segments. The
coefficient set </>• = {<j>jo,<j>j\\ was preliminarily initialized based on the
sample distribution of each cluster. Also, Q was set so that the unre-
alistic overlap between adjacent word hypotheses could be eliminated.
Neither grammatical nor semantic constraints were used.

Table 1 summarizes the statistics of our tasks. In the table, for each
data, set, "# Sentence" and "# Keyword" indicate the total number of
sentences and the total number of keywords, respectively.

Table 2 shows the testing accuracies of the spotters after above initial-
ization. Note that the accuracies for each set were obtained by a spotter
designed using the other three sets of data. In the table, "# Correct-
K-S" represents the number of correctly classified keyword-sequences;
"# Possible-K-W" represents the number of correct keyword-sequences
that remained after pruning the keywords in the spotting stage; and
"# Spotted-W" represents the number of keywords that remained after
pruning, i.e., keywords actually spotted. The table shows that the spot-
ters spotted an enormous number of keywords, most of which retained
the correct keyword-sequences in the beginning of the keyword-sequence
classification process, and correctly classified these sequences with an
accuracy range of only 5-30%.

After this initialization, we trained the spotters using the method
described in 2.3. Following learning-when-incorrect strategy, we actually

359

Table 3: Spotter Accuracies after MECK Training

a) 7 = 0.0
Set 1 Set 2 Set 3 Set 4 Total

Correct-K-S
Possiblc-K-S
Spotted-VV

379 361
500 495

20884 13624

152
365

15184

695
800

15226

1587
2160

64918

b) 7 = 1.0 x 10~3

Set 1 Set. 2 Set 3 Set 4 Total

Correct-K-S
Possiblc-K-S
Spotted-W

257
356

2510

273 127
400 236

2426 5067

701
797

5212

1358
1789

15245

defined the loss £(■) in (14) using the following smooth step function:

0,

l(-i-) = { l-cxp(-*/c)

l+exp(-:i:/0'

if x < 0

if x > 0.
(22)

0.0 We specially chose two different conditions of simplification: 1) 7
and 2) 7 = 1.0 x 10"3.

Table 3 shows the accuracies for these two cases. The keyword-
sequence classification accuracies were increased to a range of 25-87%,
while "# Spotted-W's", i.e., the computation amounts, stayed at a range
of 66-103% for 7 = 0.0 and were reduced to a range of 13-29% for
7 = 1.0 x 10-3. The results clearly proved the high utility of the proposed
design method.

5 Summary
We have presented a new spotter design method, called the Minimum
Error Classification of Keyword-sequences method (MECK), that is di-
rectly linked with continuous speech recognition. The method is char-
acterized by 1) formalizing the spotting-bascd keyword-sequence classi-
fication (continuous speech recognition) in a quite general but rigorous
manner, 2) introducing the a posteriori odds-based discriminant function
that, allows one to greatly reduce computation and to easily incorporate
a wide range of artificial intelligence techniques in speech recognition, 3)
making possible a spotter design that does not use labeled design samples
which is necessary in conventional design methods, and 4) incorporating
keyword hypothesis pruning process for unified loss minimization.

Experiments in Japanese keyword spotting tasks clearly demonstrated
the marked utility of our design method.

Finally, it should be worth addressing that the design method pro-
posed in this paper is a quite general framework useful to solve combi-

360

nation search problem. The method can be applied to a wide range of
inference problem by selecting log a posteriori odds estimator functions
and pruning functions adequately.

References

[1] W. Ward and S. Young, "Flexible Use of Semantic Constraints in
Speech Recognition," IEEE, Proc. of ICASSP-93, Vol. 2, pp. 49-50
(1993).

[2] W. Ward, "Understanding Spontaneous Speech: The Phoenix Sys-
tem," IEEE, Proc. of ICASSP-91, S5.29, pp. 365-367 (1991).

[3] H. Tsuboi and Y. Takebayashi, "A Real-Time Task-Oriented Speech
Understanding System Using Keyword-Spotting," IEEE, Proc. of
ICASSP-92, Vol. 1, pp. 197-200 (1992).

[4] T. Zeppenfeld and A. H. Waibel, "A Hybrid Neural Network, Dy-
namic Programming Word Spotter," IEEE, Proc. of ICASSP-92,
Vol. 2, pp. 77-80 (1992).

[5] T. Komori and S. Katagiri, "A New Learning Algorithm for Mini-
mizing Spotting Errors," Proc. of 1993 IEEE Workshop on Neural
Networks for Signal Processing, pp. 333-342 (1993).

[6] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Anal-
ysis (Wiley, New York, 1973).

[7] B.-H. Juang and S. Katagiri, "Discriminative Learning for Minimum
Error Classification," IEEE Trans, on Signal Processing, Vol. 40,
No. 12, pp. 3043-3054 (1992).

[8] S. Katagiri, C.-II. Lee, and B.-H. Juang, "New Discriminative
Training Algorithms Based on the Generalized Probabilistic Descent
Method," Proc. of the 1991 IEEE Workshop on Neural Networks
for Signal Processing, pp.299-308 (1991).

[9] E. McDermott and S. Katagiri, "Prototype-based discriminative
training for various speech units," IEEE, Proc. of ICASSP-92, Vol.
1, pp. 473-476 (1992).

[10] T. Komori and S. Katagiri, "A Novel Spotter Design Method for
Minimum Error Classification of Keyword-Sequences," ATR Tech.
Report, TR-H-067 (1994) (partially in Japanese).

[11] E. McDermott and S. Katagiri, "LVQ-Based Shift-Tolerant
Phoneme Recognition," IEEE Trans, on Signal Processing, Vol. 39,
No. 6, pp. 1398-1411(1991).

361

Hybrid training method for tied mixture
density hidden Markov models using

Learning Vector Quantization and Viterbi
estimation

Mikko Kurimo
Helsinki University of Technology
Neural Networks Research Centre

Rakentajanaukio 2 C, FIN-02150, ESPOO, FINLAND
tel: +358 0 451 3266, fax: +358 0 451 3277

email: mikko.kurimo@hut.fi

Abstract. In this work the output density functions of hid-
den Markov models are phoneme-wise tied mixture Gaussians.
For training these tied mixture density HMMs, modified ver-
sions of the Viterbi training and LVQ based corrective tuning
are described. The initialization of the mean vectors of the
mixture Gaussians is performed by first composing small Self-
Organizing Maps representing each phoneme and then combin-
ing them to a single large codebook to be trained by Learning
Vector Quantization (LVQ). The experiments on the proposed
training methods are accomplished using a speech recognition
system for Finnish phoneme sequences. Comparing to the cor-
responding continuous density and semi-continuous HMMs in
[9] and [8] in the respect of the number of parameters, the
recognition time and the average error rate, the performance
of the phoneme-wise tied mixture HMMs is superior.

INTRODUCTION

Hidden Markov models are widely used in automatic speech recognition
as phoneme models to combine the modeling of stationary stochastic
processes producing observable short-time features and the temporal re-
lationships between these processes. The temporal model in HMMs relies
on a relatively simple structure of successive states and a probabilistic
model of their mutual transitions.

The modeling of the stochastic observation processes associated with the
states of HMMs is based on estimation of the probability density function
of the short-time observations in each state. Several different approaches
have been proposed to represent these output probabilities ranging from
the estimation of parameters of multivariate Gaussian density [1] to the
construction of multilayer perceptrons [3] or LVQ codebooks [5].

A common model category for the observation densities is the mixture
density functions normally accomplished as a linear combination in a set
of Gaussian densities. If the mixture densities are tied between all the
IIMM states the models are often called semi-continuous HMMs [4].

0-7803-2026-3/94 $4.00 © 1994 IEEE 362

ÖOO öll «22

' °01 \ / «12 \ / a23

© r^ ^**CpÜr^ ^\^"2V^ ^\^3)

1 / / /

1 / / /

r y p y
co,o
Co,l

Cl,0

Cl,l

C2,0
C2,l

C3,0
C3,l

C0,M C\,M C2,M C3,M

P(x t\Q) =

K

E«
fc=i

itM**)

/

bK(x)

Y\J
62(a;) 6i(«)

/9Ä
6s(«)

X

Figure 1: The output probability of state C; at time t is computed using a tied
mixture density function for K nearest mixture densities. The K nearest of
all M mixture densities to the current observation xt are indicated by indexes
k = 1, • • •, K. The mixtures are tied for states representing the same phoneme.
The HMM is completely defined by the set of transition probabilities a,^,
mixture densities bk(x) and mixture weights c;,*.

In this work the tying of the mixture densities is applied in a novel way so
that the states belonging to the same HMM (Fig. 1), i. e. representing
the same phoneme, use a common codebook of Gaussian densities. Thus
there are as many sets of Gaussians as there are HMMs, which is a kind of
intermediate for continuous density HMMs (different set for each state)
and semi-continuous HMMs (only one large set of Gaussians).

The reason for the phoneme-wise tied Gaussian codebooks is to balance
between a vast number of mixture mean vectors and covariances, like in
large continuous density HMMs (CDHMMs), and an excessive amount
of mixture weights, like in large semi-continuous HMMs (SCHMMs) (Ta-
ble 1). From the CDHMM point of view, having common Gaussians for
states of the same phoneme seems to be an appealing approximation,

363

since the output densities of successive states are often highly overlap-
ping. From the SCHMM point of view, this means that the normally
quite a large set of very small weight values can be reduced, because
most of the large weights are often nicely localized around Gaussians
resembling to one phoneme [8].

LVQ FOR TIED MIXTURE DENSITIES

The Learning Vector Quantization (LVQ) [6], [7] methods are applied in
the present paper to increase the discrimination between the phoneme
models. This is a very important objective, since the primary interest in
phoneme recognition is to find out the best-matching phonemes instead
of estimating the correct probabilities for different phonemes.

In [10] the LVQ methods were applied to provide a discriminative ini-
tialization for the Gaussian mean vectors of CDHMMs leading to good
recognition results with only a few iterations of the actual HMM param-
eter estimation performed by Baum-Welch reestimation. In [8] the same
ideas were brought to the SCHMMs causing a significant drop in the
average recognition error rates.

In the present paper with phoneme-wise tied mixture densities, the LVQ
training is similar to the normal SCHMMs [8], except that the initial
codebook for LVQ is combined from several smaller codebooks first pre-
pared for each phoneme separately. After LVQ, the codebook is again
split among the HMMs. The advantage of this combine-and-split pro-
cedure is that in contrast to the labeling method proposed in [8], the
satisfactory representation of each phoneme can be guaranteed in addi-
tion to the enhanced discrimination between phonemes.

The small codebooks including only representatives of one phoneme can
be efficiently trained by Self-Organizing Maps to capture the most es-
sential features of each phoneme and provide a good basis for LVQ.
The same initialization procedure could be successfully applied also to
the mixture densities in CDHMMs by setting identical mean vectors for
the output densities of states of one HMM. A separately trained small
codebook of one phoneme is presented in Figure 2 as well as the same
codebook after LVQ.

By examining carefully the differences between the corresponding cep-
stra in the upper and in the lower part of Figure 2 the development of
the codebook can be recognized. The upper part is a small SOM (6x4
units) for phoneme /A/ trained in two phases. The first is a short order-
ing phase with large, but quickly reducing neighborhood radius 5 and
learning rate 0.2. The second is a longer specialization phase starting
with radius 2 and rate 0.02 reduced to 1 and 0, respectively. The result
does not provide very low quantization error, but instead gives a rough
representation of the pdf of the corresponding feature space. As an ini-
tialization, this presents a smooth two-dimensional surface fitted to the
set of training samples with the borders more folded than the center.

The lower part of Figure 2 includes the same codebook vectors, but

364

Figure 2: The Gaussian mean vectors of short-time cepstral features for the
tied mixture HMM of phoneme /A/ in the different training phases. First
(top), after initialization by SOM, and second (bottom) after the LVQ training
together with the other phoneme codebooks.

after the combine-and-split procedure and LVQ training. First, all the
small SOMs, each representing one phoneme, are concatenated into one
large LVQ codebook. The LVQ is started by a short training using the
Optimized learning rate LVQ (OLVQ1) [7] followed by a longer training
using LVQ3 [6]. The codebook vectors are divided into the same groups
as in the original SOMs and each of these groups is converted to the set of
mean vectors of the mixture Gaussian densities. Comparing to the upper
part of Figure 2, the cepstra are now more distinct, providing a smaller
quantization error and, which is more important, a better discrimination
between the codebooks of other phonemes. In spite of the changes, some

365

Training Phoneme /A/ only Whole data set
Phase Qerror% MMdist Cacc% Cacc% Rerror%
SOM 17 3 85 61 24
+LVQ 13 13 87 66 8
+Viterbi 13 14 87 66 7
-f Tuning 13 13 87 66 7
SOM 17 3 85 61 21
+Viterbi 13 14 87 66 8
+Tuning 15 14 77 61 7
KNN 19 17 83 53 34
+LVQ 16 8 94 49 55
+Viterbi 13 14 88 65 8
+Tuning 15 16 73 60 8
KM 17 10 80 57 18
+Viterbi 14 15 82 65 7
+Tuning 18 20 54 58 7

Table 1: Various statistics in different training phases for one data set (one
speaker, 311 words). Qerror% is the average quantization error of the samples.
MMdist is the median of distances from each codebook vector to its nearest
neighbor. Cacc% is classification accuracy of sample vectors. Rerror% is the
phoneme recognition error rate by corresponding tied mixture density HMM.
KM is Kmeans clustering and KNN is the method to select the prototypes so
that the majority of the K (K=5) nearest data points refer to correct classes.

structure is still visible giving smoothness to the codebook.

In Table 1 some characteristics of codebooks, i.e. the sets of Gaussian
mean vectors, are shown numerically. In contrary to the statistically
more covering experiments presented at the end of this paper, the values
of Table 1 are not average rates but results from single experiments
(one speaker, 311 words) and thus insignificant by themselves but only
reflecting some general trends.

In Table 1 the characteristics of codebooks during four different train-
ing combinations 3-4 distinct phases in each have been analyzed. (The
codebooks of phoneme /A/ of the two topmost rows were illustrated in
Figure 2.) Kmeans clustering has been used as a substitution of SOM
for minimizing quantization error without creating any structure. KNN
refers to the basic initialization method for LVQ [7], which creates the
codebook by directly selecting valid prototype vectors among the train-
ing samples.

The average quantization error reflects, how tightly the codebook is
bound to the training samples of that phoneme. Generally, the Viterbi
training, being based on the maximum likelihood principle, provides
small quantization error. The corrective tuning, while increasing the
differentiation between models, tends to increase the quantization error.

366

The median of the nearest neighbor distances is a measure of the general
density of the codebook vectors, i. e. how close they are to each other.
This measure shows quantitatively the phenomena observable from Fig-
ure 2 that SOM produces tight codebooks avoiding outliers.

The classification accuracy of the training samples simply shows how
many of the samples will get the right lable in nearest neighbor clas-
sification without any context information. The low total accuracy is
due the samples taken from the transition areas between phonemes and
from certain plosives that are practically indistinguishable without wider
context information.

Because the phoneme recognition error rate is the only measure here that
takes account the temporal structure of HMMs, the Viterbi training, by
enhancing directly the temporal model, naturally introduces a signifi-
cant drop of errors. However, the LVQ, if suitably initialized, seems to
provide mean vectors that, when combined with simple temporal model,
are able to produce comparable error rates. Apparently, the short-time
classification accuracy is not directly proportional to the phoneme recog-
nition error rate.

VITERBI TRAINING AND CORRECTIVE
TUNING

After the LVQ initialization, the next task in the estimation of the tied
mixture density HMMs is the determination of the mixture weights and
state transition probabilities. The initial values for the mixture weights
can be simply assigned by finding the nearest Gaussians for a set of
training vectors and computing the portion of hits for each Gaussian.
If no pre-segmentation is available, the training samples can be divided
into parts of equal lengths for this initialization. The actual training is
accomplished by a version of Viterbi training, i. e. using an initial model
to recognize the training words and to segment the sequence of obser-
vations into the parts corresponding to each HMM state. Parameter
values for each state are then updated using the segmented feature vec-
tors. For example, the resulting mixture weights of the different states
representing phoneme /A/ with a tied Gaussian codebook of 24 mixtures
are shown in Figure 3.

In Figure 3 the weights in each state are displayed as a surface over the
mixtures. It is easy to notice that although some mixtures are used by
several states, the main trend is that the center of greatest activation, i.
e. largest weights, move from one corner of the codebook to the other.

The Viterbi search for the best path can be constrained on the available
information about the phonemes in the training words to produce as
correct path as possible [9] to reduce the number of required iterations.
That information can include, for example, some pre-segmentation by
other models or by hand. The search can be also made more efficiently
by approximating the output density probabilities of the tied mixture
density functions by using only a couple of the nearest mixtures to the

367

Figure 3: The mixture weights for the Gaussian mean vectors in the four states
of tied mixture density HMM of phoneme /A/. The weights are grouped into
a 6x4 array corresponding to the dimensions of the Self-Organizing Map used
in the initialization (Figure 2).

current observations [2],[9].

To enhance the recognition ability of the models, the LVQ-based correc-
tive tuning methods [9] can be applied to the tied mixture density HMMs
of the current paper. These methods are approximative probabilistic de-
scent algorithms tuning the HMMs to produce correct transcriptions by
gradually decreasing modifications, if some phonemes in the training
words get misclassified. Other methods with some common character-
istics are introduced in, e. g. [11] and [12]. The main idea is to use
the current models to find misrecognized words and the misrecognized
phonemes in them. The incorrect part of the state sequence is then in-
spected state by state tuning the closest Gaussians that would give the
correct result closer and the nearest incorrect ones away [9].

EXPERIMENTS

The experiments involve testing the phoneme recognition accuracy for
four sets of 311 Finnish words uttered by three different speakers. By
leaving one set at a time for testing totally 12 independent runs are
obtained and their average error rates are used in comparison of the

368

version error% iterations
SOM 5.7 1000+10000
S0M+LVQ2 5.7 1000+10000+10000
KM 5.8 200 (rounds)
LVQ3 5.8 5000+50000
SOM* 6.6 1000+10000
SOM+LVQ3 5.7 1000+10000+5000+50000
SOM+LVQ3+Tuning 5.6 +5 times all words

Table 2: Average recognition error rates for variations of training combina-
tions used for the Gaussian mean vectors for 5-state phonetically tied mixture
HMMs. KM is the Kmeans algorithm, where 200 is the maximal number of
rounds of the all training data for each phoneme. SOM* a reference experiment
with SOM of zero neighborhood. SOMs are iterated in two phases (shorter
and longer) for each phoneme. LVQ is iterated for all phonemes at the same
time and a short OLVQ1 phase precedes the LVQ3 training. The corrective
tuning is applied by presenting one word at a time and only misrecognized
phonemes cause modifications.

Type of Number of Parameters (xl0a) Recognition
HMM mixtures weights means time/word error%
CDHMM 4 0.4 9 0.5 7.9
PWMHMM 24 3 11 0.7 6.9
SCHMM 494 54 10 1.8 8.1
CDHMM 24 3 55 2.2 5.8
PWMHMM 70 8 32 1.5 5.7

Table 3: Some comparisons between different continuous density HMM struc-
tures. The abbreviation PWMHMM refers to the phoneme-wise tied mixture
density HMMs proposed in this paper. The CDHMM and SCHMM experi-
ments, reported in earlier papers of the author, use the same speech database
and basicly similar training phases as set up here for PWMHMM experiments.
No corrective tuning has been used in these experiments.

training methods. The error rates are denned by the sum of missing,
changed and extra phonemes divided by the correct sum of phonemes.

The phoneme recognition experiments are performed using the speech
recognition system of the Laboratory of Information and Computer Sci-
ence of Helsinki University of Technology [13]. 20 dimensional cepstral
feature vectors concatenated with the energy of the signal are used as
the short-time acoustical features. New feature vector is computed every
10 ms using 20 ms signal window.

5 states left-to-right HMMs with no skips are trained by the described

369

methods for 20 common finnish phonemes and for the silences occurring
between the words. The differences of the average error rates in Table
2 are so small that, for example, the Matched Pairs test does not give
any significant statistical differences between the various experimented
training combinations, except that the experiment of SOM with zero
neighborhood is worse than the others.

When comparing the performance of corresponding training combination
between different continuous density HMMs the Table 3 reveals that the
phoneme-wise tied HMMs provide clearly the most appealing configu-
rations, when the number of parameters, the recognition time and the
error rate are compared. The recognition times per word are computed
as the average of 311 different finnish words and do not include the pre-
processing which is same for each model. The experiments for CDHMMs
and SCHMMs were explained in [9] and [8], but the construction of the
experiments and the training algorithms are basicly the same and thus
the results are comparable.

CONCLUSIONS

A new method to group the Gaussian codebooks for tied mixture den-
sity HMMs so that the mixtures are phoneme-wise tied is presented. The
aim is to create an intermediate solution between the continuous density
and semi-continuous HMMs gathering the best characteristics of both
approaches. A hybrid training scheme that tries to combine the discrim-
ination powers of LVQ and the presentation ability of Viterbi training
is described for the new models. Some numerical and visual analysis of
the created phoneme-wise codebooks of the Gaussian mean vectors are
carried out as well as a comparison of different combinations of training
algorithms. The performances of the best combinations are not sig-
nificantly different but when comparing to the previous, corresponding
experiments with continuous density and semi-continuous HMMs, signif-
icant improvements are achieved in respect of the number of parameters,
the recognition time and the average error rates.

REFERENCES

[1] L. Bahl, F. Jelinek, and R. Mercer. A maximum likelihood approach
to continuous speech recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 5(2):179-190, 1983.

[2] Jerome Bellegarda and David Nahamoo. Tied mixture continuous
parameter modeling for speech recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 38(12):2033-2045, 1990.

[3] Herve Bourlard and Christian J. Wellekens. Links between Markov
models and multilayer perceptrons. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 12(12): 1167— 1178, Decem-
ber 1990.

370

[4] X.D. Huang and M.A. Jack. Semi-continuous hidden Markov mod-
els for speech signals. Computer Speech and Language, 3, 1989.

[5] H Iwamida, S. Katagiri, E. McDermott, and Y. Tohkura. A hy-
brid speech recognition system using HMMs with an LVQ-trained
codebook In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), volume 1, pages
489-492, 1990.

[6] Teuvo Kohonen. The Self-Organizing Map. In Proceedings of the
IEEE, pages 1464-1480, 1990.

[7] Teuvo Kohonen, Jari Kangas, Jorma Laaksonen, and Kari Torkkola.
LVQ PAK: A program package for the correct application of learn-
ing vector quantization algorithms. In Proceedings of the Interna-
tional Joint Conference on Neural networks (IJCNN), Baltimore,
June 1992.

[81 Mikko Kurimo. Using LVQ to enhance semi-continuous hidden
Markov models for phonemes. In Proceedings of 3rd European Con-
ference on Speech Communication and Technology, volume 3, pages
1731-1734, Berlin, Germany, September 1993.

[91 Mikko Kurimo. Corrective tuning by applying LVQ for continu-
ous density and semi-continuous markov models. In Proceedings of
International Symposium on Speech, Image Processing and Neural
Networks, volume 2, pages 718-721, Hong Kong, April 1994.

[101 Mikko Kurimo and Kari Torkkola. Training continuous density hid-
den Markov models in association with self-organizing maps and
LVQ In Proceedings of the IEEE Workshop on Neural Networks
for Signal Processing, pages 174-183, Copenhagen, Denmark, Au-
gust 1992.

[Ill Shinobu Mizuta and Kunio Nakajima. An optimal discriminative
training method for continuous mixture density HMMs. In Proceed-
ings of the International Conference on Spoken Language Process-
ing, volume 1, pages 245-248, Kobe,Japan, November 1990.

[121 David Rainton and Shigeki Sagayama. Minimum error classifica-
tion training of HMMs - implementation details and experimental
results. J.Acoust.Soc.Jpn, 13(6):379-387, 1992.

[131 Kari Torkkola, Jari Kangas, Pekka Utela, Sami Kaski, Mikko
Kokkonen, Mikko Kurimo, and Teuvo Kohonen. Status report ot
the finnish phonetic typewriter project. In Proceedings of ICANN,
volume 1, pages 771-776, Espoo,Finland, June 1991.

371

Image Processing

Moving Object Classification in a Domestic

Environment using Quadratic Neural Networks

Gek Lim, Michael Alder, Christopher J.S. deSilva
and Yianni Attikiouzel

Centre for Intelligent Information Processing Systems

The University of Western Australia

Nedlands W.A. 6009, AUSTRALIA

Tel: +61-9-3801763, Fax: +61-9-3801011
e-mail: [gek, mike, chris, yianni]@ee.uwa.edu

Abstract-In this paper, we present a moving object recognition
system. A description is given of the whole system from the image
acquisition through the preprocessing and feature extraction stages
to the classification of objects. We use Quadratic Neural Networks
(QNN) to model the input data and then extract features from the
model which are translation and rotation invariant. We have ap-
plied the idea to a practical problem of classifying moving objects
in a domestic environment such as a moving heads, curtains blown
by the wind and external events such as moving tree branches.
Reasonable results are obtained using only the spatial information.

INTRODUCTION

In this paper, we present a moving object recognition system for a domes-
tic environment. In section 2, we briefly describe the system and introduce
new techniques for building the system using Quadratic Neural Networks
(QNN). We show that a QNN is not only powerful as a classifier [1], it is
also capable of other functions such as data modelling. Section 3 discusses
the idea of a quadratic neuron and how it can be used in data modelling.
A practical case study of a moving object recognition system is presented in
Section 4 using QNN and finally conclusions are drawn in Section 5.

A MOVING OBJECT RECOGNITION SYSTEM

The system that we are describing here attempts to recognise only mov-
ing objects, in particular, objects that move in a specific environment, for

0-7803-2026-3/94 $4.00 © 1994 IEEE 375

A quadratic neuron, that is, models a probability density function locally
and responds to a particular set of points in R^. For example, given a data
set of points in R2, we can compute the mean, m, and covariance matrix,
C, of the set of points and this gives rise to a gaussian distribution with
Q — C~x. In our neuron model, the response of the neuron may be treated as
the log likelihood of the set evaluated by the associated gaussian distribution.
Although our commitment to gaussian distributions is not absolute, they
allow us to relate neural models to conventional statistical models to some
degree.

Response of the neuron modelling the set of points in R2 shown in Figure
1(a) will be high whereas the response for Figure 1(b) will be low as it is a
poor fit to the data. Given another set of points as shown in Figure 2(a), in
order to achieve the maximum likelihood of the distribution, more than one
ellipse (or neuron) is required, Figure 2(b). In this case, we have a mixture
of gaussian distributions.

(a) (b)

Figure 1: Response of neurons (a) High response, (b) Low response

CASE STUDY

We are interested in building a moving object recognition system that
can classify objects in a domestic environment. What one finds in this case
is moving human heads, curtains blown by the wind and external events seen
through windows such as moving tree branches.

Input Acquistion

Images are collected using a CCD-camera and a frame grabber board.
The resolution of the images is 256x256 pixels with 128 grey-levels. Figure
3(a) shows two consecutive frames of the three different classes of object.

378

Figure 2: Data Modelling (c) Two clusters of points, (d) Gaussian Mixture
Modelling

Preprocessing Stage

First, we detect the motion of the objects by differencing two consecutive
frames. The moving parts are shown in white, Figure 3(b).

Next, we apply a border tracing algorithm [2] to find the starting point
and the chaincode of all the isolated regions. We remove regions with 'short'
chaincode; the border image is shown in Figure 3(c).

Feature Extraction

We use a QNN to model the border image of the objects. We fit ellipses
along the border by taking C consecutive elements of the chaincode for some
suitable C, and compute the mean and covariance matrix for the set. C must
be chosen so that the quadratic forms are not degenerate, but not so large
that the structure is distorted.

The resulting image shows the border of the moving parts represented by
sequences of ellipses, Figure 4. The effect of this is to smooth the noisy
boundary contour and compress the representation of the objects. More
importantly, the structural information of the objects is not distorted and the
ellipse representation can easily be made translation and rotation invariant.

We have assumed that the moving object recognition system knows ex-
actly what it is looking for. In this case, we are looking for a head, curtain
or tree. It will be observed that the characteristic of the curtain is that it is
made up of mainly vertical edges with some random 'noise', whereas a head
composed of more or less curved edges. The tree basically has no structure
and has a high entropy. This term makes sense if we regard each ellipse as
a predictor of the orientations of its neighbours: recall that the chaincode
establishes an ordering on the quadratic forms.

We look at the change of angle between consecutive ellipses and plot the
histogram with an intervals of five degrees. Figure 5 shows histogram plots

379

Figure 3: Examples of the three different objects: Faces, Curtains, Tree
Branches; (a) Original image, (b) Difference image, (c) Border of the differ-
ence image, (d) Border of the difference image with ellipses along it.

for all three objects. The fact that there is a high frequency of small angular
change in the curtain histogram reflects that it is made up mainly of vertical
edges. The flat distribution of the tree histogram justified our claim that
the tree has a complex structure with irregularly placed ellipses. The head
is somewhere in between because it has curved edges which are still highly
regular, and which leads to a slightly bigger angular change in the mean.

CLASSIFICATION

We classify a new object by computing its histogram and comparing it
with the mean histograms for each of the three object classes. There are
several possible ways of measuring a distance between histograms; we have a
preference for information theoretic methods and therefore use the KullBack-
Leibler distance for the classification. Thus we compute the KullBack-Leibler
distance of a new histogram from the average distribution for each class using

£^"°^ (2)

380

(a) Face (b) Curtain (c) Tree

Figure 4: Fitting ellipses along the border of the difference image

where P(xi) is the average model for class i,
and Q{xi) is the new distribution, to be classified.

Classification is done by finding the minimum KL distance between the
new histogram and the category means. A small constant value is added to
each bin in the histogram to avoid the problems of zero probability events.

RESULTS

Using the Kullback-Leibler measure of discrepancy between histograms,
the classification rate for the training set is 92% and the testing set is 82%,
Table 1. Histograms were formed based on the angular change between
consecutive ellipses from the ellipse sequences. We compute the mean distri-
bution for the curtain, head and tree classes from 26, 29 and 37 histograms
respectively. Table 1(a) shows the confusion matrix of the results of the
histogram classification. Some of the data was obtained by taking a sequence
of time slices of the same scene, others from different scenes.

CONCLUSION

We have shown that using a QNN to model objects with a set of ellipses,
we can easily extract features of the objects that preserve the translation and
rotation invariance properties. Reasonable results have been obtained using
only the spatial information. By this we mean that if we restrict ourselves
to consecutive frames only, we still obtain a reasonably high level of correct
classification given the inherent complexity of the problem: real images ob-
tained in real time tend to be rather resistant to analysis. Our results showed
that there were no significant correlations between the misclassifications for
images obtained from differencing slices which are quite close in time, so it

381

Classes Curtain Face Tree
Curtain 1.0 0.0 0.0
Face 0.0 1.0 0.0
Tree 0.0 0.22 0.78

(a)Confusion matrix for training Data: 26 curtains; 29 faces; 37 trees

Classes Curtain Face Tree
Curtain 0.88 0.06 0.06
Face 0.12 0.82 0.06
Tree 0.0 0.23 0.77

(b)Confusion matrix for testing Data: 17 curtains; 17 faces; 13 trees

Table 1: Classification results using Kullback-Leibler distance between his-
tograms of angular change

would be simple to use temporal information to improve the results further.

REFERENCES

[1] Lim, S.G., Alder, M.D. and Hadingham, P., Quadratic Neural Nets Pattern
Recognition Letters 13 (May 1992) pp325-329.

[2] Haig, T.D., Attikiouzel, Y. and Alder, M.D. Border Following: New Defi-
nition Gives Improved Border IEE Proc-I, Vol. 139, No.2, pp. 206-211 April
1992.

382

iMMVlaa of hlatoflpun or aitfuUr chanfn for curUlna

" J "cl"
"c2"

— _

-1 -

"■'1
-

"I -

.jlj
\\\

ft -

^^^-"-11^^^-^^ ^ *v*-r—-r - —1=^> •<Z.

burlM oT Mrt

Figure 5: Histograms of angular changes of the objects, (a) curtain, (b) face
and (c) tree

383

Application of the HLVQ Neural Network to
Hand-written Digit Recognition

B.Solaiman * and Y.Autret**

Ecole Nationale Superieure des Telecommunications de Bretagne
B.P. 832 , 292X5 Brest Cedex - FRANCE
(Tcl:33 98 00 13 OX, Fax: 33 98 00 10 98)

** Universite de Bretagne Occidentale- Faculte des Sciences
6, Av le Gorgeu, 29287 Brest Cedex - FRANCE

(Tel:33 98 47 65 39, Fax: 33 98 31 62 13)

Abstract. In this work, the hand-written digit recognition problem is
studied. Sell' organizing Feature Maps (S()FM) are mainly considered.
The unsupervised Kohonen as well as the Hybrid Learning Vector
Quantization algorithms are applied. The main objective is to obtain a
topology preserving map having high recognition rates. This is
essentially due to the fact that this kind of maps is very useful in
realising results interpretations and in the definition of a rejection
strategy during the recognition phase.

INTRODUCTION

Pattern recognition is a challenging problem whose solution is
very useful for applications in which large volume of data is
processed. The case of hand-written digit recognition is of special
interest because it has considerable practical applications.

Hand-written digits suffer not only from scale, location and
orientation variations, but also person-dependant deformations which
are neither predictable nor mathematically formulated. Therefore,
research on hand-written digit recognition has never been easy.

0-7803-2026-3/94 $4.00 © 1994 IEEE 384

Approaches generally used in solving this problem fall in one
of two categories : the global analysis and structural analysis
approaches. The use of neural networks offers an alternative and easy
method for hand-written digit recognition.

By directly training the network with sufficiently large data
set, the recognition rate can be quite high. Multilayer perceptron
(MLP) neural network associated with the backpropagation supervised
learning algorithm have received more and more attention. This is
essentially due to the fact that the recognition rate obtained by this
network is very high.

Clustering based neural networks are rarely used in hand-
written recognition. The most known clustering neural network is the
Self Organizing Feature Map (SOFM) introduced by T.Kohonen [1].
This network will be discussed briefly in the next section. The learning
algorithm proposed by T.Kohonen associated with this network, uses
the non-supervised paradigm. Obtained results are thus of great
interest in terms of obtained cluster centres (also called prototypes)
and in terms of topology preserving.

The characteristic of topology preserving is extremely
important if one needs to obtain more information concerning the digit
to be recognized and if a rejection strategy has to be integrated to the
recognition system. Nevertheless, this network suffers greatly of
having a very low recognition rate when the trained network is used as
a pattern recognition system. This is absolutely normal since the
SOFM has never been developed in order to obtain a pattern
recognition system.

T.Kohonen has also suggested a supervised algorithm called
the Learning Vector Quantization 2 (LVQ2),[2], in order to comply
with Bayes making theory. In the LVQ2 algorithm, different neurons
are treated independently in the sense that there in no topological
relation among them.
Obtained recognition results with this algorithm are comparable to
those of the Bayesian classifier.

In this paper, a hybrid learning algorithm called the Hybrid
Learning Vector Quantization (HLVQ),[3], is applied in training a
SOFM. The main objective of this study is to obtain a SOFM having
both characteristics: l)a topology preserving mapping, and 2)high
recognition rates.

385

The SOFM and the LVQ2 networks

The Self Organizing Feature Map (SOFM) introduced by
T.Kohonen, is one of the most successful models in the area of
unsupervised learning. This model builds up a mapping from the N-
dimensional vector space of real numbers 9vN to a two dimensional
array S of cells. Each cell is given a virtual position in 9vN. This
position is given by the synaptic weights connecting this cell to the
input vector (figure. 1).

neighborhood of the celle C

ooo oooooo,' ooo

s
o /

ooo oooooo boo

000,000000,' 000
000,000.000 000

000 'oooooo- 000
000 , o o o o ,0! 0 000

, synaptKiue weight vector
(virtual position)

Input Vector (X)

figure. 1. The Self Organization Feature Map

The purpose of the self organizing process is to find the
position vectors such that the resulting mapping is a topology
preserving mapping (adjacent vectors in 9vN are mapped on adjacent,
or identical, cells in the array S). The learning algorithm that forms the
feature maps selects the best matching cell according to the minimum
distance between its position W(^ and the input vector X. This cell is
referred to as the winning cell. All position vectors in the
neighbourhood of the winning.cell are adjusted in order to make them
more responsive to the current input. Positions adjustment is given by :

AWC (t + 1) = ß(t) * (X - WC(t)) (1)

A decreasing step function ß (t) and a slowly size decreasing
neighbourhood with time, ensure the stability of the process of weights
adjustment.

386

The LVQ2 algorithm has also been suggested by T.Kohonen
as a supervised learning algorithm. In this algorithm, different decision
neurons have no topological relations among them. The main idea is to
adjust the synaptic weights of the best matching and the next best
matching cells (noted respectively C* and C"). The learning algorithm
is only applied if the three following conditions are verified:

1) the input vector X is miss classified by the best matching cell C*,

2) the next best matching cell C" has the correct class,

3) the input vector is close enough to the decision boundary.

Position vectors Wc* and Wc" are then adjusted as follows :

AWC* (t+1) = - a (t) * (X - WC*(t))

AWC" (t+1) = + a (t) * (X - WC"(t)) (2)

where a(t) is a decreasing step function.

The Hybrid Learning Vector Quantization

Learning capability is the most salient feature of neural
networks. Learning paradigm largely depends on the neural network
structure and the characteristics of the data which the neural network
deals with.

The most widely used are the supervised and the non
supervised learning algorithms. The combination of the supervised and
the non supervised learning paradigms is generally performed
sequentially. The non supervised learning is first used in order to
extract important features from the learning examples.

Secondly, the supervised learning is used in order to separate
the learning patterns using the features already determined by the non
supervised approach.

In this study, a new algorithm called Hybrid Learning Vector
Quantization(HLVQ), combining the supervised and the non
supervised paradigms is presented. The aim of the HLVQ algorithm is
to obtain an array of cells, S, realising a topology-preserving mapping.
At the same time, those labelled cell positions must be well distributed
in 9vN giving good classification results.

387

The first version of the HLVQ algorithm consists on the
application of the LVQ2 algorithm over a background of the
unsupervised self-organizing feature map algorithm. This means that
the supervised learning paradigm plays the role of "attention
focusing" applied over the unsupervised background learning.

In fact, after each digit presentation, both best matching and
next best matching cells are determined.

First, positions of all cells in the neighbourhood of the best
matching cell are adjusted using the unsupervised learning algorithm
(1).
The decreasing step function used is given by : ß(t) = T| . a(t), where
r| is an attenuation factor assuming small values (r| e [0.05,0.2]).This
algorithm can be resumed as follows :

Step-»- Given the labelled data set { (Xl,dl),, (Xk.dk)), where Xk
e 3\™, and dk is the corresponding desired output vector representing
the class to which the digit Xk belongs.

The dimensions of the array S, the maximum number of
learning iterations (Maxjterations), the decreasing step function cx(t)
and the attenuation factor r| are fixed.

Step-1- All cells of the map are labelled. Labelling affects to each cell
Ce S, the class for which the cell was the best matching more than
other classes.

Step-2-
For iterations 1,2,..., Max_Iterations ,

A) Learning Iteration:
for k= 1,2,... ,K,

a) Present the digit Xk to the input,
b) Find the best matching C* and the next best matching C"

cells,
c)The background unsupervised learningxells in the
neighbourhood of the best matching cell ;ire adjusted
according to (1).
d)Attention focusing :if the three conditions of the
application of the LVQ2 algorithm are verified, then cells C*
and C" are adjusted according to (2).

next k,

B)LaheIling iteration : All cells of the map are labelled,
C)Adjust the learning rate,

Next iteration.

388

The second version of the HLVQ algorithm concerns the
attention focusing aspect. In fact, in the first version, the attention
focusing consists on the application of the LVQ2 algorithm. Two cases
are mainly considered:

1) the best matching and the next best matching cells answer
correctly,

2) the best matching and the next best matching cells answer

badly.

In the first case, both the best matching and the next best
matching cells are very close to the input digit.

Therefor, and in order to optimize the global use of different
prototypes, the next best matching cell has to change its position in
order to capture other digits information.

In the second case, and this happens generally at the
beginning of the learning procedure where different cells are not well
assigned to their appropriate classes yet, the best matching and the
next best matching cells answer badly. In the HLVQ algorithm a
neighbourhood area of the best matching and the next best matching
cells is used in order to find a labelled cell corresponding to the class
of the input digit.

This neighbourhood area is not necessarily the same as the
neighbourhood area of the unsupervised SOFM learning algorithm.
Thus the attention focusing used in the second version is resumed as
follows :

Attention focusing :

1) if the three conditions of the application of the LVQ2 algorithm are
verified, then cells C* and C" fire adjusted according to (2).
2) if the best matching and the next best matching cells answer
correctly, then the following adjustment rule is applied :

AWC* (t+1) = + a (t) * (X - WC*(t))

AWC" (t+1) = - a (t) * (X - WC"(t)) (3)

This rule constitutes a "punishment" to the next best matching
cell.

3) if both the best matching and the next best matching cells give bad
classification results, a third winning cell C3 from the neighbourhood
of the C* or C" corresponding to the class of X is searched for.

389

If C3 is found, then (he updating rule (1) is applied in
adjusting the position of this cell.

If no cell corresponding to the class of X is found in the
neighbourhood, the algorithm searches a non labelled cell C3 in the
same neighbourhood. If such a cell exists, then the updating rule (1) is
applied in adjusting the position of this cell.

Simulation results

In this study, the French Postal Service (SRTP) data base
containing 6000 hand-written digits was used. This data base has been
divided into a learning data base (4000 hand-written digits) and a test
data base (2000 hand-written digits).

Each hand-written digit is given as a 16x16 pre-processed
image (256 grey levels). Pre-processing consists on scale
normalization. All simulations conducted in this study are based on
the use of a 10x10 lopological map witli the same random synaptic
weights initialisation. The first simulation consisted on training the
SOFM with the non supervised Kohonen algorithm. In figure.2.,
synaptic weights of trained map are visualised as a 160x160 image.

Figure.2. Synaptic weights of the Kohonen SOFM

As can be noticed, the topology preserving characteristic of
the Kohonen learning algorithm is obtained in terms of resemblance
between adjacent synaptic weights.

Neurons having synaptic weights not clearly distinguishable
are simply those having a position very close to decision surfaces. In
terms of recognition rate, obtained results are very bad : 75% for the
learning data base and 65% for the test data base.

390

The second simulation has been conducted using the same
SOFM trained by the first version of the HLVQ algorithm. In figure.3.,
the synaptic weights image of the SOFM is shown in different stages
of the learning procedure.

Figure.3. Synaptic weights image in different learning stages:
(a) after 10 iterations, (b) after 20 iterations, (c) after 50 iterations,

and (d)converged synaptic weights(first HLVQ version),

These results simply mean that the first version of the HLVQ
algorithm in the early learning stages produces very similar results to
those of the Kohonen non supervised learning algorithm (in terms of
topology preserving).

On final learning stages, the topology preserving is lost and
results are essentially obtained by the LVQ2 algorithm.Obtained
recognition rates are of : 97% concerning the learning data base, and
90% concerning the test data base.As can also be noticed, synaptic
weights obtained by this version of the HLVQ algorithm, can be
considered as a kind of important visual features that can be treated by
other recognition systems.

391

In the last simulation, the second version of the HLVQ
algorithm is applied. Obtained results in terms of recognition rates are
nearly the same as those of the first version of this algorithm : 96.8 %
concerning the learning data base, and 89.8 % concerning the test data
base. Obtained synaptic weights image is given in figure.4.

Figure.4. Synaptic weights image obtained by the second
version of the HLVQ learning algorithm

As can be noticed, the topology preserving characteristic of
the Kohonen non supervised algorithm is maintained by the use of this
second version of the HLVQ algorithm.

CONCLUSIONS

In this study, the use of Self organizing Feature Maps (SOFM)
in hand-written digit recognition problem is mainly considered. The
unsupervised Kohonen as well as the Hybrid Learning Vector
Quantization algorithms are applied. The main objective is to obtain a
topology preserving map having high recognition rates. This is
essentially due to the fact that this kind of maps is very useful in
realising results interpretations and in the definition of a rejection
strategy during the recognition phase. Obtained results show that the
SOFM trained by the second version of the HLVQ algorithm allows to
obtain high recognition rates while maintaining the important
characteristic of a topology preserving map. In order to show the
quality of the obtained results in terms of recognition rate, a multilayer
neural network (with one hidden layer) was trained using the
Backpropagation learning algorithm. Obtained results are as follows :
96%. concerning the learning data base, and 93 % concerning the test
data base. Keeping in mind that the SOFM decision strategy
(attribution of the class of the best matching unit to a given input) is

392

piecewice linear decision strategy, and that the MLP is a non linear
decision strategy making, it seems that obtained results by the use of
the SOFM trained by the HLVQ algorithm are of great interest.

Further work concerning the definition of more sophisticated
attention focusing of the HLVQ algorithm and taking into account the
decision quality of each neuron of the map, is actually under study.

References

[l]T.Kohonen, "Self-Organization and associative memory", Springer-
Verlag.Berlin 1984.
[2]T.Kohonen," Self-Organization and associative Memory",3d ed,
1989, Berlin :Springer-Verlag.
[3]B.Solaiman, M.C.Mouchot and E.Maillard, "A hybrid algorithm,
HLVQ, combining unsupervised and supervised learning approaches",
International Conferences on Neural Networks, ICNN94, June26-
July2, Orlando, USA, 1994.

393

Ensemble Methods for Automatic Masking of Clouds in
AVIRIS Imagery

Charles M. Bachmann *, Eugene E. Clothiaux t, John W. Moore X,

Keith J. Andreano o and Dong Q. Luong *

* Airborne Radar Branch t Department of Meteorology
Radar Division,Code 5362 Pennsylvania State University
Naval Research Laboratory, University Park, Penn. 16802
Washington, D. C. 20375 e-mail: cloth@essc.psu.edu
e-mail: bachmann@radar.nrl.navy.mil

X Martin Marietta Services o SWL
2231 S. Crystal Park Dr. 1900 Gallows Rd.
Arlington, VA 22202-3735 Vienna, VA 22182

Abstract- We describe the first-phase of an investigation into techniques for automatic

cloud masking in remote sensing data. BCM Projection Pursuit networks are explored as

a method of unsupervised feature extraction from AVIRIS images. Search vectors in this

method discover directions in the data in which the projected data is skew or multi-modal,

by minimizing a projection index which depends on higher moments of the projected data

distribution. Ensemble methods are used to fuse information from extracted BCM features

and to smooth the mapping of these features to classification of image pixels. Ensemble

hierarchies contain multiple levels of networks, combining BCM at the lowest levels with

backward propagation algorithms, based on cross-entropy minimization, at higher levels

in the ensembles. Predicted cloud masks are compared against cloud masks derived from

human interpretation; ensembles achieve better overall classification accuracy than single

BP networks.

Introduction

The automatic identification of clouds and cloud type in remote sensing data
poses a significant technical challenge to researchers in climate modelling. Hu-
man analysis of images is time-consuming, and automatic methods of scene-
level and pixel-level identification are needed to cope with large volumes of
image data. A number of researchers have investigated multi-class scene-
and pixel-level identification of cloud type based on textural and spectral
features [6], [7], [31], [29] using AVHRR (Advanced Very High-Resolution
Radiometer) [10], [17] images. Examples of such features are moments of
gray-level difference vector (GLDV) statistics [32], [4], sum and difference
histograms (SADH) [30], [4] and gray-level run length (GLRL) [32]. Neural
network techniques based on backward propagation (BP) [26], the probabilis-
tic neural network (PNN), [28] and Kohonen's Learning Vector Quantization
(LVQ) [18] have been used successfully to find meaningful information in
these features and their inter-relationship for classification [31], [29] ; results

0-7803-2026-3/94 $4.00 © 1994 IEEE 394

compare favorably to traditional statistical analysis of the same textural fea-
tures [31].

The present study examines techniques for pixel-level classification in

AVIRIS (Airborne Visible and Infra-Red Imaging Spectrometer) imagery. In

the first phase of our investigation, we looked only at the raw intensity data

without textural and spectral pre-processing steps; a future paper will de-

scribe ensemble methods which simultaneously examine both raw data in-

puts and textural and spectral inputs as found in [7], [31], [29]. In this paper,

we describe ensemble techniques which incorporate both unsupervised fea-

ture extraction networks, in this case BCM Projection Pursuit, as well as a

supervised learning algorithm, BP, for mapping BCM features to a final clas-

sification. These results are compared against backward propagation alone.

Classification results are generated for low-level cloud masks which only dis-

tinguish between pixels containing cloud and those containing no cloud. The

problem of identifying cloud-type will be addressed in a future publication.

Unsupervised Feature Extraction Using BCM Projection Pursuit

Recent treatments of the BCM model [3] [5] [27] have shown its relation
to the statistical approach known as Projection Pursuit [15] [16]. A Lyapunov
function (cost function or projection index) for the modification rule can be
defined for BCM; minimization of this function will favor directions where
the projection distribution (projection onto the search vector) is statistically
skew, i.e bi-modal or multi-modal (Figure l).The BCM model uses a semi-
local learning rule: search vectors are modified based on the information
available within a single layer without reference to training labels; in contrast,
supervised networks such as BP modify network connections in all layers
based on a global error measure in the last layer.

FlgUre ll (Left) Multi-modal response histogram from a BCM cell in a network trained

with 16x16 pixel patches from AVIRIS Imagery ; (middle and right) two-dimensional

scatter-plots from pairs of BCM cells reveal clustering of responses in trained networks.

The ith cell in layer n of a multi-layer BCM network responds according

395

#*> = *(£4nMn)) (!)
with

,(") _ .^"-») J(n_1) , !,(") Cy = tU; • C + t>r (2)
r(«) _ (l,fori = j \ (.

where Li"' is the fixed lateral inhibition 3 matrix of weights in layer n, tu--B

is the vector of connections to cell j in layer n from the prevous layer, (n — 1),

and bj is the bias of cell j in layer n. The Lyapunov function in layer n
is a function of higher order moments which will favor projection vectors for
which the distribution of cell responses is skew or multi-modal: 4

(y. E^)
3
] . £2[(c^n,

jSfcM] = _(£ WLJ-l _ 7^_±i) (4)

This leads to a learning rule of the form:

.(n-D_ 9E(t{n)) _ ^am^a^r du (n), a-(n) _ (»)

A™k = -V ^n-1) = "I 2-, M' i d?"> dc\"'dw'k
=(») aj») a,^"-1)

^E^^.^x^yni?^""1*] (5)

ith:
^in),«in)) = üW0 - 7^n)) and »i"> = £[(cin))2] (6)

7Ö; is the dynamic modification threshold which separates regions where the

^-function yields Hebbian reinforcement and anti-Hebbian weakening in the

single-cell theory. For a small and decreasing step-size, Equation 5 can be well

approximated by stochastic gradient descent (see [16] for further details).

Ensemble Methods

A number of researchers have explored the use of ensemble methods for the

purpose of enhancing overall performance of neural network classifiers [12],

[19], [13], [22], [23], [24]. The notion of pooling a set of "experts" is by no

1The sigmoidal function is typically of the form: c(i) = atanh(aAx), which
has the derivative: c'(x) — A(a — c(i))(o + c(x)).

Superscripts denoting layer indices appear in parentheses.
3The choice of Z;" places each cell in a field proportional to the aver-

age response of the other cells in the layer. Other choices could be used to
establish different fixed influence fields, for instance the Mexican Hat [18].

41?[] represents the expectation value.

396

means confined to research in adaptive neural network algorithms. Whatever

the nature of the underlying estimation process, ensemble methods can be

employed profitably [11], [14], [22]. We illustrate the general framework for

ensembles of estimators in Figure 2.

Figure 2: Schematic diagram of an ensemble of estimators. Each individual estimator

may have a very large number of parameters as in non-parametric methods, e.g. neural

networks, and the input data to each may be identical data sets or different representations

of the same problem such as in sensor fusion. The ensemble estimator weights the estimates

of members of the ensemble, and the relative weighting may be adapted.

Cloud Masking for AVIRIS Images: Experimental Design (First

Phase)

In the initial phase of our research as described in this paper, we investigated
ensemble networks. In one version of these ensembles, multiple BCM Projec-
tion Pursuit networks performed low-level, unsupervised feature extraction
from input patches of AVIRIS images. Inputs to these networks were vectors
containing the pixel values as a percentage of the dynamic range over the en-
tire image. In some experiments, we normalized inputs to the dynamic range
within the input patch and then renormalized the input vector to a unit vec-
tor representation; such a transformation emphasizes the local structure and
texture of the input patch by preserving the direction of the high-dimensional
vector in input space, at the same time, information about overall intensity
is removed by normalizing the vector onto the unit sphere. The ouput of the
BCM networks was fed to the input layer of a BP network which performed
the mapping to pixel-level predictions. All backward propagation networks
described in this paper used a cross-entropy objective function [25]. Error cor-
rection in the BP networks was done by comparing network pixel predictions
against a ground truth mask generated by human interpretation. The unsu-
pervised BCM networks were trained independently before being attached to
the BP networks. As a baseline, results were also obtained for 3-level BP net-
works operating directly on the input patches. A third experiment consisted
of pooling the ensembles in the first set of ensembles to obtain an ensemble
of ensembles. This last experiment is closer in spirit to the ensemble concept
in [13] and [24], in which the actual output classifications of estimators are
pooled. Network configurations for the experiments described here are re-
ported in Table 1. LIBP [1] refers to BP run with fixed lateral inhibition, as

397

in the feedforward rule for the BCM network; inhibition in the BP networks
was found to be important for obtaining reasonable performance with 3-layer
networks.

Table 1
Network Configurations: Single & Ensemble Nets

Experiment | Net Type Configuration
BP1 Single Level : 1 LIBP: (256-100-16)

Input: Band 17
ENSSD1 Ensemble Level 2: BP (136-100-16)

Level 1: 10 BCM Networks:
8 of size: 256-12 ; 2 of size 256-20

Preprocess: 8 Nets: Pixels as Ä of Dynamic Range of Whole Image
2 Nets: Pixels as % of Dynamic Range of Input Patch;

Renormalized to Unit Sphere
Input: Individual Nets Receive Input from a Single Band

Either Band 52 or Band 17
ENSSD4 Ensemble Level 2: BP (72-100-16)

Level 1: 6 BCM Networks: AU of size 256-12
Preprocess: 2 Nets: Pixels as % of Dynamic Range of Whole Image

4 Nets: Pixels as % of Dynamic Range of Input Patch;
Renormalized to Unit Sphere

Input: Individual Nets Receive Input from a Single Band
Either Band 52 or Band 17

ENSSD5 Ensemble Level 2: BP (46-100-16)
Level 1: 4 BCM Networks: All of size 256-12

Preprocess: 2 Nets: Pixels as % of Dynamic Range of Whole Image
2 Nets: Pixels as % of Dynamic Range of Input Patch;

Renormalized to Unit Sphere
Input: Individual Nets Receive Input from a Single Band

Either Band 52 or Band 17

SUPSD1 Ensemble
of

Ensembles

level 2: BP (48-100-16)
level 1: ENSSD1 ENSSD4 ENSSD5

The AVIRIS data used in this set of experiments were comprised of 10

different images derived from 6 different locations under a variety of weather

conditions; they included a variety of terrain, for example a land-sea interface

and agricultural areas; a number of different cloud types were also present.

For each location, 4 bands were made available to us, three in the visible and

one in the near infra-red, although the experiments in this phase only used

two bands, Band 52 (near infra-red), and Band 17 (visible). Eight images

were used for training and two for testing. More complete statistics using the

bootstrap method will be obtained in the future. Note that in general setting

a single threshold for the entire image will not suffice since this would lead

to unacceptably high levels of false alarms in many of the images (Figure 3).

During training, images in the training set were selected at random and from

each image, 16x16 patches were sampled at random as input to the networks.

A number of different input patch sizes have been explored (8x8, 16x16, 32x32

and 64x64) to examine the qualities of the BCM feature vectors on different

scales of area, although in the experiments described here for prediction input

patches were all 16x16. An example of BCM feature vectors obtained from

experiments with different input patch sizes is shown in Figure 4. The figure

shows some particular network solutions which were strong edge detectors.

Notice that local structure found in smaller patch vectors appears as a sub-

component of the larger patch feature vectors. Feature vector structure in

398

.>"'£*■'
Jt * ■'•—»■■^■■'

"9106HB«a.42.B17«lt- '

.»*4E8siOAJM.S4.B17«lt- I
»* "9COSO»A.R3.35.B17«lt- :

-9M723AJ».S4.B17«lt"
<9e0814AJU.SU174dl- I
"»K813A.RS.S2.B17«»'
*»lMUBJtS.S4.B17«lt-

FilMAlumaOH

Jt lgUre 3: The results of using a global threshold lor cloud-masking in AVIRIS Band

17: in many of the images, a good detection rate also means a high false-alarm rate.

BCM takes on a variety of different forms depending on the control param-

eters 17, 7, r (r is the temporal width of the sampling window for the sliding

threshold yE(c2) in the BCM rule). Other factors such as dwell-time on each

image may also play a role. In experiments with larger values of r, feature

vectors may be banded or speckled (right half of Figure 4) in appearance com-

pared with those in the left half of Figure 4. In the prediction experiments

'MUM KM*» jbrA*MA**tt 43«» MKM K»ft

Flglire 4: (Left) BCM feature vectors trained with AVIRIS Images (three networks

with different patch sizes); vectors are sensitive to edges. (Right) BCM feature vectors

sensitive to texture; vectors have been smoothed to emphasize peaks and valleys.

described in the Results section, the final prediction of the network ensembles

and single networks was the identity of the pixels in the 4x4 sub-patch in the

upper left corner of the input patch. Prediction masks were generated for the

training and testing sets by scanning the entire image with the 16x16 pixel

input box. The box was moved in 4 pixel increments to obtain a complete

prediction mask. This procedure meant that predictions were obtained for

all pixels with the exception of a small strip on the bottom and right edges of

399

the AVIRIS images. These strips comprised only ~ 2% of the whole image.

The results in Table 2 were generated by comparing network prediction masks

against masks generated through human interpretation.

Results

BP Performance: Magnitude Sensitivity

The results of the phase 1 experiments are given in Table 2. BP (BPSDl)

has a high degree success on the test images because it is fairly similar to those

training images for which fairly simple magnitude filtering might obtain fairly

good results. However, BP does have some notable failures on the training

set for those images for which simple magnitude filtering would not be highly

successful, that is, for training images 5, 6 and 7. For these images, BP obtains

either unacceptably low rates of classification or high rates of false alarms.

Image 5 contains a lot of high magnitude land return which is confused with

cloud cover by BP; image 6 has thin cirrus over a land-sea interface, for which

backprop fails to detect much of the cloud cover because it has a low return.

In both of these cases, the required features vectors need to encode textural

information. Similarly, image 7 has bright land as seen through a diffuse layer

of smoke from a forest fire. Mistakenly, this image is completely identified as

cloud by BPSDl.
BCM-BP Ensemble Performance: Improvements

The ensemble approach allows us to extract features from different pre-

processing steps without the problems inherent in constructing a large, single

network. Multiple views of data structure from each form of data preprocess-

ing allow improvement in classification perfomance. What is notable about

the performance of ensembles incorporating BCM at the lowest levels with BP

at the top level is that some of them appear to find solutions which achieve

considerably greater classification accuracy than BP alone for images 5, 6

and 7. Indeed all but one of them (ENSSD 4) also achieve a good level of

performance on the two testing images.
Ensembles of Ensembles: Most Consistent Performance

Smoothing of the classification estimates can be achieved by learning to

pool the estimates of the simple ensembles in the previous section. The

ensemble of ensembles run (SUPSD1) which received input from ensembles

ENSSD1, ENSSD4 and ENSSD5, achieved the most consistent performance

across all of the images comprising the training and testing sets. The clas-

sification of cloud location by SUPSD1 for image 6 is compared against the

original image and the human interpretation in Figure 5.

400

Table 2
Pixel-Level Classification of AVIRIS Images

BPSD1 ENSSD1 ENSSD4 | ENSSÜ5 | ENSSD6 SUPSD1
Training
Images

% Cloud
Pixels

% Cloud Pixels Correct
% Non-Cloud Pixels Correct

910628B.R6.S2 12% 89.8 %
97.8 %

94.3 %
95.5 %

91.2 %
94.7 %

89.6 %
97.0 %

94.8 %
94.3 %

96.0 %
93.8 %

910620A.R2.S2 39 % 75.7 %
98.7 %

81.4 %
97.3 %

82.8 %
94.8 %

78.6 %
97.2 %

85.1 %
96.4 %

85.1 %
96.0 %

900810A.R6.S4 33.8 % 98.0 %
95.0 %

97.6 %
94.9 %

91.4 %
84.1 %

95.8 %
96.2 %

99.4 %
84.9 %

98.9 %
92.3 %

900809A.R3.S5 21.4 % 95.2 %
94.9 %

93.0 %
97.7 %

89.3 91
94.4 %

91.7 %
98.1 %

96.6 %
94.0 %

96.0 %
96.1 %

900723A.R9.S4 4.9 % 100.0 %
2.3 %

91.4 %
92.6 %

82.9 %
92.7 %

90.9 %
88.7 %

92.1 %
80.1 %

91.8 %
90.3 %

900814A.R9.S1 51.0 % 31.6 %
97.8 %

86.1 %
78.5 %

62.5 %
92.5 %

35.9 %
98.2 %

63.7 %
93.4 %

88.3 %
74.6 %

900813A.R9.S3 0.0 %
0.0 % 68.0 % 98.5 % 70.6 % 56.3 % 83.6 %

900813A.R5.S2 53.6 % 78.3 %
99.3 %

88.9 %
96.9 %

77.9 %
97.3 %

79.5 %
98.6 %

87.1 %
97.9 %

91.6 %
96.0 %

Testing
Images

910628B.R5.S4 23.2 % 92.7 %
98.0 %

72.4 %
96.7 %

94.2 %
90.1 %

94.5 %
95.6 %

97.8 %
91.7 %

93.3 %
94.9 %

900814B.R12.S2 100.0 % 100.0 % 98.7 % 18.2 % 81.7 % 79.9 % 84.1 %

£ IgUrC ut (Upper left) AVIRIS image of cirrus clouds over a land-sea interface (band

52); (upper right) human interpretation of location of clouds ; (bottom) identification of

clouds by an ensemble of ensembles (SUPSD1).

401

Conclusions and Future Directions

BCM Projection Pursuit in an ensemble configuration is capable of discov-
ering textural features which may be useful in separating bright land from
cloud, as well as detecting cirrus over a land-sea interface. The ensemble of
ensembles run SUPSDl achieved the most consistent performance across all
of the images. BP solutions tended to be very sensitive to overall intensity
of return and had notable failures on the training set for these difficult cases.
Further experimentation with ensemble configurations of BCM-BP and other
hybrid networks such as BCM with radial basis functions [21] [20] to opti-
mize classification performance will be explored in a future publication; we
will also study the performance of ensembles receiving inputs from statistical
measures derived from GLDV, SADH and GLRL distributions as well as the
raw data.

Acknowledgement C. Bachmmn gratefully acknowledges the support of Dr. Thomas

McKenna of the Office of Naval Research (ONR) through ONR Grant # N0001494WX23060 and also of

Fred Lee, AEW Section Head, Airborne Radar Branch, Naval Research Laboratory (NRL), for internal

funding under ONR Grant #N0001494WX35052. This work was also supported by NRL core funds

(53-1501-04). E. E. Clothiaux is supported by an appointment to the Global Change Distinguished

Postdoctoral Fellowships sponsored by the U.S. Department of Energy, Office of Health and

Environmental Research, and administered by the Oak Ridge Institute for Science and Education.

References
[1] C. M. Bachmann, S. Musman, D. Luong, and A. Schultz, Unsupervised BCM Projection Pursuit

Algorithms for Classification of Simulated Radar Presentations, Neural Networks Vol 7 No 4 DD
709-728, 1994. ' ' ' vv'

[2] C. M. Bachmann, S. A. Musman, A. Schultz, Classification of Simulated Radar Imagery Using
Lateral Inhibition Neural Networks, in Neural Networks for Signal Processing II - Proceedings of
the 1992 IEEE Workshop, Aug. 31 - Sept. 2, 1992, Copenhagen, Denmark, pp. 279 - 28«.

[3] E. L. Bienenstock, L. N. Cooper, P. W. Munro, Theory for the Development of Neuron Selectivity:
Orientation Specificity and Binocular Interaction in Visual Cortex, The Journal of Neuroscience
Vol. 2, No. 1, pp. 32-48, 1982.

[4] D. W. Chen, S.K. Sengupta, and R.M. Welch, Cloud Field Classification Based upon High Spatial
Resolution Textural Features: 2. Simplified Vector Approaches, J. Geophys. Res 94 No D12
14749-14765, 1989. '

[5] E. E. Clothiaux, M. F. Bear, L. N. Cooper, Synaptic Plasticity in Visual Cortex: Comparison of
Theory with Experiment, Journal of Neurophysiology, Vol. 66, No. 5, pp. 1785 - 1804, 1991.

[6] E. Ebert, A Pattern Recognition Technique for Distinguishing Surface and Cloud Types in the Polar
Regions, J. Climate Appl. Meteor., 26, 1412-1427, 1987.

[7] E. E. Ebert, Analysis of Polar Clouds from Satellite Imagery Using Pattern Recognition and a
Statistical Cloud Analysis Scheme, Journal of Applied Meteorology, Vol. 28, pp. 382 - 399, 1989.

[8] J. H. Friedman, J. W. Tukey, A Projection Pursuit Algorithm for Exploratory Data Analysis, IEEE
Transactions on Computers, Vol. c-23, No. 9, pp. 881 - 890, 1974.

[9] J. H. Friedman,Exploratory Projection Pursuit, Journal of the American Statistical Association
Vol. 82, No. 397, Theory and Methods, pp. 249 - 266, March 1987.

[10] L. Garand, Automated Recognition of Oceanic Cloud Patterns. Part I: Methodology and Application
to Cloud Climatology. J. Climate, 1, 20-39, 1988.

402

[11] C. Genest, J. V. Zidek, Combining Probability Distributions: A Critique and Annotated Bibliog-
raphy, Statistical Science, Vol. 1, No. 1, pp. 114 - 148, 1986.

[12] L. K. Hansen, P. Salamon, Neural Network Ensembles, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 12, No. 10, pp. 993 - 1001, October, 1990.

[13] L. K. Hansen, C. Liisberg, P. Salamon, Ensemble Methods for Handwritten Digit Recognition, in
Neural Networks for Signal Processing II- Proceedings of the 1992 IEEE Workshop, Aug. 31 - Sept.
2, 1992, Copenhagen, Denmark, pp. 333 - 342.

[14] T. K. Ho, J. J. Hull, S. N. Srihari, On Multiple Classifier Systems for Pattern Recognition, Pro-
ceedings of the 11th IAPR International Conference on Pattern Recognition, Vol. II., Conference
B: Pattern Recognition Methodology and Systems, pp. 84 -87, 1992.

[15] N. I. Intrator, (1990). Feature Extraction Using an Unsupervised Neural Network, in Proceedings
of the 1990 Connectionist Models Summer School, D. S. Touretzky, J. L. Ellman, T. J. Sejnowski
(eds.), Morgan Kaufmann, San Mateo, CA, 1990.

[16] N. Intrator, L. N. Cooper, Objective Function Formulation of the BCM Theory of Visual Cortical
Plasticity: Statistical Connections, Stability Conditions, Neural Networks, Vol. S, pp. 3-17, 1992.

[17] J. Key, Cloud Cover Analysis with Arctic Advanced Very High Resolution Radiometer Data. 2.
Classification with Spectral and Textural Measures, 95, No. D6, 7661-7675, 1990.

[18] T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, Berlin, 1984, pp. 128 -
133.

[19] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, G. E. Hinton, Adaptive Mixtures of Local Experts, Neural
Computation, Vol 3., pp 79-87, 1991.

[20] J. Moody, C. Darken, Fast Learning in Networks of Locally Tuned Processing Units, Neural Com-
putation, 1(2): pp. 281-294, 1989.

[21] A. J. Robinson, M. Niranjan, F. Fallside, Generalising the Nodes of the Error Propagation Net-
work, Technical Report, CUED/F-INFENG/TR.25, Cambridge University Engineering Depart-
ment, November 1, 1988.

[22] M. P. Perrone, Improving Regression Estimation: Averaging Methods for Variance Reduction with
Extensions to General Convex Measure Optimization, Ph.D. Dissertation, Department of Physics,
Brown University, May, 1993.

[23] M. P. Perrone, L. N. Cooper, Learning from What's Been Learned: Supervised Learning in Multi-
Neural Network Systems, to appear in: Proceedings of the World Congress on Neural Networks,
Portland, OR, July 11 - 15, 1993.

[24] M. P. Perrone, L. N. Cooper, When Networks Disagree: Ensemble Methods for Hybrid Neural
Networks, to appear in Artificial Neural Networks for Speech and Vision, R. J. Mammone,
ed., Chapman-Hall, 1993.

[25] M. D. Richard, R. P. Lippman, Neural Network Classifiers Estimate Bayesian a posteriori Proba-
bilities, Neural Computation, 3, 461-483, 1991.

[26] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning Internal Representations by Error Prop-
agation, in Parallel Distributed Processing, Explorations in the Microstructure of Cognition, Vol.
1, Rumelhart, D. E., McClelland, J. L. (eds.), MIT Press, Cambridge, MA, 1986, pp. 318-362.

[27] B. S. Seebach, Evidence for the Development of Phonetic Property Detectors in a Modified BCM
Neural Network without Innate Knowledge of Linguistic Structure, Ph. D. Dissertation, Brown
University, Program in Neural Science, 1990.

[28] D. F. Specht, Probabilistic Neural Networks, Neural Networks, Vol. 3, pp. 109-118, 1990.

[29] V. R. Tovinkere, M. Penaloza, A. Logar, An Intercomparison of Artificial Intelligence Approaches
for Polar Scene Identification, Journal of Geophysical Research, Vol. 98, No. D3, pp. 5001-5016,
March, 20, 1993.

[30] M. Unser, Sum and Difference Histograms for Texture classification. IEEE Trans. Pattern Anal.
Mach. InteU., PAMI-8, 118-125, 1986

[31] R. M. Welch, S. K. Sengupta, A. K. Goroch, P. Rabindra, N. Rangaraj, M. S. Navar, Polar Cloud
and Surface Classification Using AVHRR Imagery: An Intercomparison of Methods, Journal of
Applied Meteorology, Vol. 31, pp. 405-420, May, 1992.

[32] J. S. Weszka, C.R. Dyer, and A. Rosenfeld, A comparative Study of Texture Measures for Terrain
Classification, IEEE Trans. Syst., Man, Cybern., SMC-6, 269-285, 1976.

403

Saddle-node Dynamics for Edge Detection

Yiu-fai Wong*
Institute for Scientific Computing Research, L-416

Lawrence Livermore National Laboratory
Livermore, CA 94550

wong@redhook.llnl.gov

Abstract

We demonstrate how the formulation of a nonlinear scale-space fil-
ter can be used for edge detection and junction analysis. By casting
edge-preserving filtering in terms of maximizing information content
subject to an average cost function, the computed cost at each pixel lo-
cation becomes a local measure of edgeness. This computation depends
on a single scale parameter and the given image data. Unlike previous
approaches which require careful tuning of the filter kernels for various
types of edges, our scheme is general enough to be able to handle differ-
ent edges, such as lines, step edges, corners and junctions. Anisotropy
in the data is handled automatically by the nonlinear dynamics.

1 Introduction
Edge detection is a basic operation for many image analysis and machine
vision systems. It is not surprising that numerous schemes have been invented
for various purposes. The earlier schemes such as Roberts and Sobel operators
are gradient-based [1]. Over the years, ideas from many different fields have
been applied to this problem. For example, one approach is based on surface
fitting [2, 3, 4]. Fitting functions resembling edge profiles to the data, one can
extract the edges based on the residuals or gradient strengths. Mathematical
morphology has also been applied to detect edges [5]. The most popular
approaches, however, are based on convolving the images with Gaussian-like
kernels. Typically, peaks or ridges in the filtered output are identified as the
edges, with some proper thresholding. For example, zero crossings of the
Laplacian of Gaussians were considered to be edges in [6]. In his seminal
work [7], Canny derived Gaussian-like filters that maximize the SNR and
minimize the localization error. Recently, energy filters have been proposed [8]

'Work was performed at the Institute for Scientific Computing Research and was sup-
ported by Lawrence Livermore National Laboratory through DOE contract No. W-7405-
ENG-48.'

0-7803-2026-3/94 $4.00 © 1994 IEEE 404

in which the squared responses of a pair of quadrature filters are computed
and the local maxima were defined to be the edges [8]. To maximally tune the
responses of the filters to the edges, it is advantageous to use a set of oriented
filters. This idea was implemented in the Binford-Horn linefinder [9].

Corners and junctions are very important for object description and recog-
nition. Since their descriptions are even more complicated than edges, their
extraction are harder. There are two types of approaches for corner and
junction detection: 1) extracting the edges and then look for points with
maxima curvature [10, 11]; and 2) working directly on the grey-scale im-
ages [12, 13, 14, 15, 16].

Since edges can be present in multiple orientations and scales, one major
drawback of these linear-filter-based techniques is that careful choice of the
shapes, orientations and scales of the kernels [17, 18] is required to extract
meaningful edges. This becomes much more complicated if accurate detection
of corners and junctions is needed.

Recently, a clustering filter [19, 20] that can remove noise, preserve edges
and smooth data was derived, all conditioned upon a scale parameter. In
this work, we discuss another aspect of the filter. It is shown that the filter
contains a mechanism suitable for edge detection and junction analysis.

For completeness, let us review the essential ideas of the filter.

2 Clustering Filter

Let x be the coordinate of a pixel in an image1 and y its gray level, or
really any real-valued attribute. It is well-known that the pixels are highly
redundant due to spatial correlation. Thus, given a scale, we can estimate
the new pixel value y at position x by its neighboring pixels. Common sense
tells us that the data points near (x, y)2 should give more information while
those far away should give less. This can be implemented by having each
data point contributing to the estimate y pay a cost. The cost function
should be small for nearby data points but larger for those further away.
To make this estimate robust, the information should be spread among the
neighboring data. If we treat the contributions to the determination of y
from the neighboring data as a probability distribution, then this probability
distribution should be chosen such that its entropy is maximized subject to
linear cost constraints [21].

The above reasoning implies that we can estimate each pixel indepen-
dently. Say we are given a neighborhood of data points S — {(x,, t/i) : i =
1,..., N}. Let Pi denote the contribution of (x2-, j/,-) to (x, y), or equivalently,
the probability that (x,y) is influenced by (xi,yi). To specify the cost func-
tion, we note that the input and output domains should be treated differently
because the former is fixed and known but the latter is really environment-

1X = (i,j) for an image with rectangular grids. We choose this notation for simplicity.
2 We use (x, y) to denote the joint image plane and intensity space.

405

dependent. Thus, let the cost function have two components ex(xi) and
ey(yi). Our criterion seeks to maximize the entropy S = - £,• P, log P,, sub-
ject to the linear constraints

^PMxi) = C(x),]Tfley(j/.-) = E(x) (1)
i i

which are obtained by averaging the costs in the neighborhood.
Using Lagrangian multipliers, the contribution of ith pixel to the deter-

mination of the filter output y at pixel location x was found to be

p. — e-aex(X,)-ßey(y,) ig /gN

where Z = £\ e-ae*(x.)-/?ey(</.). Using an analogy with statistical physics,
we can define a free energy F = =£- log Z.

If one uses squared distance for the cost functions ex and ey, one further
obtained that, by minimizing F, the output y at x is given by

_ y^ yiWie-P^'-y)2

y~ ^y.wie-ßiyj-y)7' ^

the weighted mean of the data and W{ = e~a^x'~x^.
Let us now explain what a means. Clearly, a large a implies that only

the pixels very close to x have significantly non-zero tüj's. Thus, only a few
data points can influence the output. Conversely, a small a implies that more
neighbors of x can contribute. Hence, a is a measure of scale in the input
space.

Once the scale a in the input space is selected, it is clear that the particular
estimate one obtains depends on ß and initial y. A simple procedure was
used in [20]. Let us compute the mean y = £\ VW I Ei w> and variance
ay = HiiVi ~ yfwi/Y.iwi- One then sets ß = (2tf)-\ To compute the
filter output, one simply'iterates (3), with initial y = y, until it converges.

It has been observed that this filter can accomplish three tasks [19, 20]:

• removing impulsive noise;

• improved smoothing of nonimpulsive noise and
• preserving edges.

3 Approach for Edge and Junction Analysis

The clustering filter uses a new mechanism, namely, saddle-node dynamics,
for edge-preserving filtering. Can we use this new mechanism for edge detec-
tion? A key observation here is that the energy (cost) function

E(x) = J2(y-yi)2Pi (4)

406

is a measure of edgyness at x in the image data. The energy is small for
smooth areas and large for areas containing "edges." The reasoning is as
follows: Over a smooth area, the pixels in a neighboring area are highly
correlated. Thus, the cost of having a smooth estimate is low. At an edge,
the usual notion of spatial redundancy breaks down and strong nonlinear
action is needed to preserve an edge. Thus, the cost is high.

Furthermore, the energy is invariant to the orientation of an edge. Imagine
that one rotates an edge profile within a circular region. The contributions
Pi's are rotated too. Thus, both E(x) and y will remain unchanged. Our for-
mulation gives a response which is orientation invariant. It is also unnecessary
to tune the shape of the neighborhood used in the nonlinear filtering.

We now illustrate this observation with some synthetic and real images.
For visualization purposes, the square root of the energy image E is shown,
unless other specified. When the outputs are generated for different as, no
scaling is performed. This allows one to compare the magnitudes of the
outputs. White means small and dark means large in the figures.

3.1 Energy at Lines
Figure la is an image with a horizontal line and a pair of crossed lines.
Figures lb and lc are the energy images for a = 1/2,1/8 respectively. One
can make three observations:

• The energies are highly localized along the lines and their terminals.
• At the corners and junctions, the energies become local maxima. This

can serve as a scheme to corner and junction detection.

• The ridges in the energy image are the edges.

3.2 Energy at Step Edges and Corners

Figure 2a shows an image with step edges and corners. Figures 2b and 2c
show the energy images for a - 1/2,1/8 respectively. Again, one can see that
the energies are concentrated at the boundaries which can clearly be identified
by the ridges. At the corners, the energies are distinctly local maxima. At
a larger scale, two local maxima are generated at the corners. They can be
merged by noting that there cannot be two adjacent corners at a large scale.

3.3 Energy at Junctions
Junctions pose great difficulty for Canny-like edge detectors. The behavior of
the edges obtained by linear filters is very complicated at junctions because
an ideal junction can be characterized by four parameters. To demonstrate
that the energy image can be useful for detecting such junctions, Figure 3a
shows a corner and Figure 3b is the filtered image. Figures 3c and 3d show
the energies at a = 1/2 and 1/8 respectively. Indeed, the ridges are the edges
and they meet at the junction, the energy of which is a local maxima.

407

Figure la. Lino image. Figure lb. Energy image. a= 1/2.

Figure le. Energy image. a=l/S. Figure 2a. Step edges and Corners.

<;

Figure 2b. Energy image. a=l/2. Figure 2c. Energy image. a=l/8.

3.4 Results using real data
Edges in real data differ from the synthetic ones considerably due to sampling.
A step edge has nonzero components at all frequencies. For two-dimensional
images, depending on the sampling periods in the x and y directions and
the edge's orientation, sampled edges can appear jagged. Thus, care must
be taken in using our formulation because the filter is nonlinear. Edges are
detected as follows: For each pixel, it is determined if the energy is a local
maximum in any of the four directions. If the energy is a local maximum
in one or more directions, the maximum gradient among these directions is
computed. Otherwise the gradient is set to zero. One then thresholds this
gradient image to get the edges. Figure 4a shows a girl image. Figure 4b
shows the edges extracted by our method. Figure 5a shows a MR image of a
human hand. Figure 5b shows the edges extracted.

4 Summary

We have shown how the formulation of a nonlinear scale-space filter can be
utilized for edge and junction analysis. Using the nonlinear filter, an energy
value can be calculated at each pixel. Energy is large at an edge and small
over smooth areas. Moreover, it is invariant to the orientation of an edge. It
was observed that the ridges correspond to edges and the local maxima cor-
respond to the corners and junctions. Our main contribution is that the use
of saddle-node dynamics allows us to perform tasks quite effortlessly which
would require careful tuning of the shapes and orientation of the filter kernels
in conventional methods. Future work would include more detailed experi-
ments and integration of edges over scales to generate a complete and robust
edge detection scheme.

References

[1] R.C. Gonzalez and P. Wintz, Digital Image Processing, Addition-Wesley,
Menlo Park, CA, 1987.

[2] R.M. Haralick, "Digital edge steps from zero crossings of second direc-
tional derivatives," IEEE Trans. Pattern Anal. Mach. Inteli, 6, 58-68,
1984.

[3] V.S. Nalwa and T.O. Binford, "On detecting edges," IEEE Trans. Pat-
tern Anal. Mach. Inteli., 8, 699-714, 1986.

[4] D. Lee, "Coping with discontinuities in computer vision: their detection,
classification and measurement," IEEE Trans. Pattern Anal. Mach. In-
teli, 12, 321-344, 1990.

[5] R.M. Haralick, J.S.J. Lee and L.G. Shapiro, "Morphologic edge detec-
tion," IEEE J. Rob. Automat., RA-3, 1987.

409

Figure 3a. Junction image. Figure 3b. Filtered image. a=l/2.

Figure 3c. Energy image. a=l/2. Figure 3d. Energy image. a= 1/8.

410

[6] D.C. Marr and E.C. Hildreth, "Theory of Edge Detection," Proc. Royal
Soc. London B, 207, 187-207, 1980.

[7] J. Canny, "A Computational Approach to Edge Detection," IEEE Trans.
Pail. Anal and Mach. IntelL, 6, 679-698, 1986.

[8] M.C. Morrone and R.A. Owens, "Feature detection from local energy,"
Pattern Recognition Letters, 6, 303-313, 1987.

[9] T. Binford, "Inferring surfaces from images," Artificial Intelligence, 17,
205-244, 1981.

[10] H. Asada and M. Brady, "The curvature primal sketch," IEEE Trans.
Pattern Anal. Mach. IntelL, 8, 2-14, 1986.

[11] R. Deriche and O.D. Faugeras, "2-D curve matching using high curvature
points: application to stereo vision," Proc. 10th Intl. Conf. Patt. Recog.,
Atlantic City, 240-242, 1990.

[12] P.R. Beaudet, "Rotational invariant image operators," 4th Intl. Conf.
Patt. Recog., Tokyo, 579-583, 1978.

[13] L. Kitchen and A. Rosenfeld, "Gray-level corner detection," Patt. Recog.
Lett, 1, 95-102, 1982.

[14] L. Dreschler and H.H. nagel, "On the selection of critical points and
local curvature extrema of region boundaries for interframe matching,"
Int. Conf. Patt. Recog., 542-544, 1982.

[15] O.A. Zuniga and R.M. Haralick, "Corner detection using the facet
model," Proc. Conf. Patt. Recog. Image Process., 30-37, 1983.

[16] R. Deriche and G. Giraudon, "A computational approach for corner and
vertex detection," Intl. Journal Computer Vision,, 10, 101-124, 1993.

[17] W. Freeman and E. Adelson, "The design and use of steerable filters
for image analysis, enhancement and multi-scale representation," IEEE
Trans. Pattern Anal. Mach. IntelL, 1991.

[18] P. Perona, "Steerable-scalable kernels for edge detection and junction
analysis," Proc. ECCV, 1-17, 1992.

[19] Yiu-fai Wong, "A Nonlinear Scale-space Filter by Physical Computa-
tion," Proc. IEEE Workshop on Neural Networks for Signal Processing,
September, 1993.

[20] Yiu-fai Wong, "Nonlinear Scale-space Filtering and Multiresolution Sys-
tems," to appear in IEEE Trans. Image Processing.

[21] A. Papoulis, , Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, Ch. 15, 1984.

411

Figure 4a. Girl imane.

■ :yW if/
/fM?^ .2-/-9

' y'-^w: ;|. V ■■'/ :'. (r ^W-j- \ -r.v

Figure 4b. Edges from Fie. 4a.

Figure 5a. MR Hand imace. Figure 5b. Edees from Fin. 5a.

412

Application of SVD Networks to Multi-Object
Motion-Shape Analysis

S.Y. Kung J.S. Taur M.Y. Chiu
Princeton University Siemens Corporate Research

1 Introduction

Singular Value Decomposition (SVD) has been a well-known technique for sig-
nal/image processing. Recently, an SVD approach to the so-called structure-
from-motion problem was proposed by Tomasi and Kanade [3], which has at-
tracted a lot of renewed attention. For the single object case, Kanade and
colleagues have devised a sequential algorithm so that it would be able to re-
cover the scene in real time as the video images are taken. So this is called a
motion-shape estimation (MSE) problem. The main thrust of this paper is to
further evolve the single object MSE to multi-object MSE problem. Given a
sequence of 2-D video images of multiple moving objects, the problem is to track
the 3-D motion of the objects and reconstruct their 3-D shapes. After selection
of initial feature points (FPs), the SVD may be applied to a measurement matrix
formed by the FPs sequentially tracked by a video system. The distribution of
singular values would first reveal the information about the number of objects
at hand. Then, using an algebraic-based subspace clustering method, the FPs
may be mapped onto their corresponding objects. Thereafter, the motion and
shape may be estimated from a matrix factorization.

Our method hinges upon the numerical effectiveness and stability of the
SVD factorization. In addition, for potential real-time application, we shall
stress the importance of recursively extraction of the principal components by
e.g. adaptive neural architectures. A parallel processing APEX neural model,
for example, may provide a very attractive implementation!!] .

2 SVD Analysis for Moving Objects

With reference to Figure 1, where the coordinate of a video imaging system is
sketched. Here we assume an orthographic projection of a 3-D object point onto
an FP on the image plane. * For convenience of notation, we also assume that
the rotation center coincides with the (local) coordinate system pertaining to an
object A. Let a(p), p = 1,..., P, denote the 3-D position vector of any feature
point on the object.

^Note that the rank theorem, as originally proposed by Tomasi and Kanade relies on the
assumption of orthographic projection^, however, the result was later extended and verified
to be valid also for the para-perspective projection model[2].

0-7803-2026-3/94 $4.00 © 1994 IEEE 413

Given any time (or frame) /, where / = 1,..., F, this 3-D location may be
projected onto the 2-D image plane of the camera. The x-coordinate's value of
this feature point (FP) is

u)
,'(/,p)=ißa(/)a(p)+it„(/) (1)

where the vectors i = [1 0 0] and Ra(f), ta(f) respectively denote rotational
matrix and the translational vector. Likewise, for the y-coordinate in the image
plane,

'(/,p)=JÄ«(/)a(p)+jta(/) (2)

where the vector j = [0 1 0]. Now we construct an expanded matrix (with
Ea = [1 1 1 1 1 ■ • ■ 1 1])

Wl = {W«'(/,p)} = R,
aSa + T'aEa (3)

and the motion matrices

R'a = [iÄ„(l)T|iÄa(2)T|---|i/2a(nT and Ta = [ita(l)
T\ita(2)T\-■-\ita(F)T]

T^

and the shape matrix Sa = [a(l)|a(2)| • • -\a(P)] is formed from all the feature
vectors of object A.

For the y-axis, a similar matrix is formed:

Stacking the x- and y- image measurement matrices, we obtain

W*

where

W„

Ra —

Wi
RaSa + TaEa

(4)

(5)

R*
RJ

a j
and

rpt
■*- n

Ti

The dimensions of the matrices Wa and Ra are 2F x P and 2F x 3, respectively.

Let us further define M = [Ta|R„] and S =

matrix (for a single object) can be expressed as

W = Wa = MS

Ea then the measurement

(6)

The dimensions of the matrices W, M and S are 2Fx P, 2Fx4, and 4xP respec-
tively. Eq. 6 suggests an important rank property stated below[3]:

Theorem 1 (Rank Theorem for Single-Object Case) (a) The matrix W
given in Eq. 6 has a generic rank of 4- (b) Subtracting the average (over all the
FPs) of the measurement matrix W, then the resulting matrix W (given in Eq.
7) will have a generic rank of 3.

414

As to Part (a), the total rank is obviously 4 with Sa contributing rank 3
and Ea rank 1. Part (b) is closely related to an earlier obervation by Ullman[4],
which suggested that three pictures of four points of a rigid body determine its
structure and motion. The rank is reduced because translational component may
be effectively removed by subtracting the average of the measurement matrix:

W = RaSa + TaEa - RaSa - TaEa = Ra [S„ - S„] (7)

where Sa = 0. The elements of Ea are identically 1, therefore, so are E„.

SVD for Multi-Object MSE Problem For the multi-object MSE problem,
a new challenge arises in having to distinguish the FPs of adjacent objects so
that they may be correctly classified into their corresponding objects. Let us for
simplicity concentrate on an example with three objects, A, B, C, whose shapes
are denoted by S0, S», and Sc. Just like the single-object case, the measurement
matrices for A, B, and C, are respectively:

Wa = RaSa + TaEa

Wi = R6S!, + TJE6

Wc = RCSC + TCEC

The row vectors Ea, Ej, Ec have dimensions P, Q, and R, respectively. Con-
catenating these matrices, we have

W = [Wa|W6|Wc] = [Ta|Ra|T6|R6|Tc|Rc]

r Ea 0 0 1
Sa 0 0
0 E6 0
0 s6 0
0 0 Ec

0 0 Sc J

= MS(8)

Main Theorem for Reclustering of Feature Points Two points are note-
worthy: (1) The dimensions of the matrices W, M, and S are 2F x (P + Q +
R) , 2F x 4k, and 4k x (P + Q + R) respectively. Here k denotes the number
of the objects. In this case, k = 3, so that rank of a noise-free measurement ma-
trix W should be exactly 4k = 12. (2) The above representation is deceptively
simplified, because it assumed that the columns from each of the objects are
pre-aligned in correct clusters (as shown in Eq. 8). In reality, this is seldomly
the case. Assuming now that the FPs are not in a correct order, so a very first
task is to recluster the FPs such that FPs corresponding to the same object may
be regrouped. (The more complete collection of the FPs would mean a more
complete 3-D display of the object.) The main theme of this paper is to demon-
strate that, under noisy environment, SVD again offers an effective reclustering
technique. Mathematically, the task is to identify the correct mapping from the
FPs onto the matching objects. Assume that the measurement matrix W turns
into full rank due to noise corruption and its SVD is

415

W = [/EV- UY.V + U'E'V

we first remove the "noise" singular values E'. Approximately

W « (/EK = L/E'^E^V (9)

Let us assume that the SNR is sufficiently large (ideally noise-free) and that
each (rigid-body) object comprises at least 4 or more linear independent FPs
and has a total freedom of 3-D (rotational and translational) motion. Then the
following theorem is valid:

Theorem 2 (Subspace Rank Property) Compute the SVD o/W and ob-
tain U, E, V as given in Eq. 8.

(1) Total Rank: The total number of (numerically) nonzero singular values
in E (i.e. those attributed to the objects) will be 4k, where k is the number of
objects. Here an object is by definition a rigid body.

(2) Inclusive Rank Property: If the column vectors of the matrix V (or,
equivalents, Y,ll2V) is correctly grouped into k clusters, each corresponding to
one object, and the correctly permuted matrix is rewritten as

V = [Va\Vb\Vc] (10)

then each submatrix Va, Vb, and Vc has (generically) rank J,.

(3) Exclusive Rank Property: Due to a mutual orthogonality property, any
mixture of column vectors from different objects would generically cause the
submatrix (comprising of columns from more than one objects) to exceed rank
4- In other words, no column ofVa may fall in the span of the submatrix ofVh,
and vice versa. Generically, any mixture of (5 or more) columns from Va and

Vb woxdd cause the rank to exceed 4- Careful observation of this property could
prevent, over-subscribing alien or unwanted columns into an object.

(4) Uniqueness Property: The inclusive and exclusive rank properties to-
gether guarantee the uniqueness of the solution.

m

Proof: The proof is largely by inspecting Eq. 8. In particular, we note that

E1/2^ = QS for some nonsingular matrix Q. Therefore, Va = Q [Ej|Sj|0|0|0|0]T.
Since Q is nonsingular, thus Va must have rank 4. Eq. 8 also indicates the mu-
tual rank independency between Va and Vb, thus verify part (3). Part (4) follows
naturally Parts (2) and (3).

Extraction of Motion-Shape Factorization Once an object (say Va) is
properly aggregated, then the next step is reconstruct its 3-D motion/shape.
This is done by applying the QR transfformation (X) on the matrix Va[I -
pETEa]- According to Theorem, 1, there will be three nonzero rows (the first
three) which define the matrix S'a as shown below:

XVa

1 T
pEjEfl

416

S'

Apply an inverse transformation X a to C/S1/2, resulting in

UY>'2X-1 = \R'a\Y]

By duality, the matrix R'a should also be formed from the first three columns.
Thus a rotation-shape factorizaton can be obtained as R^S^, which may be
further transformed to an exact factorization: RaSa[3].

3 Subspace Clustering Problem

The rank theorem prescribes the common bound shared by FPs from the same
(rigid) object. This motivates a general algebraic framework formulated in a so-
called a subspace clustering problem. This formulation has potential applications
including, but not limited to, the MSE problem.

Definition 1 (Subspace Clustering Problem) Given a set of feature vec-
tors V — { Vi }, the problem is to find all the (rank-r) objects in V by identifying
their corresponding subsets of feature vectors. Here, a rank-r object is defined
as a subset of V which forms a rank-r subspace.

For example, r = 4 in the multi-object MSE application. If there are three
moving objects, then the number of objects is k — 3.

Algorithm 1 (Subspace Clustering Method) For the noise-free case, the
following steps may be adopted:

1. Determine a pool of basis vectors S as a maximally linearly independent
subset ofV. Generically, S should contain exactly k x r basis vectors.

2. A subset of r basis vectors in S will be incorporated into a partnership
if there exists at least one vector in V, but not in S, which falls on the
span of the subset. The justification of forming such a partnership is that,
due to the exclusive rank property, ifr+1 vectors fall in a span of rank-r
subspace, then they could not possibly be from a mixture of two objects, i.e
they belong to the same object. (For notational convenience, the r basis
vectors shall be called major members in the partnership.)

3. Attract other minor members to join the partnership. By the inclusive
rank property, a vector is elected to membership if and only if it falls on
the span of the r basis vectors (i.e. major members).

4. Continue the process until all the membership for the k objects (i.e. part-
nerships) are identified.

Example 1 (Noise-Free Case) Here for simplicity the object rank is set to
be r = 2. Given a set of vectors Ai, Bi, B2, Ci,^, ^3, C2, #3,^4, #4, C3, • • •
= {vi,i — 1,2, ■■■}, from objects A, B, C, then the clustering process can be
illustrated by the following:

417

Vector Dependence Basis Pool Partnership

1 No 1,
2 No 1,2,
3 No 1,2,3,
4 No 1,2,3,4,
5 No 1,2,3,4,5
6 Yes (The 6-th vector is excluded from the pool.)
7 No 1,5 ,2,3,4,7

This completes basis pool and the membership drive begins here:
6 YesCon 1,5) (1,5),2,3,4,7 (1,5 | 6): partnership induced by 6
8 YesCon 2,3) (1,5),(2,3),4,7 (2,3 | 8): partnership induced by 8
9 Yes(on 1,5) (1,5),(2,3),4,7 (1,5 I 6,9)
10 Yes(on 2,3) (1,5),(2,3),4,7 (2,3 | 8,10)
11 Yes(on 4,7) (1,5),(2,3),(4,7) (4,7 111) : partnership induced by 11

The final clustering result is that the vectors (1,5, 6,9,...) form one object (say,
A), (2,3, 8,10, ...) form another object (B), and (4,7, 11, ...) yet the third (C).

Numerical Consideration to Account Noise Effect

1. To improve numerical behavior, the basis vectors should be numerically as
nonsingular as possible. Here the "numerical nonsingularity" is measured
by the smallest singular value associated with the basis vectors. This
would result in a more stable linear dependency check.

2. It is not necessary to identify all the objects in on shot, it may be done
sequentially. This is important, since the smallest singular value associated
with the basis vectors usually decrease (rapidly) with increasing number
of basis vectors. So when the number of objects is too large, it may be
difficult to form a complete set of basis vectors with a decent smallest
singular value. It is then advisable to use only a partial basis set which
offers a better and more comfortable "numerical nonsingularity". As long
as the partial basis set contains the r basis vectors needed for at least
one object, then all the (minor) members ofthat object may be identified
afterward. The members of the first object may be removed from the set
V, before the search process for the second object is started.

3. A confidence measure on linear dependency may be estimated and used.
This concept is elaborated further in this subsection. Under noisy situa-
tion, a total least square solution, based on SVD, can be used to determine
a confidence level of numerical linear dependency. The membership check
should take into account the confidence.

418

A Confidence Measure Under the practical and noisy situation, it is more
meaningful to ask "is there an approximate linear dependency, and if so, how
close?" The answer to this question is no longer straightforward. The complexity
hinges upon the criterion adopted. One popular approach is to have A perturbed
by a perturbation matrix A, such that linear dependency comes to existence.

Suppose that the SVD of A = UVVT = £™V W? ■ Then' ^ setting A =

-um+1am+iv%+l it would make

m

[A + A] =]Tu;<r^f (H)
;=i

to have rank deficiency. It further implies that [A + A] is the closest approxi-
mation of A with rank at most m. By Eq. 11, we note that [A + A]wm+i - 0,
so the "best" normalized null-space solution is simply x = vm+1. In summary,

1. The last singular vector of A,vm+U provides a critical information on the
most likely dependency existing in A.

2 The last singular value <rm+i gives a quantitative measure on the confi-
dence of such a linear dependency. (The smaller am+1 is the higher the
confidence, since it is closer to linear dependency.)

4 Simulation Results
Example 2 (Four Moving Objects) The objects considered in the simula-
tion consist of two cylinders, one block and one pyramid. There are 20 feature
points on the cylinders and the block and 10 points on the pyramid. The order
of the feature points is randomly permuted. In the duration of 50 frames, all
objects are rotating independently. One frame of the orthographic projection of
the four objects is shown in Figure 2, which in the appearance is not easily sepa-
rable at least not by conventional clustering algorithms, is depicted tn Figure 3
(b) which indicates a substantial drop on the 17th singular value. Therefore, the
rank is 16 and the number of objects is 4, just as predicted. After applying sub-
space clustering method, we can obtain four different groups of column vectors
[VaVbVeVa] for the feature points. Then the translation-rotation decomposition
iS

aused to obtain the shape information. The result is shown m Figure 4.

Example 3 (Two Moving Objects with Noisy Measurements) Experiments
on two moving objects with noisy measurement have been conducted. Prelimi-
nary study shows that the subspace clustering depends very much on the numer-
ical behaviour. Under noisy situation, a total least square solution is found
to be effective in determining a good threshold for checking (numerical) linear
dependency This however incurs the use of the computationally more demand-
ing SVD technique for the dependency check. Nevertheless, preliminary study
shows that the total-least-square based subspace clustering method can cope with
1-5% noise tolerance on the FP measurements.

419

5 Multi-Camera Multi-Object Analysis

In many application domain, images via multiple cameras can offer vital infor-
mation. A prominent example is that of shape reconstruction of an occluded
object. Suppose that during the period of video recording, an object is only
partially seen by the first camera, but its incomplete viewing angle can be
compensated by a second camera. Under this scenario, it is essential that the
information from the two cameras be "fused" for the reconstruction of a com-
plete 3-D shape. On the other hand, one must also prevent FPs from different
objects being mixed.

To this end, the subspace clustering method offers a simple solution
Without loss of generality, let us assume that the first camera is (like before)

located at the origin [0,0,0] with the direction of the imaging plane defined
by its normal vector [0,0,1]. A second camera, located at a new location at
m _ [rm,m^mk], has its own image plane defined by a new normal vector
[ku k2,k3]. Since m is known before hand and remains constant, so its shift effect
can be removed by first pre-shifting the FPs recorded on the second camera
Therefore, without loss of generality, we shall simply pre-align the FPs of the
second camera so that in the following derivation it may be considered in effect
m = 0.

There exists a common viewing angles from the two cameras, since two image
planes (assuming non-parallel) must intersect on one line, denoted by 1, which
is orthogonal to both the normal vectors.

1T[0, 0, 1] = 0 and \T[kuk2,k3] = 0

This yields a solution

Just like Eqns. 1 and 2, along the line 1, the FP is recorded as

«''(/.P) = lÄ«(/)a(p) + ka(/) (12)

Based on this we construct the measurement matrix for the first camera

Wi = {w'(f,p)} = R'aSa + T'aEa (13)

Similarly for the second camera, we have another matrix

W'a = Rj,S0 + TlEa (14)

Assuming two objects (A and B), then the toal measurement matrix becomes

[Wi|wl|Wi|wI] = [T'jRMlRi]
Ea|Ea 0 I
s is 0

0 E6|E6

L o s6[s6 J

(15)

By inspection, it should be clear that all the multiple-object rank properties in
Theorem 2 and the same Subspace Clustering Method remain applicable.

420

Conclusion Even though the derivation in this paper is based on the ortho-
graphic projection, it can be shown that the SVD analysis for multiple moving
objects is also applicable for the case of para-perspective projection[2]. As a
matter of fact, for a single object A, Eq. 1 becomes

flS(/,P)*'a(/,P)>
^=wf)[{iRa{f'p) - w.T*+w'p)] (16)

for the para-perspective projection. Here / is the focal length of the camera.
From Eq. 16 all major rank theorems described above are valid except that

iRa(f,p) is replaced by iRa{f,p) - *"(fg]$J,p)' M°st imPortantly> E(l- 8

remains the same for multiple objects, which means the main theorem for fea-
ture points clustering is valid. In the experiments conducted by Poelman and
Kanade[2] for a single moving object, the para-perspective method in general
performs significantly better than the orthographic factorization method. Based
on the simulational study at hand, we are convinced that the SVD factorization
method will lead to a robust solution to multi-object motion-shape analysis. We
plan to test the proposed multi-object factorization method with sequences of
laboratory-calibrated and real outdoor digital video images. The experimental

results will be reported in a future publication.

References
[1] S. Y. Kung and K. I. Diamantaras. A neural network learning algorithm for

adaptive principal component extraction (APEX). In Proceedings, ICAASP, pages

861-864, April 1990.

[2] C. J. Poelman and T. Kanade. A paraperspective factorization method for shape
and motion recovery. Technical Report CMU-CS-92-208, CMU, 1992.

[3] C. Tomasi and T. Kanade. Shape and motion from image streams under orthogra-
phy: a factorization method. Internation Journal of Computer Vision, 9(2):330-

334, 1992.

[4] S. Ullman. The Interpretation of Visual Motion. MIT Press, 1979.

Target A

Figure 1: Coordinate system of moving objects w.r.t.

Shown here is one of P feature points of Object A.
421

camera image plane.

\ x

DC »

«MM

Figure 2: This figure shows the feature points on four targets used in the sim-
ulation. Points on different targets are denoted as different symbols.

Figure 3: The log-scale of the singular values in the simulati on.

Figure 4: This figure shows the shapes of the four targets in the simulation.
422

NEURAL NETWORKS FOR ROBUST
IMAGE FEATURE CLASSIFICATION:

A COMPARATIVE STUDY

Sharma V R Madiraju and Chih-Chiang Liu

Department of Computer Science

The University of Melbourne

Parkville, VIC 3052, Australia

madiraju, zliu @cs.mu.oz.au

Phone: 61-3-287-9124

Fax : 61-3-348-1184

Abstract In this paper, we propose a simple and powerful feature
extractor using neural networks. This feature extractor is trained to
detect features such as lines, corners, junctions in images. Different
feature models are generated based on discontinuity in intensity val-
ues and the orientation of the boundary in the pixel neighborhood.
Locating feature points in the image is carried out in two steps by
considering annxn window as a processing unit. At the first step,
a covariance technique is used to calculate rotation-invariant descrip-
tors, which represent discontinuities for edge types. At the second
step, a multilayer feedforward neural network, trained with the in-
variant feature descriptors, is used to classify the centre pixel into
one of the possible features. Experimental results using the proposed
method are compared with Marr-Hildreth edge operator results to
show the effectiveness of the proposed method.

INTRODUCTION

Feature extraction is a process to obtain relevant features from
an image depending on a given task. Generally feature extraction
[1, 5, 8, 9] can be divided into three categories in image processing
applications namely, region based, where areas of images with ho-
mogeneous properties are found in terms of boundaries; edge based,
where the local discontinuities are detected first and then connected
to form longer lines; and pixel based, which classifies pixels based on
gray levels.

0-7803-2026-3/94 $4.00 © 1994 IEEE 423

Recently, artificial neural networks (ANN), have found successful
applications in such diverse areas as medicine, biology, control sys-
tems, manufacturing, etc. ANNs also have been applied to image
segmentation. ANNs have the advantage over parametric statistical
classification techniques, in that they do not require priori knowledge
about the data distribution. Moreover, they are generally character-
ized by intrinsic parallelism and fault tolerant characteristics. In [3]
a neural network system for edge detection is proposed. In this pa-
per, simulated annealing, and mean field annealing are implemented
and tested on synthetic images. Recently, a method for image seg-
mentation has been developed using neural networks [10]. The image
segmentation is cast as a constraint satisfaction problem.

We previously proposed that [7], instead of training a neural net-
work with patterns in all possible orientations, it is more attractive
and efficient to extract rotation-invariant features from a given set of
feature models. This allows us to train a neural network with a small
set of patterns.

In this paper, a method for extracting such features as edges, cor-
ners, lines, roofs, and ramps, using neural networks is developed. The
pixel classification is performed in two stages: In the first stage, mod-
els are generated using the covariance techniques for different features.
These feature models represent discontinuities in the neighborhood of
the pixel. In the second stage, a feedforward neural network is trained
by the set of feature models obtained from the previous stage. The
neural network subsequently assigns a feature index to each pixel.

We have carried out extensive experiments on both synthetic and
natural images and obtained dramatically better feature representa-
tions as compared to more traditional methods. The simulation re-
sults on natural scenes are also compared with the results of Marr-
Hildreth edge operator. These show considerable visually correct and
accurate edges as opposed to those obtained by the popular Marr-
Hildreth edge detector. In the following we describe our method and
present some experiment results.

PREPROCESSING

Prior to feature extraction, the image undergoes an initial non-
linear smoothing which preserves abrupt changes in the pixel neigh-
borhood. This prevents erroneous and spurious features from being
extracted by the neural network for the given model. We apply an
averaging technique developed previously [8, 6] to the image, which,
in effect, is a low pass filtering process. However, in this process, The
center pixel p0 of an n x n window is replaced by the average of that
window. If the difference between the values of p0 and its immediate

424

X X X x XX

XXX XX X X

XXX X X

(a) (b) (c)

(d) (e)

XXX X X XXX

XXX X X

XXX X X

(f)

Figure 1: Feature models representing lines (a), diagonal lines (b),
roofs (c), flat (d), junctions (e), and corners (/) in the windows.
Each feature model represent four possible models in different orien-
tations.

neighbor is greater than a certain value T, then that neighbor is not
included in the computation of the average.

FEATURE MODELS

Feature extraction methods are typically based on local properties
such as edges, lines, curves, etc. However, it is difficult to explicitly
define what constitute different features in an image. The percep-
tion of features by the human visual system is an extremely complex
process, that is strongly influenced by prior knowledge [4]. For our
purposes, we will define feature models in a general sense to include
a wide variety of edge types.

In our experiment each feature model represents a 3 x 3 window,
i.e, n = 3 where the centre pixel is of interest. Different models are
generated as shown in Figure 1. These models represent features,
horizontal lines (a), vertical lines, diagonal lines (b), roofs (c), flat
(d), junctions (e), and corners (/) in the windows.

FEATURE EXTRACTION

To extract invariant feature descriptors, we have used the eigenspace
[7] of the covariance matrix.

425

Covariance Technique Let W = [wf ,v%, ...,wj,] be a 3 x N
matrix, and N = n2 where n x n is the size of pixel neighborhood.
xSi - [xi,yitZi], whose xt, yt are the locations of the ith pixel in
horizontal, vertical directions and z{ is the intensity value of ith pixel.

The covariance matrix is given by

C - — Yl(™' ~ ™m)(™>' ~ ^"^T

: = 1

and
1 N

i = l

The Covariance matrix is symmetric, C G 5ft3*3, and has a set of
three orthonormal vectors whose corresponding eigenvalues charac-
terize the variances of the data set in the directions specified by their
eigenvectors.

It is observed that the eigenvector corresponding to the dominant
eigenvalue is set in the direction of maximum variance in the data:
typically in the direction of the variance of intensity and the eigenvec-
tor corresponding to the smallest eigenvalue lies in the direction of the
orientation of the window. It should also be noted that second-order
covariances and associated eigenvalues can also be determined from
these first-order eigenvalues or eigenvectors over neighborhoods of a
given pixel (see Berkmann and Caelli [2]). However, in this applica-
tion we have restricted our attention to only the first-order covari-
ances. The third eigenvalue simply indexes the sampling density and
we have excluded it from further analysis - though, in some cases, it
would set as a silent feature. Figure 2 shows the discriminating ability
of the eigenvalues for different features lines, diagonal lines, corners,
roofs in the image in one of our experiments.

CLASSIFICATION

The previous stage finds an approximate solution to the classifi-
cation problem by constraining the shape of the classification regions.
From the nature of the eigenvalues found in the previous stage, the
clustering properties are more clear between logarthmic values of dom-
inant eigenvalue and absolute values of the remaining eigenvalues.

The feedforward neural network is one of the most popular ANN
because of its structural simplicity and the ease in which it can be
utilized in various applications. A multilayer feedforward neural net-
work was trained by backpropagation algorithm to assign one of the
possible feature classes (lines, ramps, corners, etc.) to each pixel.

426

X

1 ■1 ■'■■
..,.,_

X +

O
X
X
X

A B

A

A Q

I
♦

+ +

"

Flat o
+

Q
Ramp +

Corner Q

o

Y

Line x-
Diagonal *
junction *

Point o
Roof +

o °. 0 ' • •
0.4 0.6

eigenvalue2

Figure 2: Features in eigenvalue space

EXPERIMENTAL RESULTS

We have conducted extensive experiments to verify the perfor-
mance of the proposed method. All the images used in the experi-
ments were 256 x 256 in size and the pixel intensity range was from 0
to 255.

In our experiments we used a 3 x 3 window as a model. We
generated feature models representing lines, corners, points, roofs as
defined in section 3. Ten models for each feature class were selected.
A training set of 80 models was used.

To generate the training set for the neural network, rotation in-
variant eigenvalue descriptors were calculated using the covariance
technique. The architecture of the neural network adopted is 3-3-3-1
net, with 3 neurons in the input layer, 3 neurons each in two hidden
layers, and one neuron in the output layer. The neural network is
trained using the delta rule. The training parameters a and r) were
0.1 and 0.9 respectively. The convergence was achieved after 2000
iterations.

In Figures 3 and 4 we show some of our experimental results. Fig-
ure 3(a) shows an original synthetic image. Figure 3(b) is the image
after feature extraction using the proposed algorithm. Figure 4(a) is
a natural scene image. Figure 4(b) is the feature image, and show
that the feature detector was able to pickup different types of edges,
corners, junctions in the image while preserving the characteristics
like thinness, and continuity.

427

We have implemented Marr-Hildreth edge operator based on the
zero crossings of Laplacian. In effect, this is a non-directional second
derivative zero crossing operator. The mask is generated using the
formula [5]

where r2 = x2 + y2 and x and y are the position of the row and column
of the mask. We have selected 2a = w = 5 where w is the size of the
mask. Figures 3(c) and 4(c) are the edge detected images by applying
the above mentioned operator on the images shown in Figures 3(a)
and 4(a) respectively.

CONCLUSION

In this paper, we proposed a method to perform feature extrac-
tion using a 3 layer neural network. The sensitivity of the feature
extraction is adjustable and the training set of the neural network
can be changed to increase the reliability of the results. By using
the covariance technique, a small set of training patterns can cover a
large number of models because of their rotation-invariant property.
Furthermore, the neural network can be trained very fast. Finally,
the covariance technique constrains the shape of the classification re-
gions, which improves the classification accuracy. We have also com-
pared the results using this method with the results obtained by zero-
crossings of the Laplacian of Gaussian filter. The proposed approach
is also being used in other pattern recognition problems.

References

[1] A.Rosenfeld and A.C.Kak. Digital Picture Processing. Acadamic
Press, New York, 1982.

[2] Jens Berkmann and Terry Caelli. Computation of surface ge-
ometry and segmentation using covariance techniques. Technical
report, Collaborative Information Technology Research Institute,
Melbourne, Australia, 1992.

[3] C.Cortes and J.A.Hertz. A network system for image segmen-
tation. Proc. Int. Joint.Conf. on Neural Networks, 1:121 - 125,
1989.

[4] D.Marr. Vision. W H Freeman, New York, 1982.

[5] D.Marr and E.Hildreth. Theory of edge detection. Proc. Royal
Society of London, 207:187-217, 1980.

428

(a) (b) (c)

Figure 3: (a) Synthetic image, (b) Feature detected image using
neural network, (c) Edge detected image using Marr-Hildreth edge
operator.

(a) (b) (c)

Figure 4: (a) Original image, (b) Feature detected image using neural
network, (c) Edge detected image using Marr-Hildreth edge operator.

429

[6] J.M.Prager. Extracting and labelling boundary segments in natu-
ral scenes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-2(l):16-27, 1 1980.

[7] Sharma Madiraju, Terry Caelli, and Z.Q.Liu. On the covariance
technique for robust and rotation invariant texture processing.
Asian Conference on Computer Vision -93, pages 171 - 174, Nov
1993.

[8] R.C.Gonzalez and Paul Wintz. Digital Image Processing. Addi-
son -Wesley, Massachusetts, 1987.

[9] V.Torre and T.A. Poggio. On edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(2):147 -
163, 3 1986.

[10] Wei-Chung, Lin Eric Chen-Kuo Tso, and Chin-Tu Chen.
Constraint satisfaction neural networks for image segmenta-
tion. IEEE Transactions on Systems, Man, and Cybernetics,
12(7):679-693, 1992.

430

MEDICAL IMAGING WITH NEURAL NETWORKS

C.S. Pattichis1 and A.G. Constantinides2

department of Computer Science, University of Cyprus,
Kallipoleos 75, P.O. Box 537, Nicosia, Cyprus

Tel:357 2 360589, Fax: 357 2 360881, email: pattichi@jupiter.cca.ucy.cy

department of Electrical Engineering, Imperial College of Science,
Technology and Medicine, London SW7 2BT, England

Tel:071 225 8506, Fax:071 581 3441, email: tony@sig.ee.ic.ac.uk

Abstract - The objective of this paper is to provide an overview of the recent developments
in the use of artificial neural networks in medical imaging. The areas of medical imaging
that are covered include: ultrasound, magnetic resonance, nuclear medicine and radiological
(including computerized tomography).

INTRODUCTION

In everyday medical practice, the physician has to evaluate a number of complementary
diagnostic imaging modalities such as ultrasound, magnetic resonance, nuclear medicine, and
radiological. These images are usually evaluated qualitatively by visual examination.
However, the need for quantitative analysis is becoming of increasing importance in the
clinical environment. This allows measurements to be standardised, to be more accurate and
save diagnostic time. The advantages of quantitative analysis in medical imaging can be
summarised as follows: i) Standardisation. Diagnoses obtained from different laboratories
using similar criteria can be verified, ii) Sensitivity. Findings on a particular subject may
be compared with a database of normal values and/or a decision can be made by an
automated imaging diagnostic system deciding whether or not an abnormality exists, iii)
Specificity. Findings may be compared with databases for various diseases and/or a
decision can be made by an automated imaging diagnostic system with respect to the type
of abnormality, iv) Equivalence. Results from a series of examinations of the same patient
may be compared in order to decide whether there is evidence of disease progression or of
response to treatment. In addition, the findings of different automated imaging diagnostic
methods can be compared to determine which are more sensitive and specific, v) Efßcacy.
The results of different treatments can be more properly evaluated.

Different approaches have been used to address the problem of quantitative analysis in
medical imaging. Classical methods range from simple thresholding to more advanced
multidimensional data classification techniques. The use of artificial neural networks (ANN)
in image analysis has recently been proposed. The advantages of artificial neural networks
that make them so attractive to investigate as an alternative are the following: i) exhibit
adaptation or learning, ii) pursue multiple hypothesis in parallel, iii) may be fault tolerant,
iv) may process degraded or incomplete data, v) make no assumptions about underlying data
probability density functions and iv) seek answers by carrying out transformations.

This work was carried out through a European Community International Scientific
Cooperation Initiative, Marie Curie Fellowship No. 930180, awarded to Dr. C.S. Pattichis.

0-7803-2026-3/94 $4.00 © 1994 IEEE 431

This paper provides a survey of the different applications of neural network technology in
medical imaging and in particular in the fields of ultrasound, magnetic resonance, nuclear
medicine, and radiology. The scope of the paper is quite wide and although our literature
review is thorough it is by no means totally complete. Publications reviewing the use of
ANN in medical diagnostic systems [ANM1]-[ANM4], as well as in medical signal and image
processing [ANM5], [ANM6] may provide additional information.

For each imaging field discussed, a table summarizes the profile of the different ANN
studies. The following table entries are given: name of first investigator, [reference],
problem under consideration, organ or part of the body investigated, imaging modality,
imaging operation, and neural network learning method. For each imaging modality selected
papers are discussed more extensively.

LIST OF ACRONYMS

ALOPEX optimization procedure to
train ANN

HOP Hopfield network

ANN artificial neural network LOGN logical neurons

ART adaptive resonance theory MLC maximum likelihood
classsifier

AUASS autoassociativc learning
paradigm

MRI magnetic resonance
imaging

BP back propagation PET positron emission
tomography

CLASS classification PCA principal component
analysis

COMP compression PNN probabilistic neural
network

CT computerized tomography RECO reconstraction

ENHA enhancement ROI region of interest

FEAE feature extraction SEGM segmentation

FFCC fast forward cascade
correlation algorithm

SPECT single photon emission
computer tomography

FMMANN fuzzy Min-Max ANN TEXCL texture classification

ULTRASOUND

Neural network models for ultrasound imaging have been developed for cardiology [ULT1]-
[ULT5], liver tissue identification [ULT6]-[ULT8], and ophthalmology [ULT9]. Table 1 lists
several representative examples of ultrasound imaging with NN, and we briefly present one
of these below.

Detection of Myocardial Infarction [ULT1]
Echocardiographic images from 11 normal, 7 hypertrophic cardiomyopathy, and 11
myocardial infarction subjects were digitised into a 256x256 pixel matrix with 256 gray levels
[ULT1]. The regions of interest (ROI) were predetermined by a cardiologist, avoiding the
endocardium echo, epicardium, and valves and consisted of a 10x10 pixel matrix. These gray

432

levels were subsequently normalised between 0 and 1. The back propagation (BP) NN
algorithm [ANN9] was used with two types of images at the input i) 10x10 pixel matrix and
ii) 5x5 pixel matrix with an overlap factor of 4x4. Results of this study demonstrated that
the former network was more sensitive in classifying the data than the latter one. The paper
concludes that the BP ANN is capable of recognizing the slight differences between normal
and abnormal diseases of myocardial tissue. However, no quantitative measure was given
to support this.

TABLE 1 SUMMARY OF ULTRASOUND IMAGING ANN STUDIES

Investigator rRef.l Problem Organ Operation ANN Method

Cios [ULT1] Myocardial
infarction

heart TEXCL BP

Tzanakou [ULT2] Myocardial
infarction

heart TEXCL BP-ALOPEX

Yi [ULT3] Myocardial
infarction

heart TEXCL BP-ALOPEX

Brotherton [ULT4] Structure and
tissue

heart TEXCL FMMANN

Karkhanis [ULT5] Ejection
fraction

heart FEAE BP

Kim [ULT6] Liver
diagnosis

liver TEXCL BP

Daponte [ULT7] Liver
diagnosis

liver TEXCL BP

Botros [ULT8] Liver
diagnosis

liver
phantom

CLASS BP

Silverman [ULT9] Tumour
detection

eye CLASS BP

Nikoonahad [ULT10] Wave velocity
correction

ENHA BP

MAGNETIC RESONANCE

Examples of the application of neural network technology in magnetic resonance imaging
(MRI) are given in Table 2. Most of these applications have been developed for
segmentation of MRI images [MRI1]-[MRI9]. Some of these studies were demonstrated to
perform as well as or better than classical statistical analysis using for example the maximum
likelihood classifier (MLC). The usefulness of ANN models in blood vessel identification,
and invariant aorta segmentation was also investigated by [MRI15] and [MRI16] that gave
promising results.

Segmentation of brain images [MRI1]
Segmentation of medical images obtained from magnetic resonance imaging is a very
important operation in the visualization of soft tissues in the human body. MRI is inherently
multidimensional as it provides information about three tissue dependent parameters: spin-
lattice relaxation time, Tl, the spin-spin relaxation time, T2, and the proton density, PD.
Neural network models supplied with Tl, T2, and PD, weighted intensity values, and in
addition the X-ray CT intensity value of images of the human brain were trained with the

433

back propagation algorithm to classify the following six tissue types: background,
cerebrospinal fluid, white matter, gray matter, skull and fat, and bone and bone marrow
[MRU]. Results reported in this work support the use of neural networks as a promising
method for the classification of multi-modality medical images. One of the major advantage
of ANN over classical statistical pattern recognition techniques, like the MLC is their relative
insensitivity to the selection of the training sets. In the case of single slice MRI
classification, it has been demonstrated that neural networks are able to segment the images,
although training points did not appropriately sample the image spatially, a task the
maximum likelihood classifier was not able to perform well. Also, in the case of multiple
slice classification, the characteristics of the class boundaries obtained by the neural network
models have permitted the successful development of an adaptive 3-D classification scheme
[MRU].

TARIF. 2 SUMMARY OF MAGNETIC RESONANCE IMAGING ANN STUDIES

Investigator rRef.l Problem Organ Operation ANN Method

Ozkan [MRU] brain SEGM BP

Amartur [MRI2] brain SEGM HOPF

Hall [MRI3] brain SEGM FFCC

Cagnoni [MRI4] brain SEGM BP

Piraino [MRI5] brain SEGM BP

Dawant [MRI6] brain SEGM BP

Schcllenberg [MRI7] brain SEGM BP

Toulson [MRI8] brain SEGM BP

Morrison [MRI9] brain SEGM PNN

Raff [MRI10] Lesion detection
in Multiple
Sclerosis

brain FEAE AUASS

Lehar [MRI11] Boundary
contour
identification

brain FEAE/
ENHA

ART

Manduca [MRI12] Diagnosis of
Avascular
Necrosis

brain CLASS BP

Yan [MRI13] Artifact rejection brain RECO BP

Ohhashi [MRI14] Gray level
adjustment

brain ENHA BP

Gronovist [MRI15] Vessel
identification

brood
vessel

FEAE BP

Katz [MRI16] Translation
invariant
segmentation

aorta SEGM BP

NUCLEAR MEDICINE

Nuclear medicine imaging analysis using neural networks includes positron emission

434

tomography (PET), and single photon emission computer tomography (SPECT). These
studies are summarized in Table 3.

Diagnosis of Alzheimer's Disease through ANN analysis of PET images [NM1] [NM2]
The back propagation neural network algorithm was applied for the analysis of cerebral
function as demonstrated in positron emission tomography (PET). Data was obtained from
PET scans of 22 patients with Alzheimer's Disease (AD), and 30 aged-matched normal
subjects. Data describing each subject consisted of eight values, representing cerebral
glucose metabolism in the eight lobes of the brain (left and right): frontal, parietal, temporal,
and occipital. The network was trained with data from 26 subjects (15 normal, 11 AD),
representing one half of the above subject group. Subsequently, the network's performance
was tested on the remaining half. The trained network's classification agreed with the
clinical diagnosis in 24 of the 26 cases, giving a 92% correct classifications score. Neural
networks performed better than standard statistical methods like discriminant analysis.

TABLE 3 SUMMARY OF NUCLEAR MEDICINE IMAGING ANN STUDIES

Investi-
gator

[Ref.] Problem Organ Moda-
lity

Opera-
tion

ANN
Method

Kippenhan [NM1] Alzheimer's
disease

brain PET CLASS BP

Kippenhan [NM2] Alzheimer's
disease

brain PET CLASS BP

Miller [NM3] Parameter
identification

brain PET FEAE BP

Tourassi [NM4] Lesion
detection

brain SPECT CLASS BP

Mason [NM5] brain SPECT CLASS BP/LOGN

Floyd [NM6] SPECT RECO BP

Anthony [NM7] Thallium 201
scintigrams

lung SPECT CLASS BP

Anthony [NM8] Thallium 201
scintigrams

lung SPECT CLASS BP

RADIOLOGY

Neural networks in radiology have been applied in cineangiography, digital subtraction
angiography, mammography and X-ray CT as shown in Table 4.

Coronary artery angiography [XR1]
The classification of digital angiograms using NN was investigated by NeKorei and Sun
[XR1]. The network consists of an 11x11 pixel input mask, 17 hidden nodes, and two output
nodes. The mask is applied to the whole 256x256x8 bit angiograms, with the network output
classifying the center pixel of the input mask as either vessel or background. Results of this
study suggested that a suitable network can achieve an acceptable vessel detection rate. Two
types of coronary angiograms were investigated i) cineangiogram, and ii) digital subtraction
angiogram. For the cineangiography vessel detection rate was 96, and 93% for the training
and test sets respectively, and for the digital subtraction angiography vessel detection rate
was 96, and 82% for the training and test sets respectively. The performance of the NN

435

approach was compared with traditional pattern recognition techniques, the maximum
likelihood classifier. MLC vessel detection rate for cineanography was 38% and for the
digital subtraction angiography 78%.

TABLE 4 SUMMARY OF X-RAY IMAGING ANN STUDIES

Investi-
gator

[Ref.] Problem Organ Modality Opera-
tion

ANN
Method

Nekevci [XR1] Identification coronary
artery

Angio-
graphy

SEGM BP

Nekevci [XR2] Identification coronary
artery

Cineangio-
graphy

SEGM BP

Dhawan [XR3] Microcalsi-
fication
classification

breast Mammo-
graphy

CLASS BP

Chitre [XR4] Microcalsi-
fication
classification

breast Mammo-
graphy

CLASS BP

Stathaki [XR5] Microcalsi-
fication
classification

breast Mammo-
graphy

SEGM BP

Pinho [XR6] Edge
detection

brain X-ray CT FEAE BP

Gan [XR71 X-ray CT ENHA HOPF

CONCLUDING REMARKS

A review of the various applications of neural network's technology in medical imaging was
given. The concluding remarks that were drawn based on these studies are summarised as
follows:

Almost all of the studies used the supervised learning training BP algorithm to train
multi-layer perception feed-forward nets. In a very few studies the supervised learning
Hopfield net was also used.

Studies that compared neural network results with classical statistical analysis like the
maximum likelihood classifier, and discriminant analysis reported similar or better
performance [ULT7] [ULT9] [MRU] [NM1] [NM2] [XR1] [XR4].

In some of the papers reviewed, the amount of data available for training and testing the
neural network models were limited, thus affecting the results obtained. It should be
emphasized that training data must form a representative sample set of all possible
inputs if the network is to perform correctly.

Data preprocessing significantly affects the NN performance not only regarding
classification score, but also the size of architecture, and training time (coupled with the
number of epochs to achieve learning).

The BP neural network learning algorithm has a number of limitations; heavy
computational and memory requirements, as well as the non existence of design

436

methodologies for determining the values of the learning coefficient, X, and the
momentum coefficient, |i, number of hidden layers, and architecture size.

• New learning algorithms are currently investigated to address the above problem. It has
recently been demonstrated by Charalambous [ANN3] that the conjugate gradient back
propagation algorithm (CGBP) eliminates the selection of A. and \l. This algorithm
is the same as the BP algorithm, but with adjustable values of Xk and pk at each
iteration. In addition the CGBP algorithm does not exhibit any oscillatory behaviour
during learning, like the BP algorithm.

■ Further to the search of new learning algorithms, it is anticipated that the development
of neural network hardware will allow a cost-performance-effective implementation of
neural networks in image processing.

We hope that neural network technology will help the physician in reaching a more accurate
diagnosis.

REFERENCES

Artificial Neural Networks
[ANN1] JA. Anderson and E. Rosenfeld (Eds), "Neurocomputing Foundation of Research,"
The MIT Press, 1988.
[ANN2] G A. Carpenter and S. Grossberg, "Neural Dynamics of Category Learning and
Recognition: Attention, Memory Consolidation, and Amnesia," in J. Davis, R. Newburgh and
E. Wegman (Eds.) Brain Structure, Learning, and Memory, AAAS Symposium Series, 1986.
[ANN3] C. Charalambous, "Conjugate Gradient Algorithm for Efficient Training of
Artificial Neural Networks," IEE Proc, Vol. 139, No. 3, June 1992.
[ANN4] R. Hecht-Nielsen, "Counter-Propagation Networks," Proc. 1st Int. Conf. on Neural
Networks, June, San Diego, California, USA, Part 2, pp. 19-32, 1987.
[ANN5] G.E. Hinton, "Connectionist Learning Procedures," Artif. Intell., Vol. 40, pp. 185-
234, 1989.
[ANN6] J.J. Hopfield and D.W. Tank," Computing with neural circuits: a model," Science,
Vol. 223, pp. 625-633, 1986.
[ANN7] B. Kosko, "Neural Networks for Signal Processing," Prentice-Hall Inc. 1992.
[ANN8] R.P. Lippman, "An Introduction to Computing with Neural Nets", IEEE ASSP
Magazine, pp. 4-22, April 1987.
[ANN9] D.E. Rumelhart, G.E. Hinton, and J.L. McClelland, "A General Framework for
Parallel Distributed Processing," In Parallel distributed processing: explorations in the
microstructure of cognition Volume 1 Foundations. D.E. Rumelhart, J.L. McClelland, and
The PDP Research Group (Eds.), MIT Press, Cambridge, USA, pp. 45-76, 1986.
[ANN10] P.K. Simpson, "Fuzzy Min-Max Neural Networks - Part 1: Classification," IEEE
Trans, on Neural Networks, Vol. 3, No. 5, Sept. 1992.
[ANN11] P.K. Simpson, "Fuzzy Min-Max Neural Networks - Part 2: Clustering," IEEE
Trans, on Fuzzy Systems, Vol. 1 No. 1, Feb. 1993.
[ANN12] E. Tzanakou, R. Michalak, E. Harth, "The ALOPEX Process: Visual Receptive
Fields with Response Feedback," Biol. Cybernetics, Vol. 35, pp. 161-174, 1979.

Artificial Neural Networks in Medicine: Review Studies
[ANM1] J.M. Zurada, "Introduction to Artificial Neural Systems," West publishing company,
St. Paul, M.N., 1992.

437

[ANM2] D. Jones, "Neural Networks for Medical Diagnosis," in: Handbook of Neural
Computing Applications, Academic Press, New York, pp. 309-317, 1990.
[ANM3] J.A. Reggia, "Neural Computation in Medicine," Artificial Intelligence in Medicine,
5, pp. 143-157, 1993.
[ANM4] Artificial Intelligence in Medicine, Special issue on Neural computing in medicine,
Vol. 6, 1994, to be published.
[ANM5] A.S. Miller, B.H. Blott and T.K. Hames, "Review of Neural Network Applications
in Medical Imaging and Signal Processing," Med. Biol. Eng. Comp., Vol. 30, No. 5, pp.
449-464, 1992.
[ANM6] IEEE Engineering in Medicine and Biology, Special issue on the applications of
neural networks, Vol. 9, No. 3, September 1990.

Ultrasound Imaging
[ULT1] K.J. Cios, K. Chen and RA. Langenderfer, "Use of Neural Networks in Detecting
Cardiac Diseases From Echocardiographic Images," IEEE Eng. in Med. and Biol., Vol. 9,
No. 3, pp. 58-60, 1990.
[ULT2] E.M. Tzanakou, "Biomcdical Applications of Parallel Processing and Artificial
Neural Networks," Proc. of the 1992 International Biomedical Engineering Days, Istanbul,
pp. 10-17, Aug. 18-20 1992.
[ULT3] C. Yi, E. Micheli-Tzanakou, D.M. Shindler and J.B. Kostis, "Study of
Echocardiogram for Myogardial Infarction Using Neural Networks," Proc. of the 15th
Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Scociety, San Diego,
California, pp. 255-256, Oct. 1993.
[ULT4] T. Brotherton, T. Polland, K. Haines and A. DeMaria, "Echocardiogram Structure
and Tissue Classification Using Hierarchical Neural Networks," Proc. of the 15th Annual Int.
Conf. of the IEEE Eng. in Medicine and Biology Scociety, San Diego, California, pp. 290-
291, Oct. 1993.
[ULT5] P.A. Karkhanis, J.Y. Cheung and S.M. Teague, "Using a PC Based Neural Network
to Estimate the Ejection Fracion of a Human Heart," Microcomputer Appl. 9 (3), pp. 99-
107, 1990.
[ULT6] S.I. Kim, K.C. Choi and D.S. Lee, 'Texture Classification Using Run Difference
Matrix," IEEE 1991 Ultrasonics Symposium Proceedings, Orlando, FL, Vol. 2, pp. 1097-1000,
Dec. 1991.
[ULT7] J.S. DaPonte and P. Sherman, "Classification of Ultrasonic Image Texture by
Statistical Discrimination Analysis of Neural Networks," Computer Med. Imaging Graph.,
15, (1), pp. 3-9, 1991.
[ULT8] N.M. Botros, "A PC-Based Tissue Classification System Using Artificial Neural
Networks," IEEE Transactions on Instrumentation and Measurement, Vol. 41, No. 5, pp.
633-638, 1992.
[ULT9] R.H. Silverman and A.S. Noetzel, "Image Processing and Pattern Recognition in
Ultrasonograms by Back-Probagation," Neural Networks, 3, pp. 593-603, 1990.
[ULT10] M. Nikoonahad and DC. Liu, "Medical Ultrasound Imaging Using Neural
Networks," Electron. Lett., 26, pp. 545-546, 1990.

Magnetic Resonance Imaging
[MRU] M. Ozkan, B.M. Dawant and R.J. Maciumas, "Neural-Network-Based Segmentation
of Multi-Modal Medical Images: A Comparative and Prospective Study," IEEE Transactions
on Medical Imaging, Vol. 12, No. 3, pp. 534-544, 1993.
[MRI2] S.C. Amartur, D. Piraino and Y. Takefuji, "Optimization Neural Networks for the
Segmentation of Magnetic Resonance Images," IEEE Trans, on Medical Imaging, Vol. 11,
No. 2, pp. 215-220, 1992.

438

[MRI3] L.O. Hall, A.M. Bensaid, L.P. Clarke, R.P. Velthuizen, M.S. Silbiger and J.C.
Bezdek, "A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting
Magnetic Resonance Images of the Brain," IEEE Trans, on Neural Networks, Vol. 3, No.
5. pp. 672-682, 1992.
[MRI4] S. Cagnoni, G. Coppini, M. Rucci, D. Caramella and G. Valli, "Neural Network
Segmentation of Magnetic Resonance Spin Echo Images of the Brain," J. Biomed. Eng.,
Vol. 15, pp. 355-362, 1993.
[MRI5] D. Piraino, S. Sundar, B. Richmond, J. Schils and J. Thome, "Segmentation of
Magnetic Resonance Images Using a Back Propagation Artificial Neural Network," Proc. of
the Ann. Int. Conf. of the IEEE Eng. in Med. and Biol. Soc, Vol. 13, No. 3, pp. 1466-1467,
1991.
[MRI6] B.M. Dawant, M. Ozkan, H.G. Sprenkels, H. Aramata, K. Kawamura and RA.
Margolin, "A Neural Network Approach to Magnetic Sesonance Imaging Tissue
Characterisation," Proc. Bilkent Int. Conf. on New Trends in Comm. Control & Sig. Proc,
Arikan E. (Ed.), Elsevier, Amsterdam, part 2, pp. 1803-1809, July 1990.
[MRI7] J.D. Schellenberg, W.C. Naylor and L.P. Clarke, "Application of Artificial Neural
Networks for Tissue Classification from Multispectral Magnetic Resonance Images of the
Head," Proc. 3rd Ann. IEEE Symp. on Computer-Based Medical Systems, Chapel Hill,
North Carolina, USA, pp. 350-357, June 1990.
[MRI8] D.L. Toulson and J.F. Boyce, "Segmentation of MR Images Using Neural Nets,"
IEE Colloq. on Image Proc. in Med., IEE Coll. Dig. 1991/84, London, UK, Paper 5, April
1991.
[MRI9] M. Morrison and Y. Attikiouzel, "A Probabilistic Neural Network Based Image
Segmentation Network for Magnetic Resonance Images," IJCNN Int. Joint Conf. on Neural
Networks, Baltimore, MD, USA, Vol. 3, pp. 60-65, June 1992.
[MRI10] U. Raff, and F.D. Newman, "Lesion Detection in Radiologie Images Using an
Autoassociative Paradigm: Peliminary Results," Med. Phys., (US), 17, 926-928, 1990.
[MRI11] S.M. Lehar, A.J. Worth and D.M. Kennedy, "Application of the Boundary
Contour/Feature Contour System to Magnetic Resonance Brain Scan Imagery," Proc. 4th
Int. Joint Conf. on Neural Networks, pp. 435-440, 1990.
[MRI12] A. Manduca, P. Christy and R. Ehman, "Neural Network Diagnosis of Avascular
Necrosis from Magnetic Resonance Images," Proc. of the Ann. Inter. Conf. of the IEEE
Eng. in Med. and Biol. Soc, Vol. 13, No. 3, pp. 1429-1431, 1991.
[MRI13] H. Yan and J. Mao, "Data Truncation Artifact Reduction in MR Imaging Using
a Multilayer Neural Network," IEEE Trans, on Med. Imaging, Vol. 12, No. 1, pp. 73-77,
1993.
[MRI14] A. Ohhashi, S. Yamada, K. Haruki, H. Hatano, K. Nishimura, Y. Fujii, K.
Yamaguchi and H. Ogata, "Application of a Neural Network to Automatic Gray-level
Adjustment for Medical Images," Int. Conf. on Neural Networks, Westin Stamford and
Westin Plaza, Singapore, Vol. 2, pp. 974-980, Nov. 1991.
[MRI15] A. Gronqvist and R. Lenz, "Detection of Blood Vessels in 3-D MR-Images," Proc
Int. Joint Conf. on Neural Networks, Washington DC, USA, Part 1, pp. 145-149, June 1989.
[MRI16] W.T. Katz and M.B. Merickel, 'Translation Invariant Aorta Segmentation from
Magnetic Resonance Images," Proc. Int. Joint Conf. on Neural Networks, Washington DC,
USA, Part 1, pp. 327-333, June 1989.

Nuclear Medicine Imaging
[NM1] J.S. Kippenhan and J.H. Nagel, "Diagnosis and Modelling of Alzheimer's Disease
Through Neural Network Analysis of PET Studies," Proc. 12th Ann. Conf. IEEE Eng. in
Med. & Biol. Soc, lst-4th Nov., Philadelphia, Pennsylvania, USA, Vol. 12, pp. 1449-1450,
1990.

439

[NM2] J.S. Kippenhan, W.W. Barker, S. Pascal, R. Duare and J. Nagel, "Optimization and
Evaluation of Neural-Network Classifier for PET Scans of Memory-Disorder Subjects," Proc.
of the 13th Ann. Inter. Conf. of the IEEE Eng. in Med. and Biol. Soc, Vol. 13, No. 3, pp.
1472-1473, 1991.
[NM3] L.F. Miller, G.T. Smith, Y. Wu and R.E. Uhrig, "Evaluation of Neural Networks for
Parameter Identification from Positron Emission Tomography Scans," Trans. Am. Nuclear
Soc, 62, pp. 5-6, 1990.
[NM4] G.D. Tourassi, C.E. Floyd, MT. Munley, J.E. Bowsher and R.E. Coleman,
"Application of Neural Networks to Lesion Detection in SPECT," IEEE Nuclear Science
Symposium and Medical Imaging Conference, Santa Fe, NM, USA, Vol. 3, pp. 2179-2183,
Nov. 1991.
[NM5] J. Mason, S. Sheppard, E. Hines, D. Taylor and J. Barham, "Application of Logical
Neural Networks to the Analysis of Single Photon Emission Tomography Images," IEE
Colloquium on Neural Networks for Image processing Applications, London UK, Vol. 9, pp.
1-5, Oct. 1992.
[NM6] C.E. Jr Floyd, J.E. Bowsher, MT. Munley, G.D. Tourassi, S. Garg, A.H. Baydush,
J.Y. Lo and R.E. Coleman, "Artificial Neural Networks for SPECT Image Reconstruction
with Optimized Weighted Backprojcction," IEEE Nuclear Science Symposium and Medical
Imaging Conf. Santa Fe, NM, USA, Vol. 3, pp. 2184-2188, Nov. 1991.
[NM7J D.M. Anthony, E.L. Hines, J. Barham and D. Taylor, 'The Use of Neural Networks
in Classifying Lung Scintigrams," INNC 90 PARIS Proc of Int. Neural Network Conf., Paris,
France, Vol., 1, pp. 71-74, July 1990.
[NM8] D.M. Anthony, 'The Use of Artificial Neural Networks in Classifying Lung
Scientigrams," PhD thesis, University of Warwick, 1991.

X-Ray Imaging
[XR1] R. Nekovei and Y. Sun, "Classification of Digital Angiograms Using Artificial Neural
Networks," Proc. of the Ann. Intern. Conf. of the IEEE Engin. in Med. and Biol. Soc, Vol.
13, pp. 1440-1441, 1991.
[XR2] R. Nekovei and Y. Sun, "An Adaptive Algorithm for Coronary Artery Identification
in Cineangiograms," Proc. of the Twelfth Ann. Intern. Conf. of the IEEE Engin. in Med. and
Biol. Soc, Philadelphia, Pensylvania, USA, pp. 1459-1460, November 1-4 1990.
[XR3] A.P. Dhawan, Y.S. Chitre, M. Moskowitz, and E. Gruenstein, "Classification of
Mammographic Microcalcification and Structural Features Using An Artificial Neural
Network," Proc. of the Ann. Intern. Conf. of the IEEE Eng. in Med. and Biol. Soc, Vol. 13,
No. 3, pp. 1105-1106, 1991.
[XR4] Y. Chitre, A.P. Dhawan, and M. Moskowitz M., "Artificial Neural Network Based
Classification of Mammographic Microclacifications Using Image Structure Features," Proc.
of the 15th Ann. Int. Conf. of the IEEE Eng. in Med. and Biol. Soc, Vol. 15, pp. 50-51,
1993.
[XR5] P.T. Stathaki, and A.G. Constantinides, "Higher Order Spectral Estimation
Techniques in Mammography", Proc. of the Int. Conf. on Digital Signal Processing and II
Int. Conf. on Computer Applications to Engineering Systems, Nicosia, Cyprus, pp. 276-280,
July 14-16, 1993.
[XR6] A.J. Pinho, "Modeling Non-Linear Edge Detectors Using Artificial Neural Networks,"
Proc. of the 15th Ann. Int. Conf. of the IEEE Eng. in Med. and Biol. Soc, Vol. 15, pp. 306-
307, 1993.
[XR7] W.S. Gan, "Application of Neural Networks to the Processing of Medical Images,"
Int. Joint Conference on Neural Networks, Westin Stamford and Westin Plaza, Singapore,
pp. 300-306, November 18-21 1991.

440

HIGH RESOLUTION IMAGE RECONSTRUCTION

USING MEAN FIELD ANNEALING

Thanachart Numnonda and Mark Andrews
Department of Electrical & Electronic Engineering

School of Engineering, University of Auckland
Ph: +64 9 373 7599 ext.8104, Fax: +64 9 373 7461

e-mail: thanon@ccul .auckland.ac.nz

Abstract: A high resolution image can be reconstructed from a
sequence of lower resolution frames of the same scene where each
frame taken by the camera is offset by a subpixel displacement. In
this paper, it is shown that such a reconstruction task can be cast
as an optimisation problem, and that a reconstruction can be found
using the mean field annealing algorithm. The proposed technique
has the added advantage over existing techniques of not requiring
the registration of the displacement of each low resolution frame.
In addition, the proposed technique greatly reduces the required
computation as compared to a simulated annealing approach.

INTRODUCTION

Many image processing applications, such as satellite remote sensing, indus-
trial quality control and scientific or medical imaging, require a high res-
olution image in which the use of commercial video camera seems rather
limiting. Increasing the resolution requires an increase in the sampling rate,
and thus its implementation by sensor modification is usually undesirable.
Therefore, attention has turned to obtaining higher resolution images using
signal processing techniques instead. One promising approach is to recon-
struct a high resolution still-frame image from a sequence of lower resolution
frames of the same scene where each frame taken by the camera is offset by
a subpixel displacement. This reconstruction problem has been addressed
by several researchers, and various reconstruction techniques have also been
proposed [1-7].

In spite of their apparent variety, the existing techniques have a common
structure and contemporary reconstruction procedures usually consist of two
main parts; the registration phase and the reconstruction phase. In practice,
the best possible reconstruction quality is, however, unlikely to be obtained
due to the limitation of currently available registration and reconstruction
methods. Indeed, undersampled images include aliased frequency components

0-7803-2026-3/94 $4.00 © 1994 IEEE 441

which cause errors in the registration phase. On the other hand, the accuracy
of this estimation influences the reconstruction quality, since most existing
reconstruction methods are based on the assumption that the displacements
are correctly estimated [2,5,6].

In an effort to resolve these difficulties, the authors demonstrated [8] that
the high resolution image reconstruction task can be recast as an optimi-
sation problem in which the registration and reconstruction phases can be
performed simultaneously, and that a solution can be found using the sim-
ulated annealing algorithm. Nevertheless, this algorithm is still not suitable
for real-world images due to its large computational effort.

In this paper, the authors have applied the mean field annealing algorith-
m [9,10] to the high resolution image reconstruction problem. By using this
new approach, the reconstruction can still be achieved without requiring a
separate registration phase, but with much less computational effort com-
pared with the simulated annealing algorithm.

AN OPTIMISATION APPROACH FOR HIGH RESOLUTION
IMAGE RECONSTRUCTION

The concepts involved in reconstructing a high resolution image from mul-
tiple low resolution images may be elucidated by considering the process of
obtaining a low resolution image, g(m,n), from a higher resolution image,
f(k,l), as illustrated in Fig. 1, in which the relationship between the image
pixels g(m,n) and f(k,l) can be expressed as [4]:

K-1L-1

»(m,n)=^;2/(fc,/)Ä(m)n;tI/)) (1)
k-0 1=0

., . n A{Sh{k,l)nS,(m,n)}
h(m,n;k,l)= -777- rr , (2)

denotes the point spread function (PSF), A denotes the area of its argument,
and 5/i(.,.) and 5j(.,.) denote the support of the high resolution and low
resolution sensors centred around the pixel (.,.), respectively.

Supposing that the PSF of the imaging system is known, one can obtain a
number of low resolution images, gi(m, n), from an estimated high resolution
image, /(&,/), using such an imaging process. If f(k,l) is identical to the
correct high resolution image, then the estimated image g(m, n) should be
identical to the given image g(m,n). This hypothesis can also be applied
to the case of multiple low resolution images of the same scene where each
frame taken by the camera is shifted by a subpixel displacement. In the latter
case, each low resolution frame has different PSF, A,-(m, n; k, /), which can be
determined from its corresponding displacement. In addition, if these dis-
placements are unknown, then the estimated image g(m, n) will be identical

442

High Resolution Image

Imaging
Process

lisw Resolution Image

Figure 1: A schematic diagram simulating a process of obtaining a low resolution image.

to the given image g(m, n) only if both the high resolution image and the
displacements are correctly estimated.

Therefore, the high resolution image reconstruction task can be cast so
as to find the maximum a posterior (MAP) estimate of the high resolution
image and the displacements when a sequence of low resolution images is
given. That is

Estimate / and d such that
P(f,d\G)

is maximized

where / denotes a high resolution image, G denotes a sequence of low res-
olution images, and d denotes a sequence of displacements corresponding to
each low resolution image, that is

d= {6xi,6yi; i = 1,.. .,P},

where P denotes the number of available images, and 6X{ and Syi are the
displacements of the ith low resolution image along the x and y direction
respectively.

In general, an image can be modeled as a Markov random field (MRF),
and the posterior probability can be described by the Gibbs distribution as
follows [11]:

P(/) = -^exp U{f)
(3)

443

where Z is the normalization constant (also called partition function), and
U(f) is the energy function of the form

i/(/) = £W)> (4)

c being the set of cliques associated with the neighbourhood. Thus it can be
shown that [12] the MAP can be given as:

P(/,d|G) = iexp

Moreover, the energy function is given as:

P

U(f,d\G)
T (5)

U(f,d\G)
EEE 9i(™, n)-^2 J2f(k> l)hi(m' n' k' 0

k I
+

AEE E E|/W)-/(M
k 1 KueNkveNi

(6)

where /i,(m, n; k, I) is the estimated PSF of the ith low resolution image, c is
a constant and A is the regularising parameter, and the partition function is
given as

z = Y2 exp
U{f,d\G)

(7)

where J2{f,d] means the sum over all the possible configurations {f,d}.
In summary, the reconstruction of a high resolution image is the solution

that maximises P(f, d | G) which coincides with minimising the cost function
given in (6). The authors have demonstrated that the solution of this recon-
struction problem can be successfully obtained using the simulated annealing
algorithm [8]. Using this reconstruction approach, it has the advantage of
not requiring a separate registration phase. It is therefore possible to ob-
tain higher resolution images even if the displacements of the low resolution
images are unknown.

MEAN FIELD ANNEALING

It is well known that the major disadvantage of simulated annealing is its
large computational effort. To avoid this computational burden, this section
proposes the mean field annealing algorithm [13] to solve the high resolu-
tion image reconstruction problem. Mean field annealing is an optimisation
technique which can be derived from two different perspectives: statistical
mechanics [9] and information theory [13], and it has been shown to provide
good results much faster than simulated annealing [10,14]. In the field of

444

image processing, mean field annealing has been employed in several appli-
cations, notably image restoration [10,14,15], motion estimation [16], image
segmentation [17], and etc. [18,19].

Mean field annealing uses a deterministic approach to find the mean of
the Gibbs distribution which is an approximation of the thermal equilibrium
distribution of the temperature T. In terms of the high resolution image
reconstruction problem, the mean of image pixel f(k, I) can be given as:

</(M)> ^2f(k,l)P(f,d\G)

lexp
{/,d}

(8)

It can be seen that the calculation of the above equation is not possible,
or at least infeasible, since it involves interaction between all the possible
configurations. The mean field theory suggests an approximation of (8) by
the assumption that the mean of the field f(k, I) can be updated by the mean
values of its neighbours, and the mean value can also be approximated by its
local energy, that is

1
(/(M» = r £ /(*,/) exp

Zki f(k,l)£RD

U(fk,,(d)\G)
T (9)

The terms U(fki, {d) | G) and Zki are called the mean field local energy and
local partition function at pixel (k, I), respectively. These can be written as

w«. w I G)

EEE
i=l m£Yk n€Vi

gi(m, n)-J2 J2(f(u> ü))(Mm> nl u>v)) +

x\ E £|./W)-Mo
Ku£Nk veNi

(10)

and

Zki - Yl exP
J(k,l)eRD

U{fku{d)\G)
(11)

Note that, m £ Yk and n £ Yj mean a low resolution pixel (m, n) which is
influenced by a high resolution pixel (k, I).

The mean of the displacement 6X{ can be approximated by:

(8xi)
Z~d

X^ S*i exP
sxieRD

U((f),6xi\G)
(12)

445

where the mean field local energy and local partition function are defined as

U({f),Sxi\G)

= c ■ EE gi(m, n)-^2 ^2(f(u, v))(hi(m, n; u, v)}

and

Zd = ^2 *>" exP
W),«ri|G)'

. (13)

(14)

respectively. The mean of the displacement 6y{ can be approximated in a
similar manner.

In addition, the image intensities and the displacements are continuous
values which implies that the summations J2f(k i)eR '^2s PR

an<^J2s PR
may be replaced by integral equivalents.

By using the above approximations, the equilibrium state at each temper-
ature T can be obtains c! through the mean field. As the temperature T —► 0,
this approximation will coincide with the exact distribution, and the image
/ will be equal to (/). In summary, the mean field annealing algorithm for
high resolution image reconstruction can be stated as:

T <= initial temperature
while (T>Tmin)

do until (a steady state is reached)
for all image pixels

Calculate U(fk,,(d) \ G)
Calculate the mean (f(k,l)).

end
for all image displacements

Calculate U((f),6xi | G) and U({f),6yi | G)
Calculate the mean (6xi), and alternately {6y,).

end
end
Decrease T

end

EXPERIMENTAL RESULTS

In order to evaluate the performance of the mean field annealing algorithm, a
picture of characters with different sizes was imaged by a charge-coupled device
(CCD) camera. The pixel size in each digital image was measured to be 3.06
and 2.19 mm along the x and y directions, respectively. The picture was
placed on a mechanical device which can be shifted on both directions with
an accuracy of 0.1 mm. By shifting this mechanical device, 16 low resolution

446

images of size 64 x 64 pixels were taken with different displacements, and
Fig. 2a illustrates one of the low resolution images.

Mean field annealing was applied to the low resolution images in order to
improve the resolution. The algorithm was implemented with T0 = 150, c =
0.001, A = 0.0001, and the temperature was decreased using an exponential
rule Tn = 0.95 xT„_i. The initial estimated image was defined as the constant
pattern. In addition, the algorithm was terminated when the temperature was
lower than 0.01.

Two higher resolution images were reconstructed, and are shown in Fig. 2c
and 2e with resolution increase of two-fold and four-fold, respectively. From
the results, it can be seen that invisible detail in the low resolution images
becomes clearly apparent in both reconstructions. In terms of the frequency
domain, Fig. 2b illustrates the spatial frequency spectrum of the low resolu-
tion image shown in Fig. 2a. Whereas Fig. 2d and 2f illustrate the spatial
spectrum of the corresponding high resolution images. From these illustra-
tions, it is obvious that some of the distorted high frequency spectrum can
be recovered when applied this reconstruction algorithm.

CONCLUSIONS

This paper has considered the problem of increasing image resolution from
multiple low resolution images. To avoid the limitations of existing methods,
this paper has demonstrated that the high resolution image reconstruction
task can be formulated as an optimisation problem, and that a solution can
be found using the mean field annealing algorithm. This new technique has
the advantage over existing techniques in that it does not require a separate
registration phase. It is therefore possible to obtain higher resolution images
even if the displacements of the low resolution images are unknown. In ad-
dition, the experimental results have demonstrated the success of this new
algorithm for real-world images.

In summary, the contributions of this paper are: (i) to present an optimi-
sation approach for reconstructing a high resolution image, and (ii) to show
that the proposed technique can be successfully applied to real-world images.

ACKNOWLEDGMENT

The authors would like to thank Dr. Ramakrishna Kakarala for useful dis-
cussions.

REFERENCES

[1] R. Y. Tsai and T. S. Huang, "Multiframe image restoration and regis-
tration," in Advances in Computer Vision and Image Processing: Vol.1
(T. S. Huang, ed.), pp. 317-339, JAI Press, 1984.

447

i
\ ill.Hi *it it

(a) (b)

— f

9}2}4$itt4t

*umii</t

(c) (d)

tff 2JÖ«iJc/7
j Ol2345t6c4t :
| 01.234St6tdt ■;

j'«nij'Ot/f
ffm-fj***/* j

I ''tlijmittfr j

(e) (0

Figure 2: (a) A real-world low resolution image of size 64 X 64 pixels, (b) its corresponding
frequency spectrum, (c) a reconstruction of size 128 X 128 pixels, (d) its corresponding
frequency spectrum, (e) a reconstruction of size 256 X 256 pixels, (f) its corresponding
frequency spectrum.

448

[2] S. Kim, N. Bose, and H.M.Valenzuela, "Recursive reconstruction of high
resolution image from noisy undersampled multiframes," IEEE Trans.
Acoust., Speech, Signal Processing, vol. 38, no. 6, pp. 1013-1026, 1990.

[3] H.Ur and D.Gross, "Improved resolution from subpixel shifted pictures,"
CVGIP: Graphical Models and Image Processing, vol. 54, no. 2, pp. 181—
186, 1992.

[4] A.M.Tekalp, M.K.Ozkan, and M.I.Sezan, "High-resolution image re-
construction from lower-resolution image sequences and space-varying
image restoration.," in Proc. IEEE Int. Conf. Acoust. Speech, Signal
Processing, 1992, pp. III169-III172.

[5] T. Komatsu, K. Aizawa, T. Igarashi, and T. Saito, "Signal-processing
based method for acquiring very high resolution images with multiple
cameras and its theoretical analysis," IEE Part I, vol. 140, no. 1, pp. 19-
25, 1993.

[6] M. Irani and S. Peleg, "Improving resolution by image registration,"
CVGIP: Graphical Models and Image Processing, vol. 53, no. 3, pp. 231-
239, 1991.

[7] H. Stark and P. Oskoui, "High-resolution image recovery from image-
plane arrays, using convex projections," J. Opt. Soc. Amer. A, vol. 6,
no. 11, pp. 1715-1726, 1989.

[8] T. Numnonda, M. Andrews, and R. Kakarala, "High resolution image re-
construction by simulated annealing," Optics Communications, vol. 108,
no. 2, 1994.

[9] G.L.Bibro, R.Mann, T.K.Miller, W.E.Snyder, D.E.Van den Bout, and
M.White, "Optimization by mean field annealing," in Advances in Neural
Network Information Processing Systems (D.S.Touretzky, ed.), pp. 91-
98, Morgan-Kaufmann, 1989.

[10] H.P.Hiriyannaiah, G.L.Bilbro, W.E.Snyder, and R.C.Mann, "Restora-
tion of piecewise-constant images by mean-field annealing," J. Opt. Soc.
Am. A, vol. 6, no. 12, pp. 1901-1912, 1989.

[11] S.Geman and D.Geman, "Stochastic relaxation, Gibbs distributions and
the Bayesian restoration of images," IEEE Trans. Patt. Anal. Machine
Intel., vol. 6, no. 6, pp. 721-741, 1984.

[12] T. Numnonda. PhD thesis (In preparation), Department of Electrical
and Electronic Engineering, University of Auckland, New Zealand.

[13] G.L.Bilbro, W.E.Snyder, S.J.Garnier, and J.W.Gault, "Mean field an-
nealing: A formalism for constructing GNC-like algorithms," IEEE
Trans. Neural Networks, vol. 3, no. 1, pp. 131-138, 1992.

449

[14] D. Geiger and F. Girosi, "Parallel and deterministic algorithms from M-
RF's: Surface reconstruction," IEEE Trans. Patt. Anal. Machine Intell.,
vol. 13, no. 5, pp. 401-412, 1991.

[15] J.Zhang, "The mean field theory in em procedures for blind Markov
random field image restoration," IEEE Tran. Image Processing, vol. 2,
no. 1, pp. 27-40, 1993.

[16] J.Zhang and J.Hanauer, "The mean field theory for image motion esti-
mation," in Proc. IEEE Int. Conf. Acoust. Speech., Signal Processing,
1993, pp. V197-V200.

[17] W.Snyder, A.Logenthiran, P.Santago, K.Link, G.Bilbro, and S.Rajala,
"Segmentation of magnetic resonance images using mean field anneal-
ing," in Proceedings of Int. Conf. on Information Processing in Medical
Imaging, (United Kingdom), 1991, pp. 218-226.

[18] J.Zerubia and R.Chellappa, "Mean field approximation using compound
Gauss-Markov field models for edge detection and image estimation,"
IEEE Trans. Neural Network, vol. 4, no. 4, pp. 703-709, 1993.

[19] L.Herault and R.IIoraud, "Finger-ground discrimination: A combina-
tional optimization approach," IEEE Trnas. Patt. Anal. Machine Intell.,
vol. 15, no. 9, pp. 899-914, 1993.

450

HARDWARE NEURAL NETWORK
IMPLEMENTATION OF TRACKING SYSTEM

George G. Lendaris(1), Robert M. Pap, Richard E. Saeks & Chas. R. Thomas
ACCURATE AUTOMATION CORPORATION
7001 Shallowford Road, Chattanooga, TN 37421

(615)894-4646 FAX (615) 894-4645

W Portland State University, P.O. Box 751, Portland, OR 97207
(503) 725-4988 e-mail: lendaris@sysc.pdx.edu

Richard M. Akita
Naval Command Control and Ocean Surveillance Center, RDT&E Division

San Diego, CA 92152 (619)553-5611

Abstract: A neural network (NN) filter/target-tracking system has been devel-
oped as reported in [6]. The design accepts and inputs signal data to a noise/
target classifier which uses spectral estimation techniques to distinguish noise
from real targets. In that design, the NN is used to calculate the coefficients of
an auto regressive linear predictive filter. The current evolution of that design
invokes the use of Lagrange Multiplier methods to incorporate known charac-
teristics of the noise vs. signal. A (linear) Hopfield NN is used to perform the
constrained optimization to solve for the filter coefficients. This algorithm has
been demonstrated on real stochastic data. The filter resulting from this pro-
cess succeeds in reducing the noise, whose structure was learned by the NN.
Not only did this approach reduce structured noise without target attenuation
or the addition of a 'ghost' signal, but it also lowered the base level of the
resultant signal significantly. The overall concept has been tested and vali-
dated using real data on a workstation and the nardware NN implementation
has been validated. This concept has been tested on the AAC Multiple Instruc-
tion Multiple Data (MIMD) Neural NetworkProcessor (NNP) hardware. Each
processor runs at 140 million connections/sec with 8K neurons. An expanded
version of the system performs a total of a billion plus connections/sec. Unlike
classical SIMI) NN architectures, which are really general purpose array pro-
cessors, this MIMD system architecture was custom designed for NN applica-
tions.

INTRODUCTION

A neural network filter and target-tracking system has been developed for the

Navy by AAC [6] which uses spectral estimation techniques to distinguish targets
from background and noise (the combination is here called structured noise) . The

0-7803-2026-3/94 $4.00 © 1994 IEEE 451

evolution of that design is described here. The improvements are based on using
Lagrange Multiplier methods to incorporate characteristics of the structured-noise
vs. signal that are known in the tracking context. A specially designed linear
Hopfield network is used to solve for the coefficients of the auto-regressive linear
predictive filter

The basic layout is shown in Figure (1). A sequence X^ containing both signal

and structured noise (str-noise) is input to the filter component whose task it is to
filter out the signal and pass through only an estimate of the str-noise, which is then
combined with the input sequence to yield just an estimate of the target-related sig-
nal. [Note: because the words signal and str-noise both start with s, a different sub-
script for one of the terms was chosen. The letter 'c' is used for the str-noise —
motivated by the word 'contamination.'] Then, the estimate/prediction of the str-

noise (contamination) at time k, Xck> is subtracted from the input sequence X^to

yield an estimate of the signal, X k at time k:

lsk~ ■Kk.

A selected neural network structure [3, Chapt. 14]is used to determine the coeffi-
cients of the equation in the "box" that predicts the contamination at time k in terms
of the incoming sequence (via the well known autoregressive formula):

^ck
/= 1

k > 77 + 1 (1)

Neural Network
Determined
Coefficients

X,.

Structured-Noise
(contamination)
Predictor

X ck

n~ \sk

Figure 1: Layout of Structured-Noise Filter.

452

M 9 M n

J(a) = 2
k = n +

Pit ~ ^cJfe
fc = n+ 1

**-
1 = 1

where ^ = ^ + '0^ is a complex sequence containing both in-phase and

quadrature components and the a.are arbitrary complex coefficients.

In the earlier work [6], the fl;coefficients were selected based only on informa-

tion about the structured noise, without taking into account any a-priori informa-
tion that might be known about the signals representing the targets being tracked.
The improved approach described here injects constraints into the process of

selecting the fl(- 's so as to incorporate such a priori information.

CONSTRAINED OPTIMIZATION

Based on the assumption that the str-noise (structured noise) of interest could be

modeled by a relatively low order filter [2], a least squares approach to determining
the autoregressive filter coefficients was initially adopted. The Linear Hopfield net-
work was used to minimize

(2)

over all possible complex coefficient vectors a was used. This approach yielded an

excellent predictor for the str-noise, but it often also contained a good prediction of

the signal as well. So after the subtraction indicated in Figure 1 took place, there
was not significant improvement in the signal-to-noise ratio.

In effect, by choosing the a vector in the minimization process without informa-

tion about the expected signal, a filter is obtained which optimally predicts the con-
tamination (str-noise) but is oblivious to the signal. Indeed, without use of a priori
information about the signal, the manner in which the resulting predictor deals with
the signal is not at all under control; it may ignore it or predict it perfectly.

To address this problem, a constraint is added to the process which, in effect,
says "predict the structured noise as well as possible, being mindful of what is
known about the expected signal(s)." To this end, it is here assumed that the signal
from a target has constant magnitude, and a phase that changes linearly over the
extent of the target. This (assumed) a priori information is captured in the model

^ a + ibk
Kk = ce

Although not precisely true, the constant ("dc") value of the magnitude (c in the
above equation) and the linear (affine) component of the phase typicaly dominate
the return from a target. Moreover, as a first approximation, even though it changes
linearly over the extent of the target, it is reasonable to assume that the phase is con-
stant over the relatively short n-sample interval seen by the filter (i.e., b is "small

453

enough," in which case the signal representing the target may be approximated by

X,.= c-- vsk ce
Accordingly, a pure signal from a target would yield:

1=1 1=1

n

and hence if the selected a vector were to have the additional property that

(3) 2>. = o
/= 1

the str-noise predictor would not pass through the signal part of the incoming
sequence. To accomplish this, the coefficients of the str-noise predicition are to be

determined as follows: minimize equation (2) subject to the constraint that
equation (3) holds.

With the aid of the Lagrange multiplier theorem, this constrained optimization
problem can be converted into an equivalent unconstrained optimization that mini-

mizes J (a(.) + X Z«,
V i = 1 ,

over all a and A..

A side effect of the constraint imposed above is for the resulting filter to suppress
the dc component of the str-noise as well as that of the signal. To accomodate this
potential difficulty, the dc component of the str-noise is subtracted off before com-
puting the autoregressive coefficients for the filter and is then added back into the
prediciton model. The data used for developing the str-noise (contamination) pre-
dictor is generated via:

X* = Xk-Xcdc> wllCre Xcdc = {M)H
X

I

M

ck

and Xcjl is a sequence containing str-noise (contamination) data only.

In effect, the dc component of the str-noise is included in the predictor via ana-

lytical means, thereby eliminating the conflict between minimizing J (a.) and

satisfying the "no dc" constraint.
Finally, it would be possible to incorporate the additional (assumed) a priori

information that the signal phase is constant over the n-sample interval used by the
filter by adding a second linear constraint to the optimization problem. To explore

this, a process using \n(Xk) rather thanA^ itself was investigated. By doing so, the

454

Signal representing the target takes on the form of a constant term plus a linear term

In (X^) = ln(c) + a + bk. With this formulation, the str-noise predictor would
possibly be superior in ignoring the signal if both of the linear constraints

n n

Z ai = ° and Z ail = °
; = i i=i

were satisfied. In practice, however, the benefit gained by incorporating the "con-
stant phase" assumption was not sufficient to justify the added implementation
complexity, and therefore, the single constraint formulation is being pursued.

SOLUTION VIA LINEAR HOPF1ELI) NETWORKS

Given a complex time-series such as Xk defined earlier, a modified Hopfield net-

work was given in [6] that computes the complex autoregressive coefficients

a-t, i= 1, .. .n which best fit Equation (1) in the sense of minimizing the perfor-

mance function J (fl.) defined in Equation (2). The network uses continuous-val-

ued data as opposed to binary, and operates in discrete time steps. The neural-
element transfer function (from the summed inputs of a neural element to its out-

put) is linear. The output of the i-th neural element is the solution for a-. Noulin-

earity is introduced only in the calculation of the network's inputs and weights (see

equations for/andüTbelow). In [6] it is shown that the time series performance

function 7 (fl-) satisfies the definition of a computational "energy function" with

respect to the complex Hopfield states tf(., /= 1, .. .n . It is shown therein that the

update formula for the modified, complex Hopfield network is essentially identical
to the real case. The complex case differs in that only the real part of the input exci-

tation, Re [/] , is used to update Re [a^ , and only the imaginary part (with a sign

change) to update Im [a-] .

The "input excitation" for each element of the Hopfield network is constructed
from the input data string as follows:

Jj= Z (V*-;) J = 1,2, ...,n.
k = n+ 1

(Xis the complex conjugate of X) and the weight matrix for the Hopfield network
is constructed as follows:

455

known in the numerical analysis field that there are computationally superior meth-
ods for solving such equations, such as the various Gauss elimination methods. So
why the iterative Linear-IIopfield Neural-Network approach? The proposed
answer lies in the hardware implementation of the computing engine. Accurate
Automation has developed a hardware neural network processor that is optimized
for neural-network type computations, and runs in real time on an multiple-instruc-
tion, multiple-data (MIMD) processor, which promises to win the competition,
even using less efficient computational algorithms. This processor is implemented
on a card that can be run in a standard PC type computer.

The underlying philosophy in the design of the Accurate Automation Corp.
MIMD Neural Network Processor module (AAC NNP) has been to have it run in
real time and to achieve maximum computational efficiency in both a single proces-
sor and multiprocessor environment by optimizing the design to compute neuron

values - and nothing but neuron values [7]. Indeed, this is ideally suited to a neural
network application and stands in stark contrast to previously proposed processors
which are typically based on classical SIMD (single instruction multiple data)
matrix/vector multiplication architectures. Rather, the design fully exploits the
intrinsic characteristics (sparse, local, random) of the neural network topology.
Moreover, by using an MIMD parallel processing architecture one can update mul-
tiple neurons in parallel with efficiency approaching 100% as the size of the neural
network increases.

To achieve the desired efficiency, Accurate Automation's design:
Uses an instruction set which is optimized for neural network processing allow-

ing one to compute a neuron activation without arranging the weight matrix into
linear arrays and/or inserting "artificial zero weighted connections",

Uses an MIMD (multiple instruction multiple data) parallel processing architec-
ture to permit neurons with totally different input topologies to be updated simulta-
neously without loss of efficiency, and

Uses dual neuron memories to virtually eliminate memory contention and main-
tain absolute memory coherence.

This architecture allows AAC to implement a relatively simple single processor
NNP module and then string together multiple NNP modules along a dedicated
Interprocessor Bus with computational power (and cost) increasing "almost" lin-

early with the number of modules [7].

The AAC MIMD Neural Network Processor:
Is designed to implement multiple interconnected neural networks of differing

architecture simultaneously using 16-bit twos-complement binary fixed-point arith-
metic, with up to M total neurons and 12k connection weishts per module,

Is capable of running at 140,000,000 connections (byte wide multiply/additions)
per second per module for a total of one billion plus connections per second in an
8 processor array,

Supports two I/O buses, an Interprocessor Bus which can also be used for on-

line I/O in parallel with the computational process, and a Memory I/O Bus through
which the various processor memories may be mapped into the memory space of a
supporting microprocessor or DSP for downloading programs, connection weights,
etc, and

Each processor in an NNP array is controlled by a separate program written in a
"RISC-like" instruction set supported by an NNP Module Simulator, an Assembler, a
Neural Network Compiler, and the Accurate Automation Neural Network Toolbox

[1].
Unlike the classical SIMD neural network architectures which are really general

purpose array processors which invert matrices and do Fourier transforms as readily
as they do neural networks, the NNP architecture is custom designed for neural net-
work applications, such as the one discussed in this paper.

See [7] for a functional description of the AAC Sparse MIMD Neural Network
Processor.

CONCLUSION

Neural networks can be used in a process that adaptively adjusts itself for the task
of removing structured-noise out of signal+structured-noise, in real time. The adap-
tive process can learn a broad range of structured-noise, on line, and perform the fil-
tering task without compromising the valid information. The hardware Neural
Network Processor described allows for a real-world implementation using a PC
type computer with an ISA bus. Various types of signals have been processed -
both real data as well as simulated. The concept developed for the processing
needed to accomplish the signal filtering task allowed us to come up with a generic
hardware implementation for neual network processes that is faster than done with
previous generations of neural network hardware. The resulting technology has a
broad range of real-world applications.

ACKNOWLEDGEMENTS

This work was sponsored by the US Navy Small Business Innovation Research
program and administered by the Naval Command, Control and Ocean Surveillance
Center, RDT&E Division, Code 451 under a (SBIR) Phase II contract number
N66001-90-C-7021. The authors wish to express their appreciation to the Naval Air
Systems Command, Codes PMA-213, AIR 251 and the Office of Naval Research
code 362 and 342 CN for their support of this work.

REFERENCES

[1] Accurate Automation, Neural Network Toolbox Manual, Accurate Automa-

459

tion Corp., 7001 Shallowford Rd„ Chattanooga, TN 37421, 1993.
[2] Haykin, S., W. Stehwien, C. Deng, P. Weher & r. Mann, "Classification of

Radar Clutter in an Air Traffic Control Environment," Proceedings of the
IEEE, Vol. 79, No. 6, pp. 742-772, 1991

[3] Maren, A.J., CT. Karsten, & R.M. Pap, Handbook of Neural Computing
Applications, Academic Press, 1990.

[4] Mathia.K., G. Lendaris & R. Sacks, "The Linear Hopfield Network and its
Applications," submitted, 1994.

[5] Mathia.K. & R. Sacks, "Inverse Kinematics via Linear Dynamic Networks," in
Proceedings of World Congress on Neural Networks (WCNN-94), San
Diego, CA, Earlbaum Assoc, NJ, 1994.

[6] Pap.R., R. Sacks, C.Thomas & R.Akita, "Neural Network Implementation of
Stochastic Filters for Radar Tracking," in Proceedings of IEEE Workshop on
Neural Networks for Signal Processing, Helsingoer, Denmark, 1992.

[7] Sacks, R., Priddy, K., Pap, R., and S. Stowell, "On the Design of the MIMD
Neural Network Processor," in Proceedings of SPIE Symposium on Neural
Networks V, Orlando, FL, 1994.

460

FAST IMAGE ANALYSIS USING KOHONEN MAPS

D.Willett, C. Busch, F. Seibert,
Visual Computing Group

Darmstadt Computer Graphics Center
Wilhelminenstraße 7, D 64283 Darmstadt

Tel: +49 6151155 255, Fax: +49 6151155 299
E-mail: busch@igd.flig.de

Abstract - The following paper considers image analysis with Kohonen Fea-
ture Maps. These types of neural networks have proven their usefulness for
pattern recognition in the field of signal processing in various applications. The
paper reviews a classification approach, used in medical applications, in order
to segment anatomical objects such as brain tumors from magnetic resonance
imaging (MRI) data. The same approach can be used for environmental pur-
poses, to derive land-use classifications from satellite image data. These ap-
plications require tremendous processing time when pixel-oriented ap-
proaches are chosen. Therefore the paper describes implementation aspects
which result in a stunning speed-up for classification purposes. Most of them
are based on geometric relations in the feature-space.

The proposed modifications were tested on the mentioned applications.
Impressive speed-up times could be reached independent of specific hardware.

1 INTRODUCTION

Image classification is a crucial step in the image processing pipeline. Typical ap-
plications for image classification are the interpretation of medical data or remote
sensing data. In medical applications modern image acquisition techniques like ma-
gnetic resonance imaging (MRI) supply 3D data sets of high resolution and quality.
3D data need to be classified in order to separate different tissue types such as brain
tumors in the image data. Further processing will use the classified data as input for
3D reconstruction algorithms of the volume. Advanced volume Tenderers, as in
[5],[9] or [11] require opacity-maps, as well as 3D surface reconstruction methods
like marching cubes [10] or Delaunay triangulation [12] require a description of the
surface, which can be easily derived from the classified data.

Environmental applications use remote sensing data in order to achieve semantic
ground information. Remote sensing data stemming from satellite-based sensors
like SPOT, Landsat-TM or ERS1 can serve as multispectral data input for environ-
mental control systems. Robust image analysis of the data delivers a land-use-clas-
sification.

The following paper reviews in Section 2 a pixel-oriented discrimination method
for image data based on topological mappings of Kohonen [7], [8]. Application stud-

0-7803-2026-3/94 $4.00 © 1994 IEEE 461

ies as in [4] and [1] have shown that this method can either perform feature extrac-
tion, clustering and classification in a unique approach or - in a more traditional
manner -separate the single steps and calculate the independent components of the
classification pipeline [13],[2].

Corresponding to the immense amount of data that is analyzed in the above men-
tioned applications, the use of the Kohonen Feature Map can be extremely expen-
sive, especially when long feature-vectors are considered. Thus Section 3 proposes
several modifications of Kohonen's algorithm. They were inspired by the insight,
that most of the computational time is wasted in calculations of Euclidean distances
in the feature-space in order to determine the neuron which bears the closest
weight-vector to a presented input-vector. This task corresponds to the nearest
neighbor search in a multidimensional space. It can be shown that most of the
weight-vectors could be excluded from consideration.

In addition basic constraints can be used, like the similarity of consecutive input-
vectors as they appear in the classification of consecutive pixels stemming from a
homogenous region in an image. Those modifications can be used for clustering or
classification tasks. For classification purposes further optimization is possible,
since only a neuron's class assignment has to be determined and not the closest neu-
ron itself.

The modifications were implemented and tested on the described applications. Sec-
tion 4 reports some results in terms of speed-up times. The times are not based on
any specific hardware, but nevertheless computing the image classification on pow-
erful hardware like vector- or parallel-processors can realize further speed-up.

2 CLUSTERING AND CLASSIFICATION

2.1 General Remarks
In general, a robust classification pipeline for the automatic recognition, classifica-
tion and visualization of the data can be divided into the following three tasks:

I) feature extraction
II) cluster analysis
III) supervised classification

Those steps can be solved separately, or in a single approach. Kohonen Feature
Maps are capable of solving that task in a unique paradigm, since they allow sub-
space mapping, visualization of a multidimensional texture feature-space and su-
pervised classification. This is explained in detail in [1] and [3].

2.2 Kohonen Mapping
The Kohonen Map as introduced in [7] or [8], is a self-organizing network which
is basically trained without supervision. It organizes a set of input patterns in a topo-
logical structure represented by neurons, where the relations between different pat-
terns are preserved.

462

To use the Kohonen map for cluster analysis, the Kohonen Map can be configured
with a 3D output-layer as shown in Figure 1. The neurons in the input-layer pick
up the data from the feature-extractor or directly from the image. The weights
associated with each connection of an output-layer's neuron are adjusted during
training where only one single neuron can be active at a time. A time-dependent
neighborhood implies an update in the neuron's environment as well. After the self-
organizing training-procedure, each neuron in 3D represents a cluster in the multi-
dimensional feature-space. Therefore the network can be used for cluster analysis
and dimensionality reduction as described in [3].

neuron

B=z

coordinate system of
the competitive layer

RGB color space

3D output-layer
(i.e. 6x6x6 neurons)

interconnection
and
adjustable weights

input-layer

receptive field

Image

Fig. 1: Topology of the 3D-Kohonen map.

Essential for training as well as for the work procedure of the network is the spatial
distance in the feature-space, since it decides which neuron in the output-layer is
activated. For a presented data-vector x the distance is calculated to all weight-vec-
tors mj representing the connections between the input-layer and the competitive
layer. If N is the dimension of the data, the Euclidean distance di between x and mi
is defined as

N

^ =\\x -m,.|| = 2>;" m/
The neuron c with the minimum distance is activated, where

dc = minjj,}
463

(1)

(2)

The activated neuron is of fundamental importance. On one hand in its environment
the weight-vectors will be updated according to the training rules [7]. On the other
hand its coordinate will be taken as RGB-information for clustering tasks or its class
assignment will be taken asclass information for a classification task. Fast andeffec-
tive calculation of a winning neuron will be the subject of the next Section.

In order to use a self-organized Kohonen Feature Map for supervised classification
a class assignment for each neuron is required. User defined training areas can set
up a training set, where a class-assignment exists for each sample, i.e. a feature-vec-
tor. Sequentially presentation of labeled input-vectors and subsequent majority vot-
ing can lead to class-assignment of each output neuron. For optimal description of
the Bayes decision boundary, additional postprocessing with learning vector quanti-
zation (LVQ) is recommended [7].

3 SPEED-UP METHODS

3.1 Remarks
The most time consuming part of the classification is the determination of the neuron
in the output-layer which is activated by a given input. It is the neuron whose
weight-vector is the closest to the input-vector in the feature-space.

According to equation (1) and (2) the activated neuron is determined by calculating
the exact Euclidian distances of each weight-vector to the input-vector and select-
ing the one with the least distance. Slight changes of this process can bring the first
improvements.

Avoiding the square-root-function. In order to calculate the Euclidean distance
of two vectors, the square-root-function is used. For the given purpose only the rela-
tion between the Euclidean distances is of importance. Thus we simply change equa-
tion (1) and (2) and calculate the squared distances

7=1 l J

and determine the activated neuron c with

A 2

dc = min
i "A (4)

So in the following text the distance in general refers to the square of an Euclidian
distance.

Furthermore the term best vector will be used for the temporary closest vector found.
A good vector in general will be any weight vector close to the input-vector.

Threshold Summation. During the calculation of the distances, the best distance
can be used as a threshold [6]. If, while performing the summation in formula (3)
we reach a sum greater than the threshold, even if j < N, then we can stop and disre-
gard this vector.

Usage of Correlated Input. The threshold summation and other optimization given
in this text are most effective whenever a good vector is found early during the cal-

464

culation, so that the determination of the exact distance of many other vectors can
be avoided. In a lot of applications the input presented in one step correlates to the
input presented in the previous step. If such a correlation is obvious, as in the pixel-
based image-segmentation, the activated neuron of the previous step should be con-
sidered first in the activation-algorithm.

3.2 Immediate Activation
Once a map has been trained, its weight-vectors remain static. The distances bet-
ween the weight-vectors themselves can be calculated in advance in order to be used
to optimize the calculations. A first approach is illustrated in the figure below which
refers to a 2-dimensional feature-space. The circle around each weight-vector has
a radius r; of half the minimum distance to all other vectors.

i feature2 weight-vectors

input-vector feature 1

Fig. 2: Areas of immediate activation around the
weight-vectors in the feature-space

Once an input-vector turns out to be situated inside of an activation area,

d2 < r 2 u
i — ' i d; < r; di = min (5)

the closest weight-vector is the one in the center of that area. Thus the activated neu-
ron is found.

When using labeled neurons, like for classification purposes, only the label of the
activated neuron is relevant. Areas of neurons with the same label may overlap. In
Figure 3 the labels of the neurons are represented by different shadings of the areas.

465

Fig. 3: Areas of immediate classification (identical
shading refers to identical classes)

The immediate activation does not give an idea of how to find the weight-vector in
whose circle the input might be situated. In the worst case it is the last vector that
is being considered and the immediate activation does not save time at all. For this
reason Section 3.3 and 3.4 present two relations which can be used in addition to the
immediate activation to avoid the determination of several distances.

3.3 Triangle Relation
From a mathematical point of view we consider the feature-space as a metric space.
In a metric space the triangle-relation (6) is valid, where d is the distance between
two points.

d(A,C)<d(A,B) + d(B,C) (6)

Looking at any two weight-vectors itij and ni2 and an input-vector x, where the vec-
tors express the coordinates of points in the feature-space, the relation can be trans-
posed to (7).

d{ x , m2) > d{ 7W, , m2) - d(x , mx) (7)

Assuming that the distance between mi and m2 is at least twice as high as the dis-
tance between mi and x, it can be concluded that in no case ni2 can be closer to x
than mi.

d{ m, , m2) > 2 d{ x ,/«,)=> d{ x , m2) > d(x , m,) (8)

The activation-algorithm can make use of this circumstance by not considering
those vectors whose distance to the actual best vector is at least twice that high as
the distance of the best vector to the input-vector. For the case that the squared dis-
tances are determined, equation (8) can be transposed to:

d2(mx , m2) > 4 d\x , m,) =s> d(x , m2) > d(x , m,) (9)

where d(x,nij) corresponds to dj in equation (3).
466

3.4 Minimum Distances Derived from the Vector-Sums
In Section 3.3 we used the triangle relation to derive a minimum value for a specific
distance. Once this minimum value turns out to be greater than the best value to that
point of the calculation, the exact distance does not need to be determined anymore.

Another possibility which allows the determination of such a minimum value with
only a few calculations is based on the absolute sum-values of the vectors. Using

the relation

d\ /ra, , m2) S
(Im<-ZmJ

N
(10)

,., miN) where ^ m,- : = ^ m,-,- and m, := (mn,ma>.
;=i

one gets another lower boundary for the distance of two vectors, which can be
derived from the sum-values of the vectors. The correctness of relation (10) is fairly

easy to prove.

3.5 Maximum Likelihood-Search
The immediate activation presented in Section 3.2 offers a fast way to determine the
closest vector. The time needed to find out that an input is inside an area of immedi-
ate activation mainly depends on the order in which the vectors are looked at. In the
best case the closest vector is considered first and the immediate activation prevents
the determination of all other distances. In the worst case the closest vector is being
looked at after all other vectors, so that the immediate activation does not help at all.

The main aspect of the Maximum Likelihood-Search is the usage of the minimum
values presented in Sections 3.3 and 3.4 to control the order in which the vectors are
considered. The idea is that the vector with the least minimum value has the highest
probability to be the vector that is being searched for.

3.6 Approximate Determination of a Good Vector
As mentioned in Section 3.1 the success of most of the presented methods largely
depend on how fast a good vector is found. If there is no correlation between the con-
secutive input-vectors, or if the correlation is weak, another method can be applied.
The activation is split up into a two-pass algorithm. During the first pass an approxi-
mation is applied to determine a good vector as an approximate solution. The second
pass should be handled like a normal (optimized) activation-algorithm, starting
with the good vector found in the first pass.

A method to determine a good vector shall now be suggested. It allows the fast deter-
mination of a vector which is at most n times farther away from the input-vector than
the accurate closest vector. The parameter n can be set to any real value greater than

or equal to one.

The basic idea of the approximation is the application of the triangle-relation (3.3)
and the vector-sums (3.4) to mark those vectors that certainly cannot be more than
n times closer to the input than the best vector found so far. The marked vectors do

467

not need to be considered during the further approximate pass of the algorithm. Once
all vectors are marked or have been considered, the best vector found to that point
is at most n times farther away from the input than the accurate closest vector.

3.7 N-Tree Based Search
Another example of a fast nearest neighbor search is the organization of the given
weight-vectors in an n-dimensional Quadtree. Following this approach the weight-
vectors are ordered according to their positions in hierarchically refined hypercubes,
where each cube contains up to 2" cubes of half of its edge lengths. This subdivision
is done until a fixed number of vectors is inside the cube. In this way the depth of
the subdivision is controlled by the density of the vectors in the feature-space.

The regular box oriented structure allows a reduced calculation of distances by a
privileged search for neighbors in related cubes. Additionally the methods described
in Sections 3.1 and 3.4 can be used for a further reduction of time consuming calcula-
tions.

As shown in Section 4 the usability of N-Trees for next neighbor search depends
on the number of output neurons and the dimension of the input data. High dimen-
sional input data accompanied by only a small number of output neurons causes a
complex and sparse internal structure which results in low performance. The reverse
case of lower data dimension and a large number of vectors shows the advantage of
N-Trees based search in comparison to methods described in previous Sections.

4 APPLICATION AND RESULTS

4.1 General Remarks
The methods outlined in Section 3 were tested on two different applications where
both deal with multidimensional image data. Both applications face an 8-class prob-
lem.

The medical application aims at segmentation of brain tumors in MRI-Data which
is required in order to gain knowledge about localization and extension of the tumor
in the skull. That knowledge can be used as input for 3D-renderers of 3D-surface
reconstruction algorithms. Section 4.2 refers to a volume data set of 5 slices, where
each slice is recorded as a two-channel image of size 256x256 pixels. The environ-
mental application uses satellite image data, which was recorded from Landsat-TM.
For environmental control the six-channel image data was analyzed with 1000x100
pixels in each channel. The classified image data outlines the actual land-use and
illustrates the impact of pollution sources in the environment.

4.2 Measured Times of Calculation
The success of the different methods given in Section 3 widely depends on the data
that the Kohonen-Map is used for. Furthermore it depends on the size of the feature-
vector. In order to give an idea of the amount of possible optimization, the following
table shows the measured times of calculation for different kinds of image-seg-
mentations on a HP-Workstation 720 and a DEC-Workstation 5000/240.

468

Method applied

.u gu-1 <3.30

opu-i 2 S 3 &
.S«E go*
Svgnfvo f

TO its
B-o. spliss

'55 »nx: tj K S

U o 5.S^

3-71'* e ^^

exEaoU
ISS«"?««

U

£'ö.o g gS

SO.S 3<S"

- ■ O '"O^ o
id 0

Determination of all distances
while avoiding the square-root-
function (see 3.1)

57.10
minutes

57.10
minutes

20.97
minutes

26.22
minutes

All aspects from 3.1,
Immediate Activation (see 3.2),
Triangle Relation (see 3.3)

4.32
minutes

3.33
minutes

11.15
minutes

15.15
minutes

As above and additionally
use of Relation (10) (see 3.4)

4.11
minutes

3.03
minutes

5.72
minutes

10.11
minutes

Maximum
(see 3.5)

Likelihood-Search 4.39
minutes

4.24
minutes

2-pass determination with an
approximating first pass (see 3.6)

6.53
minutes

4.00
minutes

N-Tree-Search (see 3.7) 31.88
minutes

4.81
minutes

Fig. 4: Measured times according to different
modifications and methods

5 CONCLUSION
We conclude that image segmentation based on Kohonen Feature Maps is an excel-
lent tool to realize pixel-oriented analysis of images. Unfortunately the imple-
mentation of the straightforward algorithm leads to enormous computation times.
In order to make the image analysis acceptable for applications optimizations of the
algorithm are required. The proposed modifications fulfill this requirement since
our results demonstrate that a reduction to approx. 5% of the standard implementa-
tion could be reached.

The time consuming part of the Kohonen Feature Map reduced by our modifications
is the determination of the weight vector next neighbored to the input-vector. So the
proposed optimizations realize a fast and effective next neighbor search which can
be directly transposed to other applications in the field of classification and com-
putational geometry.

The presented results demonstrate that image analysis can be computed in a accept-
able time even without parallelization on special and expensive hardware. Never-
theless a subset of the aspects in this paper can be applied on a vector architecture.

6 ACKNOWLEDGMENTS
The authors would like to thank the research division of the German Telekom for
the financial support for this work within the project KAMEDIN. Furthermore

469

many thanks to the GAF (Munich) and the Department of Biophysics and Medical
Radiation Physics of the German Cancer Research Center (Heidelberg) for kindly
providing the image data.

7 REFERENCES

[1] C. Busch, M. Gross: Interactive Neural Network Texture Analysis and Visu-
alization for Surface Reconstruction in Medical Imaging. Computer Graph-
ics forum, Vol.12, No.3,(EUROGRAPHICS'93), pp.C49-C60, (1993)

[2] M. Gross, R. Koch, L. Lippert, A. Dreger: Segmentierung und Klassifikation
von Texturen mittels Wavelets und neuronalen Netzen, DAGM-Proceed-
ings, to be published (1994)

[3] M. Gross, F. Seibert: Visualization of Multidimensional Data Sets using a
Neural Network. The Visual Computer, Vol.10, No.3, pp.145-159, (1993)

[4] M. Gross, F. Seibert: Neural network image analysis for environmental
protection. In Grützner (Edts.): Visualisierung von Umweltdaten 1991, GI,
Berlin - Heidelberg - New York: Springer (1991)

[5] K.H. Höhne, M. Bomas, A. Pommert, M. Riemer, C. Schiers, U. Tiede, G.
Wiebecke: 3D Visualization of Tomographie Volume Data using the Gen-
eralized Voxel Model, The Visual Computer, Vol.6, No.l, pp.28-36, (1990)

[6] R. Koch: Entwicklung eines 2D und 3D Texturanalysesystems basierend auf
einer Merkmalextraktion mit Wavelets, Diplom-fhesis, Computer Science
Department, Technische Hochschule Darmstadt, (1994)

[7] T. Kohonen: The Self-Organizing Map. Proceedings of the IEEE, Vol. 78,
No. 9, pp. 1464-1480,(1990)

[8] T. Kohonen: Self-Organization and Associative Memory, Berlin - Heidel-
berg - New York: Springer (1984)

[9] M. Levoy: Display of Surfaces from Volume Data, IEEE CG&A, Vol. 8, No.
5, pp. 29-37, (1988)

[10] WE. Lorensen, H.E. Cline: Marching cubes: A High Resolution 3D Surface
Construction Algorithm, Computer Graphics, Vol.21, No.4, pp.163-169,
(1987)

[11] G.M. Nielson: Visualization in the Scientific Discovery Loop, EURO-
GRAPHICS'93 tutorial notes, (1993)

[12] F. Preparata, M. Shamos: Computational Geometry. An Introduction, New
York: Springer Publishing Company, (1985)

[13] F. Sauerbier, D. Scheppelmann, H.P. Meinzer: Segmentierung biologischer
Objekte aus CT- und MR- Schnittserien ohne Vorwissen, DAGM-Proceed-
ings, pp.289-293, Springer, (1989)

470

Medical Applications

mammogram is often very low (ii) features in mammograms indicative of
breast disease arc often very small [2].

The aim of this paper is to describe methods based on third order spectral
estimation techniques with artificial neural networks, for modelling and
segmentation of mammograms.

MATHEMATICAL REPRESENTATION OF THE
MAMMOGRAM

We represent the mammogram with a 2-D random field x[m,n], where
x[m,n] denotes the value of the random field at the point [m,n] which is
defined theoretically over the integers -oo<»;,«<oo in the 2-D plane. A
typical finite extent for a realistic sequence is the measured data array,
which usually has a region of support 0<m.n < A', where A' may be for
example 256 or 512. For the purposes of spectral estimation and modelling
we represent X|/M,H] as the output of a two dimensional linear shift invariant
(LSI) system driven by white noise [3]:

x[m,n] = -Z2>y*I»i-i,n-j] + w\m.n], I/../]*[0,0]
;

where al} with a^ = 1 are the parameters of the autoregressive model.

It is assumed that the noise w[mji] is non-Gaussian, zero mean, at least
sixth order weakly stationary and white [6] that is to say.

rm.\m.n]= crHA»i.n\

where rKV\m.n] and a; arc the input autocorrelation and variance
respectively and

C3M,([W/1.«1].[;H2.«2]) = yK^nix.n^\5[m2.n2\

where Ciw(\nr^nxl\m2,n2\) and yK. = E{w*[m.n]} * 0 denote the third
order input cumulant and skewness respectively: and %m,n] stands for the
two dimensional Kroncckcr delta. In general the random field is represented
as:

x\m?n] = ^Y.hlm - i ,n - j]w[i J]
• j

where h[m,n\ is the impulse response of the linear shift requirement. As
indicated already the range of summation has been purposely left
unspecified. The system function for the stable 2-D AR model of impulse
response h\m.ri\ is given by:

#(*I.*2) = T^;—T-Jwhcre I I|A|'».»]|<«>-

> i

Stability in two dimensions is far more difficult to test than stability in one
dimension, because 2-D polynomials in general cannot be factored, due to a
lack of a fundamental theorem of algebra in 2-D. For the purpose of

474

causality the region of support used here is confined to the quarter plane
(QP). Then the two dimensional autoregressive model is given by the
difference equation:

Pi Pi

Z 'LotjAm-i-n-ß = Hm,"]
i=0;=0

where %, = 1. The values of px and p2 define the order of the model. If the
region of support for the AR parameters is the quarter plane, the output may
be recursively computed as a function of the "past" outputs and the "past"
and "present" inputs [3],[4].
Because we know nothing about the location and the size of the tumour in
the mammogram, our method consists of representing each pixel in the
image by an autoregressive model whose parameters are estimated by using
an appropriate neighbourhood for the pixel. This is in effect a small
compared to the whole image quadrangular window around the appropriate
pixel. Then the parameters of the model are used as features for
classification and segmentation. We make the assumption, that all pixels in
the small window belong to the same class, because image pixels which are
spatially close are likely to be of the same texture. After estimating the AR
parameters for the pixel [/»,«] we replace the value x[m,n] of that pixel
with the vector a[m,n], which contains its corresponding parameters. This
repeated for the entire image, and thus we create a set of P new images,
where P = [(/>, + l)(p2 +1) -1] is the number of the AR parameters for the

particular model. The results of the segmentation will be influenced
significantly by the size of the window over which AR parameters are
extracted.

AR PARAMETER ESTIMATION USING
AUTOCORRELATIONS

Let the region of support for the AR parameters for the purposes of this
paper, be the truncated quarter plane (TQP). The order of the model is
px x p2, and hence the two dimensional field is:

Pi PI

Z £ "«y['w -i,"-j] = Hi"-»], «oo ='
l=0;=0

The extended Yule-Walker equations are given by[5]:

U + °t k=l = 0
TT"ify>V-kJ-l]=\^-°ij *6[0,p1]n/e[0,ft]-{[*,/] = [0,0]}
>=°j=0 10 elsewhere

The variance of the Gaussian noise a\, is usually unknown and hence the
above equations cannot be solved directly. However, for high signal to noise
ratios, o^ (which is the power of noise) is small compared to the power of

475

the signal x[m,n] and hence it can be ignored, to produce the noiseless
Yule-Walker equations. These equations give a good AR parameter
estimation in high SNR's. However, the error increases significantly for
large a?,. The situation is even worse when the Gaussian noise v[m,n] is
coloured as the correlation properties of v[m,n] are now needed.

AR PARAMETER ESTIMATION USING
HIGHER ORDER STATISTICS

Higher order spectra defined in terms of higher order moments of the
process contain information regarding the deviation of the process from a
Gaussian form. It is known that only for zero mean Gaussian processes only
all polyspcctra of order greater than two are identically zero [6]. Thus a non
zero higher order spectrum indicates deviation from normality. For a given
zero mean stationary real random process (A'm„), non zero skewness

E{-Vmn}*0 indicates the existence of its bispectrum. Hence, in an
environment where the derived signal is a non-Gaussian stationary process
and the additive noise process is stationary Gaussian there are certain
advantages in estimating signal parameters through third order spectrum
techniques. To date in the open literature almost all random field models
and their associated processing procedures have been based on the
assumption that the signal is corrupted by Gaussian noise (white or
coloured). Second order techniques usually require knowledge about spatial
correlations of the Gaussian noise which arc unknown, while third order
techniques have the advantage that they arc blind to such noise.

We suppose that the signal x\m.n] is corrupted by white Gaussian noise
v[m.n] and hence in practice we observe the noisy signal:

y\m.n] = x\in.n] + v\in.n]
The equations that relate the AR parameters with the cumulant function
samples of the signal y[m,n], have the following form [6],[7]:
P\ PI {yw A-, = /, = k2 = l2 = 0

'=0>=0 [0 elsewhere
where yw = E{w\m,n]}, aw = 1 and A,,/, > 0, / = 1,2. Thus if we use the
above equations, it is not necessary to know the statistical properties of the
Gaussian noise, as they disappear from the equation. In the above equation
we need a total of (p, + l)-(/?2 + 1). equations in order to determine the
unknown parameters atj and the skewness of the driving noise yw. However

if we arc not interested in estimating yw. we rewrite the above systems as
follows:

476

I,I.aijC3y(li-kuj-li],V-k2,j-l2]) = 0, kl+lx+k2+l2^0
i=Oj=0

In this form we need [(/>, + l)-(/?2 + l)-l] equations to determine the atj

parameters.

Comments on the Choice of Slices

An implicit and additional degree of freedom is connected with the specific
direction chosen for the cumulants to be used in the AR model. Such a
direction is referred to as a slice in the cumulant plane we have found that it
has profound implication on the effectiveness of the AR modelling.
Let us consider the particular case: (k2,l2)-(kl +c,,/, +c2) where
c, ,c2 are constants, then

Ciy(li-klJ-l,Ui-k2J-l2)) = C3y([i-k1,j-!]l['-kl-cl,j-lx-c2]).

From the symmetry properties of cumulants we know that:
C3y([A:1,/1L[A:2,/2]) = C3va-Ar2.-/2I,[[A1./1]-[/:2,/2]])so
C3y{[i-kx,j-lxl[i-k2,j-l2]) = Ciy([C] + *, -i,c2 +/, -y],[c,,c2]).

We write c, +kx = k and c2 +/, = / and hence the equations above take the
form:

Z ToijCiyak-iJ-JUct^]) =0, k, +/, +*2 + /2 *0.
i=0j=0

In this form they are shown to be explicitly dependent on the choice of
c, and c2.

Remarks

The choice of slices affects significantly the estimation of AR parameters. In
this paper we choose c, = c2 = 0, so

Zl.^Ciyak-i,l-j],lO,0])=0, k e[0,Pi]^le[0,p2]-(k,l) = (0,0)
i=0j=0

In other work [10] we have concentrated in the choise of slices to provide
additional information.

NEURAL NETWORKS

For the purpose of classification we employ the (atj) parameters as inputs

to a multilayer perceptron. The examples contained in this paper are based
on a three layer perceptron neural network which is employed with the AR
parameters as the inputs and the different classes as the outputs. The
network in the example below is a A"(8,10,2) Kuratowski graph trained by

477

the Charalambous approach [8]. This approach relics on conjugate gradient
techniques for the training of the multilayer pcrceptrons. The conjugate
gradient methods belong to a class of unconstrained optimisation algorithms
that automatically adjust their parameters to meet local optimisation
objectives. With a fairly accurate "line search" algorithm that form part of
the procedure such methods are guaranteed to converge to a minimum with
a fast convergence rate [8].

RESULTS

In this work we use an autoregressive model of order 2x2, that is to say
p] = p2 = 2. As we mentioned before, the segmentation results will be
influenced greatly by the size of the window over which image features (in
this case AR parameters) will be extracted. In general, a large window leads
to a good segmentation in the inner regions of each class. Whereas in the
regions around boundaries of classes the window covers two or more
different classes and the features extracted arc the mixed features of these
classes, so the parts of the image which arc around boundaries cannot be
correctly segmented. Therefore, the window in inner regions should be large
enough to separate different classes and it should become smaller as it nears
to the boundaries. We use first a window of size 32x32 to segment the
mammogram. Then we take another window around each pixel which must
be relatively smaller than the first one and we choose that to be of size
16x 16. We define a pixel misclassified if the pixels in the new window
around it do not belong to the same class according to the first classification.
For all misclassified pixels we estimate again the AR parameters but using
now the 16x16 window and we do the same process for image classification
and segmentation. Results shown in figures 1-10 below.

REFERENCES

[1] "Breast Cancer Screening". Report to the Health Ministers of England,
Wales .Scotland & Northern Ireland by a working group chaired by Prof. Sir
Patrick Forrest.

|2] W.M. Morrow and R.B. Paranjapc, "Region-based contrast enhancement
of mammograms". IEEE Trans, on Medical Imaging, Vol.11, No 3,
September 1992.

[3] Steven Kay, "Modern Spectral Estimation: Theory- and Application".
Prentice Hall 1988.

478

[4] Stephen P. Banks, "Signal Processing.Image Processing and Pattern
Recognition", Prentice Hall 1990.

[5] Bart Kosko, "Neural Networks for Signal Processing". Prentice Hall
1992.

[6] C.L. Nikias and M. Raghuveer, "Bispectrum Estimation: A digital signal
processing framework", IEEE Trans, on ASSP ,vol. 75, pp. 869-891, 1987.

[7] A. Swami and J.M. Mendel, "ARMA parameter estimation using only
output cumulants", IEEE Trans, on ASSP, vol. 38, no. 7, July 1990.

[8] C.Charalambous, "A conjugate gradient algorithm for the efficient
training of artificial neural networks", CRST Technical Report 90/06 May
1990.

[9] T. Stathaki and A.G. Constantinides, "Higher order spectral estimation
techniques in mammography", presented on the IEEE Int. Conf. on DSP,
July 1993, Nicosia, Cyprus. ^^__ ^^^

FIGURES

Fig. 1. mammogram

479

Fig. 2: a0 Fig. 3: a02

Fig. 4: al(Fig. 5:o„

Fig. 6: a12 Fig. 7: a 20

480

t J- 'S !

i'-ii
r .-:

sii. i

i v 4 i.;

Fig. 8: <J21 Fig. 9: a22

As wc mentioned above a three layer perceptron neural network is employed
with the eight AR parameters as the inputs and the two texture classes (tumour
and healthy breast tissue) as the outputs. The segmented mammogram is shown
in the following figure.

Fig. 10: segmented image

481

Medical Diagnosis and Artificial Neural Networks: A
Medical Expert System applied to Pulmonary

Diseases

G. - P. K. Economou , C. Spiropoulos , N. M. Economopoulos*, N. Charokopos",
D. Lymberopoulos , M. Spiliopoulou , E. Haralambopulu , and C. E. Goutis*

Department of Electrical Engineering
Pulmonary Department, Regional University Hospital of Patras

University of Patras, GR 261 10, Patras Greece

Abstract-An original Medical Expert System (MES) in the field of Pulmonary
Diseases (PDs), is the topic of this article. This MES covers the full spectrum of PDs,
being the first that attempts to treat a whole category of distressed body organs. It is
based on a first presented composition of powerful Artificial Neural Networks
(ANNs) that have been taught by means of real patients' clinical data,. The proposed
MES exhibits an overall performance of at least 85% in its generalization results.

Keywords-Medical Expert Systems, Artificial Neural Network, Pulmonary Diseases.

INTRODUCTION

A great deal of Research and Development activities have recently
highlighted into building and evaluating systems that could decide based on human
thinking concepts and expertise: Expert Systems (ES - [6], [8]). Medical ES aim to
supply for tools to assist doctors of medicine (MD), guide trainee students and
encourage medical experts in their diagnoses ([2]). In addition, MDs who serve
distantly from Medical Centres, can utilize MESs in order to judge more accurately
upon a particular, not familiar disease. An MES is a powerful tool of induction best
tuned when used in conjunction to a human, rather than as a stand-alone authority.

This article proposes the new and creative MES that was developed by a
team of medical and technical experts in the University of Patras. Although it has
focused on PDs, PDs dealt with as a whole category, it is structured in such a way to
easily being adapted to generalize in other domains of experience, too. Real-world
clinical data were used to instruct its layers and preliminary and more detailed
experiments showed its great capabilities of making correct classification of
symptoms and PDs (approximately 85% out of 150 possible new PDs cases).

0-7803-2026-3/94 $4.00 © 1994 IEEE 482

A mighty composition of ANNs, a prominent section of Artificial
Intelligence (AI), is the core of the presented MES. AI techniques were most recently
used either to accomplish the inference engine or as the means to implement both a
knowledge base and the induction rule of ES ([3], [5], [14]). The expansive
utilization of MESs in hospitals world-wide, has begun to show their competence,
whereas new methodologies are altogether posed to give the necessary evaluation
criteria to compare AI-based MES to more algorithmic-based methods ([3], [4]).
However, Artificial Neural Network (ANN) architectures, seem to he a head off.

The implementation of ANNs towards the formation of MESs, currently
experiences a vigorous growth ([1], [3], [5], [10], [11], [12]). Valuable assets AI and
medical experts seek in MESs, can be found in ANNs as a part of their very structure.
Parallel searching, dynamic data storage, robustness, generalization virtues and the
amazing working speed factor are inherent abilities of ANNs. ANNs may be
implemented purely in software, on general-purpose platforms or on microprocessors,
or be made of more or less custom hardware and VLSI chips.

Besides, ANNs vast application domain and general tasks' accomplishment,
furnish a sound ground of exploit. To enhance this end, a large number of ANNs
were structured and simulated on an 386SX@33 PC and were taught by means of a
variety of learning algorithms to favour the best-suit ones. The most known and the
most severe Pulmonary Diseases' (PDs) symptoms were integrated into their structure
so that the proposed environment is able to deal with the big majority of them.

ORGANIZATION OF MEDICAL DATA

The building of knowledge-based environments for assisting MDs on
diseases' diagnosing, is a complex task due to the particular importance of all the
medical data and the interpretation that different doctors give to them. Thus, the
construction of an MES based on ANNs, have been forwarded to provide for the
categorization and generalization of the medical data into new patients' cases.
Furthermore, this MES follows step by step the Clinical Differential Diagnosis
(CDD) methodology, due to the nature ANNs treat expertise. A mapping of patient's
symptoms exhibition to the classes of possible PDs, is therefore achieved.

Clinical experts in PDs, established the boundaries of the project. A definite
number of inputs were set, the same questions that MDs ask when examining patients.
They contain related findings of each one of the PDs' symptoms, i.e. Cough, Sputum,
Haemoptysis, Fever, Dyspnea, Wheezing and Chest Pain and historical as well as
data obtained from physical examinations. Consequently, those data, were fed to a
large number of ANNs ([7], [9], [13], [15]) and evenly distributed to both a sum of
thirty-five (35) PDs and they related twelve (12) major PDs' classes (Table I).

Data were fed by introducing their existence or non-existence in possible
PDs' exhibition. Major influences, such as the gravity of certain symptoms or findings
to determine certain PDs, multiple PDs' interference in a diagnosis and resulted PDs'
ordering on a higher-fitness basis, were left to the ANNs to learn. Still, lethal PDs a
patient could suffer, were made certain to the highest degree to be excluded or
confirmed by the proposed MES, through using suitable input patterns.

483

o.
Ui

w
E *
>
+
00 * >

&
* * * #

* * *
in

g #
< "
B * *

co *
en

w
c

s # * *
*

k»

Q
* * * * * # * * * *

(-
X # w #
X *

&H *
C T3
O t-
Ä *

"O * # * * * *
p*

u

<J *
c * # *

Q0 *
* * # * #

* * * # * # # # * * > * * * * * * * # *

c
o
B OA

1 W)

3
ej

c
3

n E 04
C U x: s

c s c CM

V c
Ö a

■5
JS

E •n
bn B u

*— c a 3
C8

£
&< ©

V) a
© ►J J5 B o E Ä a

e- CM (M

2
u
c o

CM a
(/I o

u
[3

V]

"ea

o

o
u
ej

o a
c
©

O

o

o
u

c
o
«
a

V] a
e.

O 3 C

C c
B W5 «2

c
1ft VI

c o
u H < U a a W o o £

484

Table I depicts the cumulative patterns with which the ANN dealing with
the Cough's symptom was taught. Column 1, denotes PDs' Classes (including a
Non-PDs one); Column 2, the particular Value that this symptom has to a specific PD
class; next Columns, whether the Cough's findings could be Recent, Chronical,
Productive, Non-Productive, or/and Paroxismic, after Exercision, all Day long, only
in the Morning or/and in the Evening, Seasonary , followed by Anorexia, excessive
Sweating, Weight Loss or Increase, Vomiting or/and Sleepiness.

PROPOSED COMPOSITION OF ANNS

Conducted preliminary experiments proved the feed-forward ANN, to be
the most bright one and was elected as the basis of this MES suggested composition.
This MES is arranged in a three layers form, following data's time propagation
sequence (Figure 1). Two different learning algorithms were forwarded to teach its
ANNs: back-propagation ([9]) and Kaiman filtering of back-propagation equations
([13]). The latter, however, utterly swayed; it performed better with less initialization
steps and better learning speed, accuracy, convergence and data handling. Typical
learning parameters include ANNs with binary inputs, float arithmetic processing, 30-
44 nodes, 250-300 input patterns, 3 slabs each and a requested learning accuracy of
5%. Learning times spread between 20'-30', i.e. 2000-3000 learning cycles.

Figure 1. Layers: Composition of the ANNs

485

First Layer

A four levels ANNs' formation, three-slab structured, was used. Inputs to the
first level was fed separately for each one of the major symptoms (subjective medical
data) and in random order. Moreover, two other identical-structured ANNs were
added, to treat historical and physical exams data (objective medical data). The
outputs of each of those ANNs, are the general classes of the possible PDs expressed
as percentages of similarity to their learnt patterns. Figure 2 depicts first Layer.

PHYSICAL

EXAMS

CHEST
PAIN

IIAEMOPTYS

-/rT>TNET*y

' ■?// | ►(NET «5^

TTT>f NETtfj}

NET tnyif-

HISTORICAL

DATA

//I ►(NET#«V

-frf^C NET #9}

INPUT LEVEL #1

-fr-^(NET # \yH—►(NET * ltf

LEVEL #2 LEVEL #3 LEVEL #4

CUNICAL
EXAMS

OUTPUT

Figure 2. Layer #1: Structuring

These outputs are then weighed by eight three-slab ANNs in the second
level of the first layer, thus forming pairs of symptoms or historical data, and physical
examinations handling, as CDD methodology imposes. Again, outputs will be the
classes of PDs with a percentage of fitness to the stored weights in the ANNs. On the
third level, all the outputs of the second one are inserted in another three-slab ANN
which outputs PDs' classes, too, and combines all the available information.

486

Up to this point, all medical data given are pondered independently and only
finally summed-up, following step by step the CDD methodology. Hence, the end
results show the general tendency of the possible PDs a patient could suffer of. In the
fourth level, though, suggested clinical exams outcome by means of a two-slab ANN.

This induction methodology scheme is so far submitted, due to its
transparency to the intermediate results. An expert is able at every level of process to
intervene and select the most crucial diagnosis' facets, according to his own opinion.
The ANNs, altogether, do not inhibit but, instead, offer percentages of possible PDs
existence, letting the expert not only to make the final decision but also to combine
his own selected symptoms' responses. However, this MES can be let to prune out
not possible PDs, too, following already instructed induction threads.

Second Layer

This scheme given, the use of another four-levels, three-slabs ANNs'
formation was advanced. These ANNs are identical to and operate exactly as in the
first layer, but they handle PDs in all their outputs, intermediate and final. In addition,
some new inputs are added: those that relate the final PDs' percentages of fitness the
third level of the first layer have already computed. This way, a strong positive
feedback will be exercised in the second layer's ANNs to enhance and promote the
final diagnosis. Preliminary and more elaborate results have shown a great increase in
the final (layer #3) outputs' accuracy than ever (15%-25%).

Third Layer:

Two four-levels ANNs' formations are also planed. These will handle all
data the former ones did, plus clinical examinations' results and new data from the
PDs' eventual progress. Findings of those data as being fed to both ANNs handling
patients' symptoms before the clinical examinations as well as after those, will
contribute to the final PD diagnose. A voting process between the two is arranged, to
be performed by another ANN. The final MES's output, however, is scheduled to be
the necessary medication potions as well as their dosage and time-schedule.

Discussion

As the reader may note, this novel architecture is being built in such a way
that assures friendliness of utilization, transparency on all its levels and efficacy on its
results. As for the latter quality, medical data and clinical experts' interaction help to
make the system achieve a good performance. So far results have shown an overall
performance of nearly 85% successfully promoting the correct PD as the already
taught ANNs were left to generalize into their newly fed inputs (150 total PDs' cases).

The special value of the proposed MES, is that the percentage of exactness
achieved does not imply that in the 15% of the cases left, the PDs are classified
incorrectly out of patients' symptoms. In this presented MES, the correct PD should
be one out of the next five (and only five!) less fitted results (in descendant order).

487

Moreover, since the first priority of MDs, when examining patients, focuses on being
able to suggest the correct clinical examinations, this MES performs accordingly. It
prunes these examinations and waits to consider their results for the final diagnoses
outcome, too. Therefore, a safety margin is thus structured , such that will surely
enhance the overall precision of the system, at least to MDs' levels.

Additionally, the proposed architecture for the MES composition, can very
easily be retargeted to fit in other domains of interest. Already the aforementioned
team is working towards the expansion of this MES to other fields of Medicine. MDs
could offer their judgement about patients' cases considering the whole perspective
of the human body. Of course, the problem of associating the results of all the
intermediate MESs, will be posed and will remain to be solved. Still, applications can
be found on every terrain treated by human expertise and not only Medicine.

CONCLUSIONS

The structuring of an efficient MES to assist MDs was the target of this
research. The precursory along to the ultimate results are very stimulating. However,
the intensifying of this MES through the augmentation of its data, is a necessary next
step. It passes through the integration of medical theoretic knowledge and the
interference with other pulmonary teams' knowledge as well as to the learning by new
algorithms and additional data. The presentation of a general-purpose MES to be the
basis of other medical diseases induction diagnosis is the limit.

REFERENCES

[1] D. G. Bounds, P. J. Lloyd, B. Matthew, and G. Waddell, "A Multi Layer
Perceptron Network for the Diagnosis of Low Back Pain", in Proc. of the
Int. Conf. on Neuraf Networks, San Diego, CA, vol 2, pp. 481-489,1988.

[2] A. P. Dhawan, "An Expert System for the Early Detection of Melanoma
Using Knowledge-Based Image Analysis", Anal., Quant. Cyt. and Hist., vol
10, no 6, 1988.

[3] A. Durg, W. V. Stoecker, J. P. Cookson, S. E. Umbaugh, and R. H. Moss,
"Identification of Variegating Coloring in Skin Tumors: Neural Network vs.
Rule-Based Induction Methods", IEEE Eng. in Med. and Biol., vol 12, no 3,
pp. 71-74 & 98, 1993.

[4] A. Hart and J. Wyatt, "Evaluating Black-Boxes as Medical Decision Aids:
Issues Arising from a Study of Neural Networks", Med. Inf., vol 15, no 3,
pp. 229-236, 1990.

488

[5] K. Henson-Mack, and H. - C. Chen, "Integrating Probabilistic and Rule-
Based Systems for Clinical Differential Diagnosis", IEEE Proc.
SOUTHEASTCON '92, Birmingham, AL, USA, pp. 699-702, 1992.

[6] W. C. House, "Decision Support Systems: A Data-Based, Model-Oriented,
User-Development Discipline", Petrocelli Books Inc., Mc Graw Hill, 1991.

[7] D. R. Hush, and B. G. Home, "Progress in Supervised Neural
Networks", IEEE Signal Processing Magazine, vol 10, no 1, pp. 8-39,1993.

[8] R. J. K. Jacob, J. N. Froscher, "A Software Engineering Methodology for
Rule-Based Systems", IEEE Trans, on Knowledge and Data Engineering,
vol 2, no 2, 1990.

[9] R. P. Lippmann, "An Introduction to Computing with Neural Nets", IEEE
ASSP Magazine, pp. 4-22,1987.

[10] B. H. Mulsant, "A Neural Network as an Approach to Clinical Diagnosis",
M. D. Computing, vol 7, no 1, pp. 25-36, 1990.

[11] T. J. O' Leary, U. V. Mikel, and R. L. Becker, "Computer-Assisted Image
Interpretation: Use of a Neural Network to Differentiate Tubular Carcinoma
from Sclerosing Adenosis", Modern Pathology, vol 5, no 4, pp. 402-405,
1992.

[12] R. Poli, S. Cagnoni, R. Livi, G. Coppini, and G. Valli, "An NN Expert
System for Diagnosing and Treating Hypertension", IEEE Comp., vol 24,
no 3, pp. 64-71, 1991.

[13] R. S. Scalero, and N. Tepedelenlioglu, "A Fast New Algorithm for Training
Feedforward NN", IEEE Trans, on Sig. Proc, vol 40, no 1, pp. 202-210,
1992.

[14] S. E. Unbaugh, R. H. Moss, and W. V. Stoecker, "Applying Artificial
Intelligence to the Identification of Variegated Coloring in Skin Tumors",
IEEE Engineering in Medicine and Biology, vol 12, no 1,1991.

[15] B. Widrow, and M. A. Lehr, "30 years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation", Proc. of the IEEE, vol 78, pp.
1415-1442, 1990.

489

MODELING OF GLAUCOMA INDUCED
CHANGES IN THE RETINA AND

NEURAL NET ASSISTED DIAGNOSIS

Simon von Spreckelsen
Hvidovre Hospital
Kettegärds Alle 30

DK-2650 Hvidovre, Denmark
and

Peter Grumstup, Jon Johnsen, and Lars Kai Hansen*
CONNECT, Electronics Institute, build. 349

Technical University of Denmark, DK-2800 Lyngby, Denmark
♦ Request for reprints: lkhansen@eileen.ei.dth.dk

Abstract. A system for modeling and early detection of Glaucoma
induced chances in the human retina is described. The system in-
cludes a modeling tool for design of semi-realistic retinal pictures,
that may either be used for educational purposes or (as here) as
a laboratory for controlled signal processing experiments. The de-
tection system includes preprocessing algorithms for elimination
of intensity variations and other artefacts. The final segmentation
step is based on a cellular neural network.

INTRODUCTION

Vision is the most important of the human senses. The human eye can be
considered a spherical structure with a radius of about 12mm. The inside
is filled up by a transparent substance corpus vitreum. The retina covers
the inside surface and holds the optically sensitive nerve ends. Furthermore
the retina holds nerve fibers collecting the optical signals. These fibers leave
the eye through the optical disc (the so-called blind spot). If the internal
pressure of the eye increases or if the blood supply to the optic disc or retina
is decreased nerve fibers can degenerate and defects in the visual field appear.
Since the human visual system can partly compensate for the lack of visual
field, the increased pressure may go undetected beyond the limit where the
induced changes are reversible. The pathological changes are collectively
called Primary Open Angled Glaucoma (POAG). Early diagnosis is essential
for preserving good visual function. If untreated POAG will lead to blindness
within five to ten years. The diagnosis is quite common, in Denmark involving

0-7803-2026-3/94 $4.00 © 1994 IEEE 490

about 2% of the population, mostly elderly [10]. About 5% of the diagnosed
eventually end up blind.

In this project the objective is to develop tools for early diagnosis of POAG
based on so-called fundus pictures, i.e., images of the retina taken though the
pupilla with a dedicated camera system. First, a model has been developed
for modeling of the changes in the retina induced by Glaucoma. This model
may be used for training of physicians, and as in this study, a laboratory for
controlled experiments with pattern recognition devices. Secondly, we have
developed a preprocessing scheme and cellular neural networks for detection
of the nerve fiber pattern as seen in fundus pictures, for more details see

[10, 7].
An image analysis study of Glaucoma detection was carried out by Ya-

mazaki et al. [11]. In this investigation diagnosis is based on a analysis
of a single intensity profile approximately orthogonal to the line connecting
the optical disc and the fixation point. In our experiment this scheme has
shown not to be robust to the variations in image quality of standard fundus
pictures.

MODELING OF FUNDUS PICTURES AND GLAUCOMA

In order to create a workbench for comparison of various computer algorithms
for enhancement and diagnosis, we have created a simple parametric model
of fundus pictures. The model is based on analysis of original fundus pictures
c.f. figure 1. The prominent features of the scene are blood vessels here seen
as dark structures emanating from the periphery of the optical disc. The
black spot is Macula (the fixation point), where the optical sensor density is
maximal. Close visual inspection reveals that the nerve fibers form a multi-
layered quite noisy line-pattern texture. For a discussion of textures see e.g.
[6]. A close-up is shown in the right panel of figure 1. Glaucoma induced
nerve fiber loss takes two different forms: a uniform reduction of fiber density
or a characteristic regional (wedge) disappearance of fibers. An example of
the latter is seen in figure 2.

ARTIFICIAL FUNDUS PICTURES

The image model consist of two modules that add features to a matrix with
predefined optical disc and fixation point locations: Blood vessel design is a
mouse based drawing module in which a semi-realistic design can be created
with varying vessel diameter and vessel edge smooting. The nerve fiber gen-
erator draws line patterns of parametric second order curves. The parameters
can be defined separately in 36 sectors surrounding the optical disc. The ori-
entation of these sectors is defined by the optical disc and the fixation point.
Noise is added with controlable signal to noise ratio to provide a realistic local
appearence of the texture.

491

\M 1!^^^^^H

50 WKrerlM' ^fc ̂ BP,"-.-K
ES*»SSKr?^Ä*' v i ^^2* TlTflt fly ~^k •■ IH J^^A^ 7^J|pPv^^^^M

100 w|^j^ tSS^s^ll^M»^ '• i i. \L. UMM«

150
«S^^ä^SI^EBKS

r^|^ T|

200

^v.:

W •>
250 * e >> **■ ™ * v * c " - '•>;

» , « -*.* »-.
^, 5* /^ !

300

... c.^. ****>< *^ j i
50 100 150 200 250 300 350 400

Figure 1: A socalled fundus picture showing the retina. Note the blood vessels ema-
nating from the blind spot and Macula, the fixation point, where optical sensitivity
is maximal. In the lower panel we show a close-up with the characteristic texture
due to nerve fibers.

492

To emulate the multi-layered structure found in real fundus pictures sev-
eral families of curves can be added. The curve parameters are slightly mod-
ified from one family to the next. In the images generated for the present
study we have used four such layers. Two layers were added before addition
of the blood vessel system and two layers added after, reflecting the layering
in the real photograph.

PREPROCESSING

The first steps in the preprocessing of a fundus picture concern elimination
of illumination artifacts and of the blood vessel system. These steps involve
band-pass filtering and simple thresholding to segment the (dark) blood ves-
sels. The location of the blood vessel system is kept in a separate mask.

TEXTURE PREPROCESSING

Texture detection algorithms are legio. Many such algorithms are based on
a two-level design in which a basic filter detect local features followed by a
merging algorithm that forms a global segmentation in regions of textures
see e.g. [6] for a recent example. We follow a similar approach here. Our
preprocessor consist of simple adaptive, quadratic, local discriminant trained
by example. The segmentation step is carried out by a cellular neural network
based on mean field annealing.

QUADRATIC DISCRIMINANT

The preprocessor classifies individual pixels based on the statistics of its neigh-
borhood (a square window of MxM pixels). A simple maximum likelihood
discriminator was found sufficient. The two populations of MxM windows
(nerve fiber texture presence/absence) are modeled as two Gaussian distri-
butions with individual means and covariance structures. The mean and
covariances are estimated from a sub-image of 350x350 pixels generated by
the Glaucoma model. Since the line textures show the characteristic direc-
tions of flow c.f. figure 2 individual populations are trained for eight regions
determined by the location of the optical disc and the fixation point. To
illustrate the performance of the quadratic discriminant we show in the left
panel of figure 2 a synthetic image with a characteristic regional defect (note
also that the blood vessels have been eliminated leaving areas of uniform grey
value). In the right panel of figure 2 we show the output (difference in log
likelihoods) provided by the discriminant (window size M = 13). To segment
the noisy result of the preprocessor into regions that quantifies the presence
of nerve fiber a global segmentation algorithm is needed.

493

150 200

Figure 2: Upper panel: Synthetic fundus picture with a characteristic wedge re-
gional absence of nerve fibers. Lower panel: Output of likelihood based discrimi-
nant.

494

CELLULAR NETWORK DESIGN

The cellular network concept was developed by Chua and Yang [2]. A cellular
neural net is a locally connected network of simple processing units, typically
operating as feed-back processes converging to a fixed point. The Bayesian or
Maximum Posterior approach is a very successful device for signal processing
(see [9] for a review), a particular attraction is that it leads to algorithms
that map well onto cellular neural networks. The basic idea of the Bayes
approach is to consider both the source (un-degraded) signal and the degra-
dation as stochastic processes. Bayes' formula can then be used to construct
the distribution of the reconstructed signal, conditioned on the observed de-
graded signal. Segmentation is an important step in many computer vision
systems. Here we use the Bayes scheme to derive a simple cost-function that
can be minimized by a cellular neural network. The resulting cost-function
is identical to the one used by Carnevali et al. [1]. The target signal is a
"smooth" binarization of a grey-scale image dj, in terms of two-valued pixels
S- e {-1, +1}. The prior distribution is designed to emphasize smoothness

P[S\ oc exp (- £ E M(i>i')(Si - $')2) C1)
V i=ij'=i /

M(j,j') defines the connectivity, hence the unit cell of the cellular net-
work. Here we just connect the nearest neighbors with strenght %.

We furthermore assume the signal degradation to consist in addition of
white Gaussian noise. This degradation process leads to the following condi-
tional distribution:

We use Bayes' formula to obtain the posterior distribution: P[S\d] oc
P[d\S]*P[S\. Clearly the posterior distribution is of the Gibbs form1, with
a cost-function given by the negative logarithm of the posterior distribution:
-log P[S\d]. We also note that the state dependent part of the cost-function
is linear in the parameters wu and wd = 1/er2. This makes it suitable for
Boltzmann machine learning [3, 4]. In this communication, however, we apply
the cellular network with fixed parameters.

The Mean Field annealing method for estimation of averages over Gibbs
distributions is well documented in the litterature see e.g. Hertz et al. [5].
The cellular neural network minimizes the Mean Field free energy and can be
implemented either in analog mode or in discrete time mode:

*A distribution of the form P(x) = Z~x exp(-E(x)/T), where E(x) is a cost-function,
bounded from below, and T is a parameter

495

N

(5j+1) = (1 - ~)(S}) + * tanh (/?'(£ M(i>J')(SJ') + w4di (3)

where the time-scale A/r can be used to control the stability of the iter-
ation process in digital implementation^]. /?' quantifies the annealing sched-
ule, in this work we use the simple schedule: /?' = ßx + (t/tmax)(ß

2 - ßl).
We illustrate the performance on the image produced by our synthetic

fundus picture system. In particular we use the Mean Field scheme for seg-
mentation of the output of the quadratic texture discriminant (figure 2). We
set the parameters to wM - 1-0, wd — 0.01. The resulting segmentation after
20 iterations of the deterministic equation (3) is presented in figure 3.

50 10O 150 200 250 300

Figure 3: Output of the cellular segmentation network. The black areas represent
the blood vessels that have been identified independently. Grey color signify areas
of nerve fiber loss. The characteristic regional defect is assigned correctly. Close
visual inspection of the synthetic input corresponding to the smaller grey spots
indeed shows that the noise has degraded the texture significantly and it is unclear
what the "true" classification should be.

Note that the segmentation network eliminates local noise. The resulting
segmented image can be used either for rutine inspections to produce early
warnings or for quantitation of the progress of the desease state and response

to medication.

496

CONCLUSION

We have presented a modeling tool for design of synthetic fundus pictures.
The system may be used either for educational purposes or as here for use
as a laboratory for experiments with pattern recognition devices aimed at
diagnosis of Glaucoma. We have designed and presented results of a simple
and fast system for detection of nerve fibers in fundus pictures. Quantitative
nerve fiber detection will be a key component in future automatic systems
for rutine screening against Glaucoma. Current work concerns further test of
the system and experiments on real fundus pictures.

ACKNOWLEDGMENT

This research is supported by the Danish Research Councils for the Natural
and Technical Sciences through the Danish Computational Neural Network
Center.

REFERENCES

[1] P. Carnevali, L. Coletti and S. Paternello: "Image processing by sim-
ulated annealing". IBM Journal of Research and Development 29, 569-
579, (1985).

[2] L.O. Chua and L. Yang: "Cellular Neural Networks: Theory".
IEEE Transactions on Circuits and Systems 35, 1257-1272, (1988).

[3] L.K. Hansen: "Boltzmann Learning of Parameters in Bayes Visual Re-
construction" . Proceedings of the First Danish Conference
on Pattern Recognition and Image Analysis. Ed.: S.I.Olsen. Depart-
ment of Computer Science, University of Copenhagen, 92/8, (1992).

[4] L.K. Hansen: "Boltzmann Learning of Parameters in Cellular Neural
Networks". Proceedings of Second Int. Workshop on
Cellular Neural Networks and Applications CNNA'92, Munich (1992).
IEEE Service Center, Piscataway NJ, 62-67, (1992).

[5] J. Hertz, A. Krogh and R.G. Palmer: "Introduction to the Theory of
Neural Computation". Addison Wesley, New York (1991).

[6] M.M. Van Hulle and T. Tollenaere: "A Modular Artificial Neural Net-
work for Texture Processing" Neural Networks 6, 7-32 (1993).

[7] Jon Johnsen and Peter Grumstrup: "Modeling of Glaucoma induced
changes in the retina and neural net assisted diagnosis (in Danish)".
Master thesis (in Danish). Electronics Institute 1994.

[8] C. Peterson and J.R. Anderson: "A Mean Field Learning Algorithm for
Neural Networks". Complex Systems 1 995-1019, (1987).

497

[9] M.W. Roth: "Survey of Neural Network Technology for Automatic
Target Recognition". IEEE Transactions on Neural Networks 1, 28-43,
(1990).

[10] M.B. Shields (Ed.): "Textbook of Glaucoma 3'rd Ed. " Lippencot, New
York (1993).

[11] Y. Yamazaki, T. Miyazawa, and H. Yamada: "Retinal Nerve
fiber analysis by a computerized digital image analysis system".
Japanese Journal of Ophthalmol 34, 174-180 (1990).

498

TOWARD IMPROVING EXERCISE ECG FOR DE-
TECTING ISCHEMIC HEART DISEASE

WITH RECURRENT AND FEEDFORWARD
NEURAL NETS

Georg Dorffner
Austrian Research Institute for Artificial Intelligence

Schottengasse 3, A-1010 Vienna, Austria
georg@ai.univie.ac.at

Ernst Leitgeb, Heinz Koller M.D.
GTZ, A-3101 St. Polten, Austria

Abstract. This paper reports about a study evaluating the usefulness of
neural networks for the early detection of heart disease based on ECG
and other measurements during exercise testing [10]. Data from 350
persons who underwent stress tests consisted of patient demographic
data and fifteen time frames of measurements during stress and rest.
Three different neural networks, two recurrent and one feedforward
using background knowledge for preprocessing, were trained and com-
pared to the performance of skilled cardiologists. It could be shown
that the best neural networks can compete with experts in classifying
tests as CAD (coronary artery disease) or normal. What concerns an
index value expressing the likelihood of disease, to be used for moni-
toring the success of treatments, the neural networks outperformed
classical statistical techniques published previously. This study has
thus shown large evidence in favor of using neural nets to improve the
exercise ECG as a non-invasive technique for detecting heart diseases.

THE APPLICATION

The electrocardiogram (ECG) is the recording of voltage changes trans-
mitted to the body surface by electrical events in the heart muscle, provid-
ing direct evidence of cardiac rhythm and conduction and indirect evi-
dence of certain aspects of myocardial anatomy, blood supply and func-

0-7803-2026-3/94 $4.00 © 1994 IEEE 499

don. Electrocardiography has been used for many years as a key non-inva-
sive method in the diagnosis and early detection of ischemic heart disease
(coronary artery disease, or CAD), which is the leading cause of mortality
in Western countries [5,6].

To improve the accuracy of the electrocardiogram and obtain more in-
formation on the dynamic state of the heart, exercise testing was intro-
duced [5,11]. During stress testing not only the electrogardiogram is con-
tinously registered but also other physiological parameters are monitored
(blood pressure, physical symptoms and angina pectoris). According to dif-
ferent established protocols, the workload is increased step by step and the
changes of parameters during stress and recovery are recorded and
analysed. Skilled cardiologists achieve 65-75% specificity (correctly classi-
fied normals) and 75-85% sensitivity (correctly classified CAD cases) in
detecting CAD based on the resulting data [5,6].

In patients with suspected angina pectoris, exercise testing may confirm
the diagnosis of ischemic heart disease and indicate the severity and prog-
nostic importance of coronary artery lesions. In patients with definite is-
chemic heart disease, the exercise test is used to follow the progression or
regression of the disease and the effect of therapy including drugs, invasive
cardiology (e.g. angioplasty, atherectomy,..) or coronary artery surgery.
Following myocardial infarction, exercise testing is performed to allow risk
stratification, patients identified as being at low risk for death or re-infarc-
tion can be reassured and those at high risk can be managed appropriately
[6].

If contra-indications (e.g. in the presence of acute, severe illness) are
strictly observed, stress testing is a safe, cheap and non-invasive method,
and is widely used in hospitals, by cardiologists, and general practitioners in
primary care and health care centers. The success of the test is widely
determined by the skill of the observer (cardiologist, general practitio-
ner,..) and the patients themselves. Several efforts have been made to
minimize these effects [7]. The following list shows a short summary of how
automatic methods of CAD detection could improve the value of ECG and
stress testing as indicator for heart diseases:

- automatic methods could minimize inter- and intraobserver variability
on the test

- they could generally improve the detection of diseases like CAD
- they could contribute to improved monitoring of different therapies
- they could select continously new information on a given data set
- they could improve the acurracy of unskilled observers

Previous approaches to such improvements, such as [2,4,7,9], concen-
trated on classical statistical techniques and yielded results of up to 79 %

500

sensitivity and 76 % specificity. In this paper we report about studying arti-
ficial neural networks with respect to their ability for such improvements. In
particular, if neural networks prove to be able to (objectively) classify cases
comparably to (partially subjective) expert performance, and if they can
provide tools for monitoring therapies, they can be viewed as valuable tools
for future diagnostic systems in this domain. As the results below show,
neural networks indeed prove to be able to do so.

THE DATA

The data used in this study consisted of patient-demographic parameters
and fifteen frames of measurements from stress testing. The former in-
cluded the person's sex, age, weight, and size, an indication whether a
prior infarction is known, the workload that was reached by the person, the
duration of the phase of the highest workload, and the expected heart rate,
as well as workload to be achieved, computed according to [12,13]. The
latter consisted of the above-mentioned measurements — namely heart
rate, systolic and diastolic blood pressure, physical symptoms, angina pec-
toris, and features extracted from the ECG such as ST-segment depression
and rhythmic anomalities. These measurements were taken during 11 stress
phases (from 0 to 250 W, incremented by 25 W at each phase) and 4
subsequent rest phases (immediately after stress, and after 1, 3, as well as 5
minutes).

Data from 350 persons was available, including 107 normals and 243
with coronary artery disease, ranging from single to three vessel diseases.
Among the 107 normals, data from 31 athletes were included. As com-
pared to the other normals, these constitute "ideal normals," since all other
persons undergoing stress testing were at least suspected of CAD and thus
had a non-negligible prior probability for the disease. This is a well-known
problem in using techniques like neural networks that rely on available data
material. In many cases, normals are too similar to the pathologicals to
permit clean separation. Non-evasive stress testing, on the other hand, can
without risk be applied to persons with a negligible prior probability for the
disease. The following table depicts the distribution of all cases, including a
distinction according to the persons' sex:

501

Hidden

Outputrj

.A
Input | *^ | I I] J. ,, ,

pal.dem. exercise Mate
data data l—O-1 data data

Figure 1

Outputl

Hidden

Inputl

pat. dem.
data

exercise Stale T
data »-0-1

Figure 2

total females males

athletes 31 2 29
other normals 76 33 54
1 vessel CAD 60 16 44
2 vessel CAD 80 13 67
3 vessel CAD 103 14 89

THE NEURAL NETWORKS USED

The task of this study was to evaluate the ability of neural networks to
indicate coronary artery disease based on the data described above. Three
types of neural network were used. The first and the second network were
recurrent (roughly Elman-type) networks to account for the fact that the
fifteen frames of stress test measurements form a time series with temporal
evolution of all parameters. The third was a multilayer perceptron applied
to preprocessed data (using knowledge about the domain).

Neural network 1: The first attempt of applying a neural network to the
data was a somewhat "blind" training using only little background knowl-
edge about the domain. An input layer of 19 units was used encoding pa-
tient demographic and stress test data for each time frame. This layer fed a
recurrent network, somewhat similar to [3], as depicted in figure 1. At
each update step through the network, the hidden layer activations were
fed back to a state layer of the same size with weighted but fixed one-on-
one connections. Each unit in this state layer was connected onto itself with
a fixed weight. State and input layer together formed the input for the
hidden layer, which in turn spread activation to an output layer of one unit.

502

Aside from the feedback via the recurrent connections the network was
considered as a multilayer perceptron and thus trained by backpropagation
at each of the fifteen time frames. The target for the output unit was cho-
sen 1 for pathological cases and 0 for normal ones. To account for the
temporal evolution during the fifteen time frames, the target for pathologi-
cal cases was continuously raised from 0 to 1 between the start of the se-
quence and the last stress phase reached by the patient (i.e. the highest
workload successfully passed). After that, for the remaining time frames, it
was clamped at 1. A similar method for classifying sequences has been
suggested elsewhere (e.g. [1]).

The hidden layer size was varied between 8 and 20. The weights on the
one-on-one connections between hidden and state layers were kept fixed at
1, the weights of the state layer units onto themselves were all set at 0.5
(thus preserving 50 % of the previous history at each time frame in the
sequence — compare [16]). Roughly half of the 350 cases (173) were cho-
sen as a training set that was kept fixed for all training runs reported in this
paper. It was chosen such that the distribution of athletes vs. other normals
vs. pathologicals was roughly the same for training and test set, and such
that no significant difference in the distribution of the patient-demographic
parameters occured between training and test sets. Other than that, the
selection was random. Each training run consisted of between 60,000 and
100,000 presentations of single cases (each consisting of the full fifteen
time frames), picked randomly from the training set, with a learning rate of
0.01, and of between 60,000 and 100,000 further presentations with a
learning rate of 0.001. This simple schedule of lowering the learning rate
had proved sufficient for reaching convergence in several preliminary train-
ing runs, and was also fixed for all runs reported here. In addition, a mo-
mentum term (according to [15]) with scaling factor 0.9 was used.

One problem with this blind application of a recurrent network might be
the over-representation of patient demographic data, which did not change
during the temporal sequence. Thus, in several variations of this network
scheme, the input units corresponding to this part of the data were acti-
vated only either at the beginning time frame, the final two time frames, or
at both such ends of the sequence, while being clamped at 0 for the other
time frames.

Neural network 2: To solve that possible problem of over-representation
of patient demographic data in a more elaborate way, a second network
architecture was devised and tested. It consists of two modules explicitly
separating the data changing over time from the time-independent data,
depicted in figure 2. The first module is another recurrent network as de-
scribed in the previous section, but which was only fed with the time-chang-

503

ing stress test data. The second module is a multilayer perceptron with two
input layers — a layer encoding the patient demographic data similar to
above, and the hidden layer of the recurrent network after complete up-
date cycles through the sequence. Training consisted of two phases — first
of training the recurrent network as above, and secondly, of training the
multilayer perceptron by backpropagation.

In addition, three output units instead of one were used encoding the
more detailed cases of normal (all units 0), one, two or three vessel disease
(first, first and second, or all three units active at 1). For evaluation, still
only the distinction between normal and CAD was considered. The ex-
pected effect of the two additional units was improved discriminability
through the extra information in the target (this was reported previously as
improving network performance, e.g. [14]). Both hidden layer sizes were
varied between 10 and 20.

Since many patients could not finish the stress test up to the highest
workload (which itself is a certain indicator for CAD), many time frames
consisted of zero measurements. Thus, in a further extension, the sequen-
tial update of the recurrent network was adjusted such as to skip those null
frames, making the length of each sequence variable.

Neural network 3: The third attempt at a neural network solution in-
volved an additional amount of background knowledge, which was mainly
used to preprocess the data. The major difference to above was that no
longer a recurrent network, but instead a multilayer perceptron with three
input layers was used. The information in the time sequence was explicitly
encoded by making use of previous methods of arriving at an indicator for
CAD from the same kind of data [8]. There, each time frame was evalu-
ated separately, and the contributions (basically a weighting of several fac-
tors considered as possible single indicators for CAD) of all time frames
were summed. For the computation of a final index, which can be shown to
highly correlate with CAD (see also below) only those sums were used. In
addition, an explicit distinction between stress and rest phases was made.

According to these expert decisions, the third neural network was fed
with the sums of the following indicators (taken from [5,6]; as in [8]):

- a deviation of the change in heart rate from a given tolerance interval
- a decrease in systolic blood pressure
- the presence one of several critical phsysical symptoms
- the presence of angina pectoris
- ST-segment depression
- the presence one of several critical rhythmic anomalities

504

100
90
80
70
60
50
40
30
20
10
0

[S^-SS 89-J80.5 n? 80.5 7S 8J
7fe

n f I if
best network 1 best network 2 best network 3 skilled experts

Figure 3

In distinction to [8], the first two were included as scaled values, instead
of binary decisions about their presence. Furthermore, the following infor-
mations were also included [5,6]:

- a decrease in diastolic blood pressure
- pathological systolic blood pressure (larger than 140)
- pathological diastolic blood pressure (larger than 90)

again as scaled values. This was done separately for the stress and rest
phases, leading to the activations of two of the three input layers. The third
input layer encoded the patient demographic data as above. While many of
these indicators were also used for network 2, here they were specifically
tuned according to literature and, above all, explicitly summed up (rather
than accumulated in the recurrent network).

Each training step consisted of one presentation of input patterns and
one learning cycle with backpropagation. The hidden layer size was varied
between 10 and 20. Again three output units were used.

THE RESULTS

In this study the neural networks were evaluated against two criteria:

(1) their ability to correctly classify cases into CAD and normal.

(2) their ability to produce an index expressing the likelihood of disease,
which can be used to monitor the success of treatments (a decreasing
index after treatment would indicate less likelihood of CAD and thus
success of treatment).

Figure 3 shows an overview of the results concerning criterion (1). It
depicts the best performances of the three networks, drawn as sensitivity
(correct positives — white bars) and specificity (correct normals — black
bars) in percentages. Since through varying the decision threshold at the

505

Oa 0 12 3
best network 1

Oa 0 12 3
best network 2

Figure 4

12
10

i
4

rin rl 1 1 1
Oa 0 12 3
previous approach

output unit these two values can be changed, for all results two pairs of
values are depicted — one with relatively high sensitivity (always the result
at the default threshold 0.5), the other with relatively high specificity (such
that sensitivity stays above 80 %). For comparison, the range of the best
performances of skilled cardiologists in interpreting the same data is shown
(the two pairs of values corresponding to worst and best performance, i.e.
the 75/65 % and 85/75 % mentioned above).

Concerning criterion (2), the original output value (which is simply com-
pared to a threshold for the former criterion) appears to be usable as an
index expressing the likelihood of disease. To demonstrate this, in figure 4
the mean (black bars) and standard deviations (white bars) of the output
value for the five classes athletes (Oa), other normals(O), one, two, and
three vessel disease are shown. In the case of three output units the activa-
tion values of all units was averaged. This depiction shows a significant
correlation between the index produced by the network and the extent of
the disease. For comparison, the same five ranges (although on a different
scale) are shown for a previously published statistical method for computing
such an index [8].

DISCUSSION

The results show that neural networks can reach the upper ranges of
expert performance, in some cases they can even perform slightly better.
The second recurrent network using less background knowledge than the
feedforward network but with the ability to exploit the time series based on
the training data achieved best performance, although closely followed by
the feedforward network. Neural networks 1 and 2 could also outperform
previous non-neural approaches [2,9].

With respect to an index for monitoring the success of treatment, neural
networks appear superior to traditional statistical methods. Standard devia-

506

tions are smaller and the separation between normals and pathologicals
involves fewer overlap.

CONCLUSION

In this paper we have demonstrated the usefulness of neural networks in
early detection of heart disease based on measurements during exercise
testing. Recurrent networks which can exploit temporal dependencies ap-
pear as the best solution at the moment. Future research will investigate the
combination of the recurrent approach with the type of background knowl-
edge used in the feedforward case (e.g. through initialization), and the use
of neural networks in hybrid neural/rule-based diagnostic systems. The re-
sults so far show great promise for significant contributions to making non-
invasive ECG measurements during stress testing a prominent method for
detecting one of today's most fatal diseases.

ACKNOWLEDGMENTS

The Austrian Research Institute for Artificial Intelligence is supported by
the Austrian Federal Ministry of Science and Research. We thank the Eco-
nomic Chamber of Lower Austria for supporting this research, designed to
lead to improved software systems.

REFERENCES

[1] Anderson S., Merrill J., Port R.: Dynamic Speech Categorization with
Recurrent Networks, Indiana University, Computer Science Dept.,
Techn. Report No. 258, 1988.

[2] Deedwania P.C., Joshi B., Cabajal E.V.: Analysis of Temporal
Electrical Heterogeneity by a New 22 Lead ECG System Accurately
Identifies Patients with Coronary Artery Disease, suppl. to Circulation

84, no. 4, 1991.

[3] Elman J.L.: Finding Structure in Time, Cognitive Science
14(2)179-212, 1990.

[4] Greenberg P.S., Cangiano H., Leamy L., Ellestad M.H.: Use of the
multivariate approach to enhance the diagnostic accuracy of the
treadmill test, J. Electrocardiology 63, pp.987-1000.

507

[5] Hurst W.: The Heart, 7th ed., New York: McGraw Hill, 1990.

[6] Julian D.G., Camm A.J., Fox K.M., Hall R.J.C., Poole-Wilson P.A.:
Dieseases of the Heart, London: Bailliere Tindall, 1989.

[7] Kligfield P., Ameisen O., Okin P.: Heart rate adjustment of
ST-segment depression for improved detection of coronary artery
diesease, Circulation 79, pp. 245-255, 1989.

[8] Koller H., Leitgeb E.: Ist eine Verbesserung der Aussagekraft und
Reproduzierbarkeit des Belastungs-EKG erzielbar?, Wiener
Medizinische Wochenschrift 143(5), pp.110-117, 1993.

[9] Mark D.B., et al.: Prognostic Value of a Treadmill Exercise Score in
Outpatients with Suspected Coronary Artery Disease, New England
Journal of Medicine 325 (12), pp.849-853, 1991.

[10] McNeer J.F., Margolis J.R., Lee K.L., et al.: The role of exercise test
in the evaluation of patients for ischemic heart disease, Circulation 57,
pp.64-70, 1978.

[11] Mellerowicz H., Maidorn K., Matzdorff F., Nowacki P., Rittel H.F.,
Schmutzler H., Schön F.A., Stoboy H., Waterloh E., Zapfe H.:
Ergometrie, München/Wien/Baltimore: Urban & Schwarzenberg,
1979.

[12] Niederberger M.: Grundlagen der Ergometrie, österreichische
Ärztezeitung 4., pp. 21-36, 1978.

[13] Niederberger M.: Belastungsuntersuchungen in der Kardiologie, Herz
7, pp. 1-19, 1982.

[14] Prem E., Mackinger M., Dorffner G., Porenta G., Sochor H.:
Concept Support as a Method for Programming Neural Networks with
Symbolic Knowledge, in Ohlbach H.J.(ed.), GWAI-92: Advances in
Artificial Intelligence, Berlin: Springer, Lecture Notes in AI, Vol.671,
1993.

[15] Rumelhart D.E., Hinton G.E., Williams R.J.: Learning Internal
Representations by Error Propagation, in Rumelhart D.E., McClelland
J.L.(eds.), Parallel Distributed Processing, Explorations in the
Microstructure of Cognition, Vol 1: Foundations, Cambridge, MA:
MIT Press, 1986.

[16] Ulbricht: Multi-reccurent networks for traffic prediction, to appear in
Proceedings of the National Conference on Artificial Intelligence
(AAAI), Seattle, 1994.

508

TOWARDS SEMEN QUALITY
ASSESSMENT

USING NEURAL NETWORKS

Chr. Linneberg, P. Salamon, C. Svarer, and L.K. Hansen
CONNECT, Electronics Institute, build. 349

Technical University of Denmark,
DK-2800 Lyngby, Denmark

email: linne,salamon ,csvarer,lkhansen@eileen.ei.dth.dk

and

J. Meyrowitsch
DynaVision, Copenhagen Science Park, SYMBION

DK-2100 Copenhagen 0, Denmark

Abstract. The paper presents the methodology and results from a
neural net based classification of human sperm head morphology.
The methodology uses a preprocessing scheme in which invariant
Fourier descriptors are lumped into "energy" bands. The result-
ing networks are pruned using Optimal Brain Damage. Performance
comparable to the error rate for human technicians is obtained.

1 INTRODUCTION

Semen quality assessment is important to fertility studies and standards have
been introduced by the World Health Organizationfl]. Recent research has
demonstrated that semen quality has decreased by 50% during the past 50
years in the western world, possibly as result of the increasing exposure to
pollutants and changes in diet [4, 5]. The Atlas of Sperm Morphology[2]
defines 19 classes of sperm cells based on morphology. The characteristic ab-
normalities involve shape modifications, including multiple heads and tails.
Furthermore, sperm cell motility is also important for definition of abnor-
mality. Since sperm cells show great variety, the morphological classification
problem represents a complex task. Furthermore, the appearence of the spec-
imen depends on several factors that are only partially controllable, such as
reduced imaging quality, caused by co-fixation of precipitates and presence of
non-sperm cells. Hence flexible and robust classification tools are necessary.

0-7803-2026-3/94 $4.00 © 1994 IEEE 509

In this communication we analyse a neural net approach to automatic cell
shape classification. Neural net learning makes it possible to compensate for
the problems of specific imaging devices, and the user is not forced to produce
an algorithmic description of the discriminant. Rather the same general soft-
ware can adapt to a given setting based on examples produced by a skilled
technician. Robustness is achieved by the networks' ability to generalize. The
prime objective in machine learning is the ability to discriminate appropri-
ately for test cases, i.e., examples that are different from the examples used
for training of the neural system. Additional robustness can be obtained by
careful preprocessing by which we mean model-based information processing,
such as extraction of known salient features.

As a first step towards automatic quality assessment we have developed
preprocessing algorithms for locating sperm cells and for extraction of salient
features of the "head" and the "tail". In this presentation we will discuss
the neural classifier for head shape classification. A convenient preprocessing
strategy for shape discrimination has been proposed by [18, 11] and is based
on Fourier analysis. A polygon in the image plane is isomorphic to a periodic
sequence in the complex plane. For reviews and further analysis see also
[11, 19, 16, 17, 14, 8]. Fourier descriptors are robust to the number of points
used in sampling the shape and readily provide features which are invariant
to changes in position, orientation, and starting point [18, 11].

Neural networks in conjunction with Fourier descriptors have been ap-
plied for shape discrimination previously in [13] and more recently in [8].
The objective of [13] was to recognize tools from a mechanical toolbox. The
Fourier coefficients were crudely preprocessed by keeping only a few manu-
ally selected amplitudes. The results were promising; good performance was
obtained with very few examples using a fully connected feed forward neural
net trained by standard Backpropagation. However for sperm cell classifica-
tion we have found that the inherent variability forces us to invoke optimized
classifiers and more sophisticated preprocessing schemes. Our neural classi-
fier approach was first described in [6], and in [8] it was tested on two sets
of artificial cell shape data. Here we apply the system to real world data. In
the context of cell discrimination the approach involves a new feature: the
neural networks used have adaptive architectures. In particular, the networks
are pruned to obtain the optimal connectivity. The advantage of the pruned
networks is that they perform better on test data, ie. they do not simply
memorize the training data but are able to generalize better than fully con-
nected architectures. They are also able to select out the relevant inputs and
thereby can mitigate the results of using too many input descriptors. More
details on the simulator for the design of application specific architectures
can be found in [7, 6]. Based on statistical theories of generalization, the best
generalization is expected from the least complex networks. In our simulator
we search for the best network with a pruning scheme based on the Optimal
Brain Damage technique of [10]. We first train a large network that can eas-
ily implement the training set. Subsequently we compute the saliency of the

510

weights of the network and delete a fraction of the weights with the lowest
saliency. The network is re-trained and the procedure repeated as long as the
pruned network is able to implement the training set. For noisy problems,
of course, one would tolerate a certain amount of error on the training set in
order not to overfit1. Our results indicate that pruning improves performance
but, however, should be terminated well before reaching the smallest network
that is able to do the training set.

2 SHAPE PREPROCESSING

As stated in the introduction, we used Fourier shape descriptors, i.e. the
inputs to our neural networks were computed from the Fourier coefficients of
the sequence of (x, y) coordinate pairs viewed as complex numbers: z = x+iy.
The complex representation of a sequence of N points becomes periodic with
the definition: z^+k = Zk- The Fourier representation has the advantage that
the description is rather robust to sampling the actual cell shape with different
points and is rather insensitive to the number of points in the sample [3]. It
also allows for finding descriptors which are invariant to translation, rotation,
and the choice of a starting point in our description of the curve [18, 11]. The
invariances are important because they effectively increase the size of the
training set. Using invariant inputs is roughly equivalent to enlarging the
training set by adding rotated, renumbered etc. versions of each training
sample.

The invariances are achieved by transforming the shape to "standard
form". For example, the centroid of the shape can be moved to the ori-
gin by setting the zeroth Fourier coefficients equal to zero. The standard
form inherent in the popular "elliptic Fourier descriptors" [11] is based on
the elliptic approximation for the shape which is obtained by truncating the
Fourier series to terms with frequency one. This so-called primary ellipse
then serves through its major axis to provide a natural starting point and a
natural coordinate system which takes care of rotation and scale. The result-
ing transformed Fourier coefficients are invariants which provide a complete
description of the shape and are called the elliptic Fourier coefficients.

To further reduce the complexity of the input representation, hence the
network, we lumped the component by summing the energy in certain fre-
quency bands.

3 NEURAL CLASSIFIER

Our simulation tool for design of adaptive neural architectures was described
in [7, 6]. The initial architecture is an ordinary feed-forward network with one
hidden layer. The standard output coding scheme for multi-class problems
is used, hence, each class is represented by a specific output neuron. The

1For an implementation of this within time series prediction see [7].

511

Figure 1: Reconstruction of cells from reduced sets of Fourier coefficient. (Solid:
normal cell shapes; dotted: amorphous cell shapes)

activation functions of the hidden neurons are hyperbolic tangents, while the
activation functions of the output neurons are linear. The training error is
the usual sum of squared errors. The learning algorithm adjusts the weights
of the network in order to minimize the error function. For the hidden layer,
a second order modification of the back-propagation algorithm with batch
learning is used, and, for the output neuron, the matrix inversion algorithm,
described in [9] is used.

The algorithm used to adapt the neural network architecture is in brief:

1. Train the fully connected neural network using the learning algorithm.

2. Use the Optimal Brain Damage method to calculate the saliencies of all
the weights in the network.

3. Find the weight in the network with the lowest saliency and remove
this weight by setting it (permanently) to zero. If a hidden neuron is
disconnected from the output neuron the hidden neuron is removed.

4. Retrain the network using the learning algorithm.

4 THE IMAGE DATABASE

The image database used in this work consisted of digitized images of fix-
ated and Papanicolau stained semen specimens collected at the Department
of Growth and Reproduction, Rigshospitalet Copenhagen. Each image ob-
tained contains a variable number of manually classified cells. The classifi-
cations were far from certain and show that the problem includes significant

512

overlap between the categories. Six independent laboratory technicians classi-
fied the images and on the average the technicians differed from the consensus
classification on more than 15% of the samples. To simplify matters, we have
restricted our attention to binary discrimination using two categories: "nor-
mal" and "abnormal". The set consisted of 50 cells; 25 from each category.
The set was divided into a training set of 13 cells from each category, and a

test set of the remaining 24 cells.

50 100 150 200 250 300 350 400 450 500

Figure 2: An original grey scale image used for manual labeling of the sperm cells

20 40 60 80 100 20 40 60 80 100

Figure 3: Examples of the two kinds of sperm cells. A) Normal cell shape B)
Amorphous shape

513

5 EXPERIMENTAL RESULTS

The feed forward net was configured with 20 input units. The first 16 in-
put units contained normalized Fourier amplitudes corresponding to 8 low-
frequency pairs. The remaining four inputs represented the accumulated
energies of 2 intermediate-frequency bands. The phases of all the.Fourier
components were discarded along with the amplitudes for the high-frequency
components . The network has been initialized with random weights and a
simple feed-forward architecture with 6 hidden neurons. It was found that
the nets could be pruned significantly and that such pruning improved gen-
eralization. The training and test errors during a pruning run are depicted in
figure 5. Contrary to previous experience using the pruning strategy [7, 6],
the network with minimum test error was not the network with the smallest
architecture which correctly implements the training set. Furthermore, we
suspect that this is generally to be expected for problems with small training
sets and significant overlap between categories. We are presently working
on a crossvalidation methodology for choosing the best architecture along a
pruning sequence.

Classification error

140 120 100 80 60 40
Number of parameters

Figure 4: Training (solid line) and test errors (dot-dashed) as pruning progresses.
For reference, the test error level of a technician is about 15%.

Inspecting the test errors it is found that pruning can decrease the error
by about 25%.

514

Figure 5: Typical pruned network that can learn the training set (Solid line
Positive weight, Dotted line - Negative weight).

20 20

40 40

60 60

80

100

IP1 " 80

100
20 40 60 80 100 20 40 60 80 100

Figure 6: Two cell shapes from the test set that were not learned by the above
network. A) normal cell B) amorphous cell.

515

6 CONCLUSION

It has been shown that neural networks are useful for morphological clas-
sification of cell shapes. Application specific architectures can be designed
automatically which generalize well to an independent test set. The optimal
architectures showed that only a few neurons and connections are necessary.
Also it has been shown that preprocessing the cell shape coordinates us-
ing the complex Fourier transformation provides a well-suited and compact
representation of the data. The optimal networks use less input informa-
tion than the human eye apparently found necessary. Current work concerns
larger databases, multi-class classification, and crossvalidation methodologies
for choosing the best network among a pruning sequence.

ACKNOWLEDGMENTS

This research is supported by the Danish Research Councils for the Natu-
ral and Technical Sciences through the Danish Computational Neural Net-
work Center. We thank A. Gewercman and N. J0rgensen (Dept. of Growth
and Reproduction, Rigshospitalet, Copenhagen) and Erik Bostofte (Fertil-
itetsklinikken, Hvidovre Hospital and The Clinic of the medical doctors of
Copenhagen) for useful discussions and for providing data for this project.

REFERENCES

[1] "WHO Laboratory Manual for the Examination of Human Semen and Semen-
Cervical Mucus Interactions" Cambridge University Press, Cambridge 1992.

[2] M.M. Adelman and E.M. Cahill "Atlas of Sperm Morphology" ASCP Press,
Chicago (1989).

[3] G.W. Strang "Introduction to Applied Mathematics" Cambridge University
Press, Cambridge 1985.

[4] E. Carlsen, A. Gewercman, and N.E. Skakkebask: "Evidence for decreasing
quality of semen during past 50 years" British Medical Journal 305, 609-613
(1992).

[5] R.M. Sharpe and N.E. Skakkebaek: "Are oestrogens involved in falling sperm
counts and disorders of the male reproductive tract?" The Lancet 341, 1392-
1395 (1993).

[6] J. Gorodkin, L.K. Hansen, A. Krogh, C. Svarer, and O. Winter:
"A Quantitative Study of Pruning by Optimal Brain Damage"'
Int. Journ. Neural Systems (1993).

[7] C. Svarer, L.K. Hansen, and J. Larsen:
"On Design and Evaluation of Tapped-Delay Neural Network Architectures"
The 1993 IEEE Int. Conference on Neural Networks San Francisco. Eds. H.R.
Berenji et al., 45-51, (1993)

516

[8] C. Svarer, L.K. Hansen B. Wellhouse and P. Salamon:
"Classification of Cell Shapes using Designer Networks". In preparation (1994).

[9] Simon A. Barton: "A Matrix Method for Optimizing a Neural Network",
Neural Computation 3, 450-459, (1991)

[10] Yann Le Cun, John S. Denker and Sara A. Solla: "Optimal Brain Damage",
In Advances in Neural Information Processing Systems II (Denver 1989), ed.
D.S. Touretzky, 396-404. San Mateo: Morgan Kaufmann, (1989)

[11] F.P. Kuhl and C.R. Giardina: "Elliptic Fourier Features of a Closed Contour"
Computer graphics and image processing 18, 226-258 (1982)

[12] Bill Wellhouse, Department of Mathematical Science, San Diego State Univer-
sity: "Description of cell shape data", Private communication, (1992)

[13] H-H. Wu and R.A. Schowengerdt: "Shape Discrimination Using inveri-
ant Fourier Representation and a neural network classifier" SPIE 1569
Stochastic and Neural Methods in Signal Processing, Image Processing and,
Computer Vision 147-154 (1991).

[14] L.M. Kerley and J.R. Knisley: "Complex Vectors and Image Identification"
The College Mathematics Journal 24, 166-174 (1993).

[15] J.C. Schon, J.T. Torre-Bueno, and G.B. Stefano: "Microscopic computer-
assisted analysis of conformational state: reference to neuroimmunology"
Advances in Neuroimmonology 1, 252-259 (1991).

[16] G. Diaz, A. Zuccarelli, I. Pelligra, and A. Giani: "Elliptic Fourier Analysis
of Cell and Nuclear Shapes" Computers and Biomedical Research 22, 405-414

(1989).

[17] G. Diaz, D. Quacci, and C. Dell'Orbo: "Recognition of cell surface modulation
by elliptic Fourier analysis" Computer Methods and Programs in Biomedicine

31, 57-62 (1990).

[18] G.H. Granlund: "Fourier Preprocessing for Hand Print Character Recogni-
tion" IEEE Transactions on Computers C-21, 195-201 (1972).

[19] A.W. Partin, J.S. Schoeniger, J.L. Mohler, and D.S. Coffey: "Fourier anal-
ysis of cell motility: Correlation of motility with metastatic potential"
Proc.Natl.Acad.Sci 86, 1254-1258, (1989).

517

USE OF NEURAL NETWORKS IN DETECTION OF
ISCHEMIC EPISODES FROM ECG LEADS.

Nicos Maglaveras1, Member IEEE, Telemachos Stamkopoulos1, Costas Pappas1

and Michael Strintzis2, Senior Member IEEE

Aristotelian University,
Lab of Medical Informatics1 and Information Processing Chair2,

54006 Thessaloniki, Macedonia, GREECE

Abstract. A supervised neural network (NN) algorithm was used for
automated detection of ischemic episodes resulting from ST segment elevation or
depression. The performance of the method was measured using the European
ST-T database. In particular the performance was measured in terms of beat-by-
beat ischemia detection and in terms of ischemic episodes detection. Aggregate
statistics for the description of the detector performance were used due to the
small number of events. The algorihtm used to train the NN was an adaptive
backpropagation (BP) algorithm. This algorithm reduces dramatically training
time (10-fold decrease in our case) when compared to the classical BP algorithm.
The resulting NN is capable of detecting ischemia independently of the lead
used. It was found that the average ischemia episode sensitivity is 88.62% while
the average ischemia sensitivity is 72.22%. This drop in ischemia sensitivity could
be attributed to the diverse statistical properties of the ECGs within the same
patient. The results show that NN can be used in ECG processing in cases where
fast and reliable detection of ischemic episodes is desired as in the case of
critical care units (CCUs).

INTRODUCTION

Ischemia is considered to be a major complication of the cardiac function,
and a prime cause for the occurence of cardiac infarction and dangerous cardiac
arrhythmias. The main characteristic of ischemia in the cellular level is the
depolarisation of the cellular resting membrane potential. This causes a potential
difference between the normal and ischemic tissue, which in turn causes the
flow of an "injury current" [1]. This "injury current" is manifested in the ECG by
an ST depression or elevation depending on the anatomical position of the heart
and the dipoles with respect to the recording electrodes. Thus there are cases in
the 12-lead standard electrode system that the ST depression is not as evident, or
where we have ST depression while no ischemia is present such as can happen
with leads III and AVF due to patient position [2].

0-7803-2026-3/94 $4.00 © 1994 IEEE 518

Major problems with detecting the ST segment in the ECG can be
identified as follows: 1. Slow baseline drift, 2. Noise, 3. Sloped ST changes and 4.
Numerous ST-T patterns within the same patient. A number of methods have
been proposed in the literature until today on this problem based on digital
filtering, time analysis of the signal's first derivative, or syntactic methods. None
of these methods though were able to be tested in an annotated database to
obtain a good measure of their ability to detect ST depression. Recently a new
annotated database was developed that contains recordings with annotated
ischemic episodes [3]. The database contains two leads. A couple of new
algorithms were developed to identify ischemia using information from both
leads which improved sensitivity [2].

Neural networks have appeared over the past few years as pattern and
statistical classifiers [4] and have been used in many areas of science. They have
also been used in medicine and in ECG analysis in particular [5]-[7]. Since they
can be trained to recognise patterns they have a good chance for recognising the
complex patterns an ST segment can have.

In this paper we implement an adaptive backpropagation NN for ischemic
episodes detection. The testing of the efficiency of the NN in detecting ischemic
episodes is done using the European ST-T database. The training of the NN was
found to be dramatically decreased by adapting the gain term in the delta rule,
so that we can avoid local minima in the error phase plane. The test of the NN
efficiency is made using aggregate statistics, and deriving specific indices for
both ischemic episode and ischemia duration sensitivity and predictivity [8].

METHODS

The main stages we followed in our algorithm were:
1. Selection and preprocessing of the training set.: A training set is
constructed using patterns from the ST-T database. Some patterns used in this set
are shown in Figure 1. These patterns included normal, depressed, sloped and
noisy ST segments. In particular 50% of the patterns used were normals, 25% had
ST depression and 25% ST elevation. All patterns came from channel #1 of the
European ST-T database (Table 1).

-541 I

72 108 t 44 180 ?16 2S2 288 524 360

J\
120 160 200 240 280 320 360 400 440 480 520

519

JOÜ

264

??B

19?

156

120

64

48

12

-?4

'o 120 240 360 4B0 600 720 840 960 1 0Ä0 1 ?00 0 40 BO 120 160 200 240 2B0 320 360 400

Figure 1:
A selection of representative patterns chosen to train the NN. We can observe
normal patterns, ST depressed, and sloped ST changes.

Table 1: Training set statistical analysis.

Reference V3 V4 V5 MLIII

Normal 10% 60% 10% 20%

ST+ 0% 71.4% 14.3% 14.3%

ST- 28.6% 42.8% 0% 28.6%

2. Description and training of the NN: The NN used to identify the ST
segment, consists of three layers. The first layer (input layer) has 20 neurons.
This number is equal to the number of selected points from preprocessing stage.
This number has been taken by experimental work and gives the best results.
The second layer which is the hidden one, has 10 neurons. The number of 10 was
chosen to avoid repetition problems and to minimize the training time. The
number of hidden neurons represents the total memory of NN. For the third
layer two neurons were used. The output of these neurons is a value between 0
and 1 and is considered to be 1 if it is greater than 0.5 and it is 0 otherwise. The
patterns taken from output layer represent a type of ST segment. In a
feedforward network (such as the BP NN), each unit has an activity level that is
determined by the input received from units in the layer below. The total input
to neuron j can be written as an inner product of input and weight vectors plus a
constant T: (bias). The output of neuron j is taken applying a sigmoid activation
function f(.) to the total input. This adaptation algorithm changes
backpropagation rates, depending on the derivative of energy function. When the
energy reaches a local minimum which is detected observing the first derivative,
the algorithm changes the training rates of NN in such a way that increasing the
first derivative by a small amount, the energy decreases after a few iterations

again.

520

10.00

45.00

40.00

33.00

. 30.00

S3 W.00
g ».00

W 15.00

10.00

5.00

0.00
I ► 600 1200 1800 2*00 3000 MOO «200 4800 5«00 «000

Iterrations

Figure 2:
The energy function as it changes during the NN training illustrating the
monotonicity of the convergence of the error calculation

This results in a monotonicaly decreasing energy function (Figure 2). The most
formal way to do this is to increase the delta rule rates for an amount
equivalent to 10% of the former rate value and then to decrease it to a value
smaller than the old one. This method cannot guarantee the minimization of
energy function in all cases. But in our case it works well and could dramatically
decrease the training time.

3. Preprocessing of the ECG signal - Recall phase of the NN: The main
problem in detecting ischemia is to formalize the ST-segment in order to make
an input suitable for NN without loosing any information. This is done here,
finding the differences of ischemic ST segment template from this of normal
one. At first, the detection of R-point is done using an LVQ neural network. The
percentage of this NN in finding R-peaks is about 97% [7]. The ST segment
begins at 60 msec after R-peak in normal case. In the case of tachycardia this
value should decrease a little (here, 40 msec if RR-interval < 600msec). The ST-
segment also has predefined length which is equal to 160 msec. A baseline
correction must be made in order to decrease false detections. Here a simple
method is applied based upon the suggestion that the isoelectric level of the
signal lies on the area approximately 80 msec left of the R-peak, where the first
derivative becomes equal to zero for at least 10 msec or in the flattest 20 msec
segment. Despite of its simplicity the algorithm has very good results in most
cases. Because the interesting point here is the differences of ST-segment from
normal ST, it is needed to substract the normal template from ST-segment. The
normal template is constructed for each signal taking the average beat of the ten
first beats of recording which are suggested to be normal. The average signal is
taken to avoid noise problems due to the vibration of ECG signal. Thus, after
this procedure the final part of signal consisting of N points (40 points in 250 Hz
sample frequency) has only information that shows the differences between the

521

normal and testing waveform. This has been done also, in order to standarize the
algorithm and to make it insensitive to differences from one lead to an other
and from a patient to another. This number of N points which are taken from
each beat, is reduced to 20, taking the mean value for every N/20 concecutive
points. Finally a constant bias (different than the bias used in the BP algorithm
of NN) is added to all the input vectors as polarization to avoid confusions in the
classification and then all input vectors are normalized due to the BP algorithm.
The BP method for training despite of his non-linearity, has some problems
concerning the compatibility of input pattern with the NN-system. To avoid such
problems, normalization of them should be applied. The pattern taken from the
preprocessing stage, is divided by the euclidean distance of the vector from the
zero point. One problem here is that using this method probably some useful
information of ST-segment related with the length of input vector, may be lost.
After the preprocessing stage, the signal is fed in the NN.

RESULTS - DISCUSSION

The algorithm was tested on the European ST-T Database [3]. This database
contains 63 records with 160 annotated ischemic episodes for lead 1. For all the
test, lead 1 was used because the signal quality was better compared to that of
lead 0. For performance measure, four indices were calculated [8]. These
indices refer to two distinct classes of detection. The two refer to the correct
detection of the existence of an ischemic episode, while the other two to the
correct detection of the duration of the episode. In particular these indices are:

1) Ischemic ST episode sensitivity (ST Se) defined as the ratio of the
number of matching episodes and the number of annotated episodes.
2) Ischemic ST episode predictivity (ST+ P) defined as the ratio between

the number of matching episodes and the number of detected episodes
3) Ischemia duration sensitivity (IS Se) defined as the ratio between the

duration of true mathced ischemia and the total duration of annotated ischemia
4) Ischemia duration predictivity (IS + P) defined as the ratio between the
duration of true matched ischemia and the total duration of detected ischemia

There are two types of statistical measures performed using the above
mentioned indices. The first one is termed average statistics. This one gives
equal weight to the ischemic episode at each file. The second one is termed
Gross Statistics and gives equal weight to each ischemic episode. Thus we have
calculated the four indices for each file, and for each lead separately. This show
us the change of performance of algorithm from lead to lead. In table 2 the
results arc shown. To predict performance in clinical practice, it is important to
model how well a detector behaves on a randomly chosen recording. For this
reason, one might expect average statistics, in which each recording is equally
weihtcd to be better predictor of ischemia episodes occurence than gross

statistics.

522

Table 2 summarises the results for average and gross statistics. As can be
seen, the NN performs equally well for leads not belonging to the training set
(such as ML I), and we can observe that the average sensitivity and predictivity
of the ischemia episodes is quite high (88.62% and 78.38%).

Table 2: Performance measures of the adaptive backpropagation NN in
ischemia detection in the European ST-T database.

AVERAGE

LEAD
Episode

Sensitivity
(%)

Episode
Predictivity

(*)

Ischemia
Sensitivity

(%)

Ischemia
Predictivity

(%)

MLI 97.22 90.28 93.55 77.88

MLIII 79.90 66.46 55.53 57.19

VI 87.50 80.00 71.05 83.73

V2 33.33 33.33 100.00 20.79

V3 100.00 100.00 58.87 64.86

V4 90.63 77.08 69.88 70.78

V5 94.44 86.51 80.09 62.19

TOTAL 88.62 78.38 72.22 67.49

GROSS

MLI 95.24 76.92 94.19 78.69

MLIII 74.42 56.14 36.22 59.23

VI 85.71 78.26 79.98 93.09
V2 33.33 33.33 100.00 20.79
V3 100.00 100.00 50.18 66.81

V4 86.67 68.42 78.01 79.92

V5 93.75 71.42 89.73 59.93

TOTAL 85.00 68.69 73.00 69.45

The fact that in certain leads (such as the V2) the figures of merit are low, can
be attributed to the fact that only one record of the database contains lead V2 as
lead #1, and thus even aggregate statistics cannot give an accurate measure of the
NN performance. Also, another point of interest is the use of an average
template for each patient. It is well known that pathological levels of ST
depression can vary in the same patient, and in different patients, Thus an initial
estimate of the physiological ST depression (or elevation) can be taken by
averaging the ST segments of the first ten beats. This on the other hand, may
cause reduced noise levels due to averaging, and thus it may cause problems
when trying to detect ischemia in areas of elevated noise, since only baseline
correction filtering is performed. Baseline correction, is another possible source

523

of error, but the major problems seem to be the identification of the training set,
the off-line training procedure, which should be done on-line, and the
nonlinearities involved in the BP NN rendering theoretical analysis almost
impossible. From a detailed study of each file in the database, it was concluded
that another problem was the adjustment of the assumed ST segment starting
point according to the heart rate. It is finally important to note here that
ischemia cannot be conclusive only from the ST segment changes on the ECG,
since there are no golden standards in identifying ischemia merely by looking
the ECG, although the European ST-T database is a major step towards the
solution of this problem. The positive points on the other hand, are the good
general performance of the NN even though the training set is relatively small,
the extremely fast recall phase, and the fact that in certain areas where the J
point is impossible to be detected, the NN performs very well.

REFERENCES

[1]. LS Gettes, WE Cascio, "Effect of acute ischemia on cardiac
electrophysiology" In The Heart and Cardiovascular System, HA Fozzard et al
(Edts), Raven Press, vol.2, pp. 2021-2054,1991.
[2]. F Jager, GB Moody, A Taddei, RG Mark, "Analysis of transient ST segment
changes during ambulatory monitoring", Computers in Cardiology, IEEE Comp
Soc Press, pp. 453-456,1991.
[3]. A Taddei, G Distante, M Edmin, P Pisani, GB Moody, C Zeelenberg, C
Marchesi, "The European ST-T Database: standard for evaluating systems for the
analysis of ST-T changes in ambulatory electrocardiography", Europ. Heart J, vol.
13, pp. 1164-1172,1992.
[4]. JA Freeman, DM Skapura, Neural Networks: Algorithms, applications and
programming techniques, Addison Wesley, 1991.
[5j. Y Suzuki, K Ono, "Personal computer system for ECG ST-segment
recognition bbased on neural networks", Med & Biol Eng & Comput, vol. 30, pp.
2-8,1992
[6], L Ebenbbrandt, B Devine, PW MacFarlane, "Neural networks for
classification of ECG ST-T segments", J of Electrocardiology vol. 25, pp. 167-173,
1992.

[7]. M Strintzis, X Magnisalis, G Stalidis, N Maglaveras, "Use of Neural Networks
for Electrocardiogram (ECG) feature extraction recognition and classification",
Neural Network World Journal, vol. 3-4, pp. 313-327, 1992.
[8]. F Jager, GB Moody, A Taddei, RG Mark, "Performance measures for
algorithms to detect transient ischemic ST segment changes", Computers in
Cardiology, IEEE Comp Soc Press, pp. 369-372,1991.

524

Adaptive Processing
And Communication

A NEURAL NETWORK TRAINED WITH THE
EXTENDED KALMAN ALGORITHM USED FOR THE

EQUALIZATION OF A BINARY COMMUNICATION CHANNEL

Martin Birgmeier
Institut für Nachrichtentechnik und Hochfrequenztechnik

Technische Universität Wien
Gußhausstraße 25/E389, 1040 Vienna, Austria

Tel.: (+43 1) 58801 x 3661, Fax: (+43 1) 5870583
Email: Martin.Birgmeier@nt.tuwien.ac.at

Abstract — This paper describes a feedforward neural net-
work architecture trained with the extended Kalman filter al-
gorithm instead of the standard (LMS) method. It presents
a simplified recursive procedure for calculating the necessary
derivatives. The resulting algorithm is then used to train
a network to adapt to the decision boundary of an optimal
receiver for a binary communication channel, resulting in in-
creased convergence speed and better approximation proper-
ties.

INTRODUCTION

This paper describes the application of a neural network to the task of equal-
izing a binary communication channel. This problem has been considered
before in the literature, and various network architectures have been em-
ployed, showing that it is indeed possible to get close to the performance of
an optimal receiver by using a neural network in its place (see the papers
by Cowan, Mulgrew, and others [1], [2], [3], [4], Al-Mashouq and Reed [5],
and Ramamurti, Rao, and Gandhi [6]). In these papers, either feedforward
neural networks using the simple backpropagation (LMS) rule or radial basis
function networks are described.

For complex decision boundaries, the standard backpropagation algorithm
converges very slowly. In order to improve convergence speed, in this paper
a feedforward neural network is trained using the extended Kalman filter
algorithm. Kalman-trained neural networks have been described previously
in the literature, having been applied mostly to the task of adapting to some
predefined, artificial partitioning of the input space (see for example [7], [8],
[9], [10], [11]). In the current paper, the Kalman-trained neural network is
used to reduce the number of training steps required for the network to learn
a partitioning of the input space implicitly given by the characteristics of
the transmission channel. The results obtained show that this partitioning
approximates the decision boundary of an optimal receiver, and that the
average error produced by the neural network is close to that of the optimum
receiver. Furthermore, the number of training steps are reduced significantly
when compared to the standard LMS algorithm.

0-7803-2026-3/94 $4.00 © 1994 IEEE 527

THE EXTENDED KALMAN FILTER APPLIED TO A FEED-
FORWARD NEURAL NETWORK

This section presents a derivation of the extended Kaiman filter equations for
the update of the link weights of a feedforward neural network. It is loosely
based on the algorithm presented by Iiguni et al. [7], but includes a simplified
and generalized version of the recursive equations for determining the partial
derivatives of the link weights with respect to the output values.

The following definitions are used for the variables in the feedforward
network:
x\ ... output of node i in layer /

s\ ... sum of inputs of node i in layer /
. weight from node (/ — l,j) to node (/, i)

number of layers, excluding layer 0

number of nodes in layer /, excluding node 0

. sigmoid function
The following conventions are used:

JCQ = 1 ... node zero of each layer provides the offset for the following layer,

a;? = r(n — i) ... nodes in layer zero correspond to input values.

L ...

Nt ..

/(•)

rl - [' w
X* x0 aij VN,

. outputs of layer /, excluding constant value.
p

... outputs of layer /, including constant value.

s' = [s'j ... sl
N] ... sum of inputs to layer /.

w' =

u>

L WN,,1

w \,N,.

VN,,N,.

... weights between layers / — 1 and /,
excluding offset values.

'1,0 'i.i h,N,.

w N,,a w

Wi,0 Wi,l

JVi.l

w:

w W,,Ar,_, J

. weights between layers / — 1
and /, including offset values.

'i,N,-i

W = w 1,0 WU w NltN0
W\,0

weights leading to node i in layer /,
including offset values.

... all weights in the
N

L,NL-\\ network. w

d(n) = d(n) = a ■ s(n — k) + b ... (scaled version of) desired response.

Using this, the forward pass through the neural network is

x' =/(w'x'-1), !</<! (1)

In a stationary environment it is assumed that the optimum setting of the
weights in the network is constant. Hence, the state transition matrix of the
Kaiman state model is the identity matrix, and the process noise vector is

528

zero (cf. Haykin [12]). For this case, the Kaiman filter equations reduce to

w(n) = w(n-l) + G(n)[d(n)-xL(n)] (2)

G(n) = K(n - l)C{n)H [C(n)K(n - l)C(n)ff + Rmi„]_1 (3)

K(n) = K(n - 1) - G(n)C(n)K(n - 1) (4)

where w is the concatenation of all weights in the network and C(n) is the
first term in the Taylor approximation of xL(n) — h(w(n)), i.e. the partial
derivative of xL(n) with respect to w, evaluated at w = w(n —1). This latter
approximation to h(-) constitutes the extended Kaiman algorithm (cf. [13]).

For networks of even moderate sizes, the resulting gain and correlation
matrices G(n) and K(n) would become unmanageable. Hence, the Kaiman
filter equations are applied independently to each node in the network for
estimating the weights leading to that node only, as proposed by Iiguni [7]
and others (see for example the NEKA algorithm in [8]). In this way, the
Kaiman filter equations for the weights leading to a single node are

w1(n-l) + GKn)[d(n)-xL(n)] w4(n)

G{(n) = K|.(n - l)C\{n)H [C\{n)K\{n - l)C\{n)H + Rj,min]

Kj-(n) = K[(n - 1) - G<(n)C*.(n)K<(n - 1)

-l
(5)

(6)

(7)

A simplified recursion formula for C'-(n) can be derived as follows. C'-(n)
can be evaluated if equation 1 is alternatively written as

s'+1 = w'+1

r' = ' (8)

which when derivatives with respect to s are taken (the constant value is
dropped) yields

ös'+x

8s' = w'+1-diag(/'(S
(

1),/'(s,
2),...,/'(S'ivi))

which, using the chain rule, yields the recursion

dx£

ds>

dxi

dxi

dx'r
ds' N,

8xi
ds' a,'

8xL

w (+1

■diag(/'(«'1),/'(4))...,/'(^I))

and initial condition

dxL

8sL diag(/'(^),/'(4),---./'(4j)

529

(9)

(10)

(11)

This then enables us to compute the partial derivatives needed in the evalu-
ation of C'(n)

X \'rlP=A\xl-i (12)

or in vector notation for the combined weights leading to node i in layer /

\~\\H P_^ * i il — dx _ / ÖX ^ ,_j_i^H p_a. ^l/^l-ljH

m ds
(13)

Note that A' = ^|j- actually is a scalar if we assume there to be only one

node in the output layer, and C[correspondingly is a row vector.

Using this recursion, equation 6 can be rewritten as

G{(n) = K|(n - ^-»A^n)" • (14)

[A[-(n)x'-1(n)"K:.(n - l)x'-,(n)Ai.(n)H + R^,^]"1

Closer inspection of this formula reveals that x'_1(n)wK'(n —ljjc'-^«) is
a scalar; therefore the matrix inversion lemma can be applied to arrive at an
update equation for the Kaiman gain which only requires a simple division.
For the term in brackets this yields

[AKn^-^K'tn - l)x<->(n)A<(n)H + HU»]-1 =

(Kmin)-1 - (R-Un)~lA'H ' (15)

jx,-1(n)^(n-l)xJ-1(n))-,+A:.(n)H(R:>,)-1A[w]"1.
A(.(n)"(R')-»

Following [7] and setting R[min = AI(n), no matrix inversion is necessary,
and with a\{n) = ^-x{n)HK.\{n - l)^"1^) and ß\{n) = AJ-(n)ÄA|(n),
equation 15 can finally be rewritten as

[AJHx'-'WKKn - lji'-'WAi.^ + Ri,mi„]_1 = (16)

I-Aj(n) «!•(") l/„\H

\ + a\(n)ß\{n)
A\(n)

The remaining derivation follows that presented by [7]; the reader is kindly
asked to consult their paper.

530

Figure 1: Optimum decision boundary
for a channel with H(z) = 1 — 2z + 2z2,
noise variance = 0.5. The small cir-
cles and crosses mark the positions which
correspond to the set of possible values
of r(ra), for s(n) = «o and s(n) = «i re-
spectively, when no noise is present.

Figure 2: Final mapping for a 2-20-20-1
Kaiman network, 50000 iterations, noise
variance = 0.5.

X X

o -^ o /

O O O O yf

o o

COMMUNICATION CHANNEL MODEL

The communication channel is modeled in discrete time (with time index n)
and consists of a transmitter producing the binary symbols {s0 — — 1, «i = 1},
a channel which distorts the transmitted signal either linearly or nonlinearly,
a noise source which adds1 statistically independent noise, and a receiver
which computes estimates s(n) of the transmitted symbols s(n) based on the
received symbols r(n).

Since it is assumed that the channel is not intersymbol-interference free, in
the most general case the whole received sequence r must be used to feed an
optimal receiver which in turn computes the maximum-a-posteriori (MAP)
estimate s of the sequence sent. Using the MAP criterion minimizes the
probability of error (see Lee and Messerschmitt, [14]). For most practical
purposes, however, the resulting delay between transmission and reception
of a message is unacceptable. Thus normally only part (a window) of the
received signal sequence is used to compute an estimate for part of the trans-
mitted signal sequence. A common approach is then to use the window
r(n) = [r(n) r(n — 1) ... r(n — d + 1)]T to compute an estimate s(n — k) for
s(n — k), where d is the window length and k is the delay allowed between
the transmission of the symbol s(n) and the output of its estimate s(n).

1 In fact, it would be possible to consider non-additive interaction of the noise with the
signal as well, however in the simulations carried out this was not done.

531

Figure 3: Averaged error for a 2-20-20-1 Figure 4: Averaged error for a 2-20-20-
Kalman network, 50000 iterations, noise 1 LMS network, 50000 iterations, noise
variance = 0,5. Mean over 10 runs. variance — 0.5. Mean over 10 runs.

03

0 25

02

0 15

01

0 05

V :

\ ■ I i ; i i

averaged error rale averaged error rale

Using an input window of length d to produce estimates for the transmit-
ted symbol s(n — k) corresponds to a nonlinear mapping from a d-dimensional
input space to a one-dimensional output space. Therefore a neural network
can be employed to learn this mapping, which has already been demonstrated
by several authors as noted in the introduction. However, using the standard
LMS backpropagation training algorithm results in slow convergence. There-
fore, Kaiman training of the network is being introduced, as described in
section . This yields a decrease in the number of training samples required
by a factor of 4 to 10, plus an additional decrease in the residual error of
the learned decision boundary, when compared to training with the standard
LMS backpropagation algorithm.

SIMULATION RESULTS

In order to be able to show results graphically, the input vector dimension
was fixed at d — 2. The simulated channel transfer function was H(z) =
1 — 1z + 2z2, with the delay paramter k set to zero (i.e. no delay). Gaussian
noise with adjustable variance was added at the input to the receiver. This
choice of transfer function and delay parameter yields a highly nonlinear
decision boundary, as shown in figure 1.

The resulting decision boundary after a total of 50000 training steps for
a network trained with the extended Kaiman algorithm is shown in figure 2.

Figure 3 shows the plot of the mean of ten runs of the averaged error2

during training for the same network. It can be seen that after an initial

The averaged error is computed by averaging the symbol error sequence using an
exponentially decaying window.

532

Figure 5: Error sequence for a 2-20-20-1 Figure 6: Error sequence for a 2-20-20-
Kalman network, 50000 iterations, noise 1 LMS network, 50000 iterations, noise
variance = 0.2. variance = 0.2.

IIT1 HlTr M «Mi

"0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

period of training rapid convergence to the final solution is obtained. Also,
the averaged error after convergence is close to the theoretical bound of 0.03.

Figure 4 shows a plot of the averaged error during training of a standard
LMS network given the same conditions, again averaged over ten runs. It
is clearly visible that convergence is slower. The difference in convergence
speed is still greater at lower noise variances or when adding non-Gaussian
noise. When e.g. impulse noise of a fixed amplitude occuring with a pre-
defined probability is added, the decision boundary is essentially quadru-
pled in the two-dimensional input space, thus becoming even more com-
plex (see [15]). Using the Kalman-based training algorithm, a (larger) net-
work converges to an acceptable solution in 50000 training steps, whereas
the LMS-trained network needs an excessively high number of iterations.

Finally, figures 5 and 6 show typical plots of the error se-
quence (the desired output minus the actual output of the network)
for Kaiman- and LMS-trained networks, respectively. In this case
the noise variance used is 0.2, so that the final error is close to
zero. It can be seen that after an initial period the Kalman-trained
network quite rapidly converges to the optimum decision boundary.

CONCLUSIONS

Based on existing implementations of the Kaiman algorithm applied to a
feedforward neural network, this paper has presented a simplified deriva-
tion of the recursion formulas needed in the operation of the algorithm.
The resulting algorithm has then been applied to the task of implement-
ing an optimum receiver for a binary communication channel. It has been
shown that the convergence speed of the neural network has improved when

533

compared to the standard LMS algorithm. Also, after a comparable num-
ber of training steps, the Kalman-trained neural network provides a better
approximation to the ideal decision boundary than the standard network.

REFERENCES

[1] Gibson, Siu, and Cowan, "The application of nonlinear structures to the recon-
struction of binary signals", IEEE Trans. Signal Proc, pp. 1877-1884, August
1991.

[2] Mulgrew and Cowan, "Equalisation techniques using non-linear adaptive fil-
ters", in Adaptive Algorithms: Applications and Non Classical Schemes, D. Do-
campo and A. R. Figueras, Eds. Universidad de Vigo, 1991, pp. 1-19.

[3] Chen, Mulgrew, and Grant, "A clustering technique for digital communications
channel equalization using radial basis function networks", IEEE Trans. Neural
Networks, pp. 570-579, July 1993.

[4] Chen, Mulgrew, and McLaughlin, "Adaptive bayesian equalizer with decision
feedback", IEEE Trans. Signal Proc, pp. 2918-2927, September 1993.

[5] Al-Mashouq and Reed, "The use of neural nets to combine equalization with
decoding", in Proc. ICASSP, 1993, vol. I, pp. 469-472.

[6] Ramamurti, Rao, and Gandhi, "Neural detectors for signals in non-gaussian
noise", in Proc. ICASSP, 1993, vol. I, pp. 481-484.

[7] Iiguni, Sakai, and Tokumaru, "A real-time learning algorithm for a multilay-
ered neural network based on the extended Kaiman filter", IEEE Trans. Signal
Proc, pp. 959-966, April 1992.

[8] Shah, Palmieri, and Datum, "Optimal filtering algorithms for fast learning in
feedforward neural networks", Neural Networks, vol. 5, pp. 779-787, 1992.

[9] Singhal and Wu, "Training feed-forward networks with the extended kalman
algorithm", in Proc. ICASSP, 1989, vol. II, pp. 1187-1190.

[10] Puskorius and Feldkamp, "Decoupled extended kalman filter training of feed-
forward layered networks", in Proc IJCNN, 1991, vol. I, pp. 771-777.

[11] Palmieri, Datum, and Shah, "Sound localization with a neural network trained
with the multiple extended kalman algorithm", in Proc IJCNN, 1991, vol. I,
pp. 125-131.

[12] Haykin, Adaptive Filter Theory, Prentice-Hall, 1986.

[13] Anderson and Moore, Optimal Filtering, Prentice-Hall, 1979.

[14] Lee and Messerschmitt, Digital Communication, Kluwer Academic Publishers,
1988.

[15] Birgmeier, "A digital communication channel equalizer using a kalman-trained
neural network", submitted to the 1994 IEEE International Conference on
Neural Networks.

534

NEURAL-NET BASED RECEIVER STRUCTURES
FOR SINGLE- AND MULTI-AMPLITUDE

SIGNALS IN INTERFERENCE CHANNELS*
Dimitrios P. Bouras, Student Member, IEEE D. Makrakis Member, IEEE

P. Takis Mathiopoulos*. Member, IEEE Dept. of Electrical Engineering
Dept. of Electrical Engineering University of Ottawa
University of British Columbia 161 Louis Pasteur

Vancouver, B.C., V6T 1Z4, Canada P.O. Box 450 STN A, Ottawa
Tel: (604) 822-6942, FAX: (604) 822-5949 Ontario, KIN 6N5, Canada

E-mail: mathio@ee.ubc.ca

Abstract. This paper presents analysis and performance evaluation results for several neural-
net based receiver structures which effectively combat additive channel interference, such as
co-channel interference (CCI) and adjacent channel interference (ACI). Although the idea
of employing neural net based receivers for interference channels is not new, the novel
technical contributions of our paper can be summarized as follows, (i) Propose, analyze and
evaluate a training algorithm for Nyquist filtered single- and multi-amplitude signals which is
based upon a novel non-uniform signal sampling technique, (ii) Propose and evaluate neural
net structures employing a novel non-linear activation function for the detection of multi-
amplitude signals, (hi) Present novel bit error rate (BER) performance evaluation results for
coherent and noncoherent single- and multi-amplitude signals, including binary phase shift
keying (BPSK), quadrature phase shift keying (QPSK) and quadrature amplitude modulation
(QAM), operated in generalized CCI and ACI channels. Our research has demonstrated that,
as compared to more conventional detection techniques, the proposed neural net receivers
provide significant performance improvements in CCI and/or ACI channels. Their tolerance
for inaccuracies in symbol timing synchronization also makes them good candidates for
practical modem implementation.

INTRODUCTION
In recent years, multilayer perception neural networks have been extensively applied

to many fields in Electrical Engineering, including signal classification, pattern recognition,
adaptive control, learning systems, very large scale integration (VLSI) and optimization
methods (see for example [1-4] and the references therein). As compared to the
aforementioned areas of research, the application of neural networks (or neural nets, as
they are often referred to) in communication systems has received relatively little attention.
Furthermore, as in this paper we are dealing with the physical layer of digital communication
systems, there have been relatively few publications dealing with neural-net based receivers.
For example, in [5] a decision feedback equalizer using the multilayer perceptron structure,
for equalization in digital communication systems has been investigated. In [6], artificial
neural network receivers have been employed for demodulation of spread-spectrum signals
in a multiple-access environment. Neural-net based receiver structures for constant envelope
continuous phase modulation (CPM) signals transmitted over an additive white Gaussian noise
(AWGN) channel have been investigated in [7]. Related work for quadrature-quadrature phase
shift keying (Q2PSK) signals can be found in [8], whereas in [9] a programmable analog
VLSI neural network processor designed for communication receivers has been proposed
and implemented. There have been also some papers dealing with the application of neural
networks for the decoding of error correcting codes (e.g., [10]).

In a recent conference publication [11], it was suggested that combating certain types of
channel interference can be achieved by employing neural network techniques. In particular,
the authors of [11] have presented some very limited performance evaluation results (see [11,
Fig. 3]) of a neural-net based receiver for a Butterworth filtered binary digital communication

* This woik has been supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC)
under grants OGP-44312 and STR-0100720, the Centre for Integrated Computer Systems Research (CICSR), a
University of British Columbia Graduate Fellowship and a B.C. Advanced Systems Institute (ASI) Fellowship.

* Please address any correspondence to this author.

0-7803-2026-3/94 $4.00 © 1994 IEEE 535

system operating in the presence of one co-channel interferer. Their results have indicated
that improvements in the bit error rate (BER) can be obtained by employing a multi layer
perceptron (MLP) neural network, trained for this purpose under co-channel interference
(CCI) channel conditions, with the aid of the backpropagation learning algorithm. There are
several limitations on the work reported in [11]. It is well known that for bandwidth efficient
digital communication systems, Nyquist type filters must be employed [12]. Furthermore, in
order to increase system capacity, more bandwidth efficient modulation schemes (as compared
to binary signalling), using multi-amplitude signal constellations, are required. It should also
be pointed out that with the recent very rapid developments in the field of wireless personal
communications, CCI [13], and to a lesser degree adjacent channel interference (ACI) [14],
have become the main source of performance degradation. A digital communication system
which can tolerate any amount of CCI and ACI, while providing reliable transmission, is of
great interest since it automatically translates to higher capacity for the existing network.

Motivated by the above, in this paper we present analysis and performance evaluation
results for neural-net based receiver structures, for single-amplitude modulation formats,
such as binary-phase-shift-keying (BPSK) and quadrature-phase-shift-keying (QPSK), as
well as multi-amplitude schemes, namely 4-signal pulse-amplitude-modulation (4-PAM) and
16-signal quadrature-amplitude-modulation (16-QAM), which effectively combat additive
channel interference, such as CCI and ACI, as well as additive-white-Gaussian-noise (AWGN).
More specifically we (i) Propose, analyze and evaluate a training algorithm for Nyquist filtered
single- and multi-amplitude signals utilizing a novel non-uniform signal sampling technique.
Problems related to training under certain channel conditions are also addressed, both for
single- and multi-amplitude modulation schemes, and both types of signal filters, Nyquist
and Butterworth, (ii) Propose and evaluate neural net structures employing a novel non-linear
activation function for the detection of multi-amplitude signals. Although presented for the 4-
PAM and 16-QAM schemes, the derivation of this function is readily extendable to modulation
formats employing more than 4 signal levels, and (iii) Present novel bit error rate (BER)
performance evaluation results for coherent and noncoherent single- and multi-amplitude
signals operated in channels including CCI or ACI and AWGN. These include cases of single
and multiple co-channel interferers, one or two adjacent channel interferers, differentially and
non-differentially encoded signal constellations, and Nyquist or Butterworth signal filtering.

COMMUNICATION SYSTEM MODEL
The transmitter of the communication system under consideration consists of a signal

mapper (SM), an optional differential encoder (DE), a pre-modulation pulse-shaping filter with
transfer function Hr(f), and a complex modulator. The input to the signal mapper consists
of the N-bit information words af = [al, a\, ...,ak] of independent and equiprobable bits
a'k, 1 < i < N from the alphabet {0,1}. Each of is converted by the SM to a symbol
uk = Rk exp (jQk), where Rk represents the amplitude and Qk the phase of uk, respectively.
Possible differential encoding of the sequence of uk 's yields the sequence of differentially
encoded symbols ck. For example, QAM signals are encoded differentially as

Ck = uk^^- = Rk exp [?'($*_i en*)] (1)

with $fc denoting the phase of ck, Rk its amplitude and © modulo 2-K addition. If differential
encoding is not employed, we assume that ck = uk. After being passed through the
pulse-shaping filter Hr\f) and translated to the carrier frequency fc by the modulator, the
transmitted signal can be expressed as

c(t) = Re^s(i)
CO ■

D ckhT(t - -IcT)
k=— co .

exp(j2*fc) } (2)

with hr(t) denoting the impulse response of Hr(f) and T the symbol interval.
A block diagram for the channel and receiver front-end model assumed is illustrated

in Fig. 1. Although the number of co-channel interferers in this model is not restricted to
a particular number, in the bit-error-rate (BER) evaluation of the neural-net based receiver
structures derived (see Section 4), one and three co-channel interferers are assumed. The
ACI is assumed to be generated by users occupying frequencies on either side of the channel
under consideration. For the computer simulation results presented in Section 4, either one
interferer is assumed at frequency /,; + (1/T), or two interferers at fc ± (1/T).

536

White Gaussian noise

Legitimate user

CCI
x'(t), c=J,..JV,

Complex signal: :
Real signal: -

Fig. 1. Block diagram of the channel model and receiver front-end assumed; Hii(f):
receiver pre-detection filter.

The signal, after being distorted by CCI or ACI and additive-white-Gaussian noise
(AWGN), is demodulated at the receiver. Assuming a receiver pre-detection filter transfer
function #H(/) corresponding to an impulse response of ftft(i), and using h(t) =
hr(t) ® hnli) with ® denoting convolution, the received demodulated signal for Nc
independent co-channel interferers and NA independent adjacent-channel interferers can be
expressed as ^ Nc «,

r(*)= £ <*M*) + E E e-36?c?,kh(t-lT-rf) +
fc=—oo 1=1 k= — oo fn\
NA oo ('

£ JT e-^«(/c-^)'+»i)c^((-IT- rt
A) + •»(*)

1=1 k= — oo

with the first term in the above equation expressing the legitimate user signal, the second term
the CCI, the third the ACI and the fourth, the AWGN. In Eq. 3, cf, Of and rf represent the
co-channel interferer data stream, carrier phase shift and symbol timing delay respectively.
The same symbols but with a superscript of A are used for the adjacent channel interferer.
Note, however, that the phase shift for ACI is continuously increasing by 2TT(/C — ff)t
due to the frequency difference between the user carrier fc and the Z'th adjacent channel
interferer carrier ff. In general, we consider that Of and Of are independent random
variables, uniformly distributed over [0,2r). Also, rf and r,A are independent random
variables uniformly distributed over [0, T). As far as receiver performance is concerned, the
parameters of interest are the signal-to-noise power ratio (SNR) and the signal-to-interference
power ratio (SIR) at the output of the receiver filter. Before feeding the demodulated signal
to the receiver, we sample it at a number of "appropriate" time instances. Depending on the
sampling rate we can obtain any desired number of samples per symbol interval.

NEURAL-NET RECEIVER STRUCTURE
The neural-net receiver used for implementing a detector for a single- or multi-level

scheme falls in the class of time delay neural networks (TDNN) [15]. According to this
configuration, an otherwise static network is processing data arranged as a series of samples
obtained from the incoming signal at specific time intervals. The total length of time
corresponding to all samples appearing as inputs to the TDNN will henceforth referred to as
a sample or data "window". In our case, the data window length will be an odd multiple
of the symbol period, the symbol of interest (or current symbol) located at the middle of
the window. The number of signal samples in this window is equal to the number of neural
network inputs. The network is of the MLP type, having L layers and JVj number of neurons
(or perceptrons) [16] in layer 1,1 <l < L. The number of neurons on the input layer for all
neural-net receivers presented here is determined by (as it is equal to) the desired number of
samples in the data window. The MLP's employed are all fully interconnected3 and possess
three layers, the input, output and one hidden layer. Note however that every neuron on
the input layer is connected only to its corresponding input. For notational purposes, such a
MLP will be henceforth referred to by three numbers in parentheses, namely the number of

A fully interconnected MLP is that having every input of any neuron in a given layer connected to all outputs in the
previous layer, or to the inputs, if we are considerine the input layer.

537

neurons in each layer, i.e., (Ni,N2,N3). For our study, 3-layer MLP's were chosen although
a 2-layer MLP has been shown capable of forming an arbitrarily close approximation to any
non-linear decision boundary [17]. The reason is that, for a given problem, 3 layers typically
result in much smaller neural net size as compared to the equivalent 2-layer MLP's [18].

Neural-net receiver training
The training method employed is the backpropagation learning algorithm. A small number

of known inputs and outputs consists the training set. Verification of the generalization
capabilities of the network is performed using a new, randomly generated, verification set,
after the initial training phase has reduced the RMS error to a value below an acceptable
level. If the RMS error for this new set is sufficiently close to that obtained for the training
set, network learning is done. Else, the training parameters and/or the network configuration
is changed, and the training process is restarted. All weights are initialized to small random
values before the net teaching process begins. This provides the algorithm with a relatively
"safe" starting point [19].

The signal after the receiver filter, as given in Eq. 3, is sampled at a specified rate
with respect to the symbol rate used. This yields a number of samples from which the
decision device must recover the actual information transmitted. Two cases were considered
for the transmit and receive filters: i) both Hr(f) and HR(/) being 5-pole Butterworth
having a 3 dB corner frequency equal to 1/T, and ii) Hx{f) being a x/sin (i) equalized
i/o" Nyquist filter and HR(J) a ^/a Nyquist filter, both of excess bandwidth a = 1.0. The
coherent receivers, against which the neural-net based ones are compared, decide upon the
symbol transmitted by observing the value of a single sample, at the middle of the symbol
interval; the noncoherent receivers do the same but operating on the output of a 1-symbol
differential detector. The neural-net receiver, on the other hand, employs an observation
window spanning over an odd number of symbol intervals, the middle one of which is
assumed to be the "present" symbol for which the decision will be made. This essentially
translates to a time-lag in decoding at the receiver equal to the number of "future" samples
in the observation window. The observation window size employed was 7 symbol-periods
long, 3 symbols on either side of the symbol detected. For BPSK and QPSK the received
signal was sampled at twice the symbol rate yielding 14 signal samples for processing by
the neural net. For 4-PAM and 16-QAM, frequencies of 2 and 4 times the symbol rate were
used for sampling, yielding 14 and 28 signal samples respectively.

The neural network used for BPSK and QPSK has 14 neurons, equal to the number
of samples available (7 symbols, 2 samples per symbol). The hidden layer has 5 and the
output layer has 1 neuron. The same net is used to process the I- and Q-channel samples
alternatively. This is possible since the inphase and quadrature channels carry independent
BPSK signals [12]. It's training involves choosing at random a relatively small number of
7-symbol sets for the user and each interferer. For BPSK and QPSK, 128 such groups of
7 symbols were chosen, whereas for PAM and QAM, due to the much higher number of
possible signal combinations, this number was increased to 1024. Each interferer group is
scaled according to the given SIR, and then added to the corresponding user signal group
in order to distort it. A very important issue while training the net is the minimum usable
SIR value, which depends on the number of signal levels of the modulation format under
consideration. At SIR slightly below this minimum value, the interfering signal will distort the
user signal to such an extent as to have the combined signal level cross decision boundaries
on the signal constellation. This, in turn, confuses the neural net by essentially presenting
it with randomized "lessons" it is unable to "learn" from. As an example, for BPSK and
QPSK, this minimum SIR value is 0 dB. Since, in this case, user and interferer have equal
power, the interferer can cause the combined signal level to be around 0 (e.g., assuming
signal power normalized to 1, user = 1, interferer = -1) which also happens to be the decision
threshold. This confuses the neural net and prevents the search towards weight and offset
values for minimum RMS error from converging. As a last note on the neural net receiver
training, results were deemed acceptable if the RMS error calculated when estimating the
network generalization performance was at most 10% over that obtained during training.

A new non-linear activation function for multi-level schemes
For the 4-levcl 4-PAM and 16-QAM (two independent 4-PAM channels) schemes, 2 net

configurations were investigated. Both observe a 7-symbol signal window, one sampling at
twice and the other at four times the symbol rate. This yields 14 signal samples for the first
case and 28 signal samples for the second. The number of hidden layer nodes is equal to

538

m
, .
■

1

, r I ;/. :
J7

f (..._ ._.. '
 "~7 ■

/-
J :

—/ . / /
J ■

■

.
. ■

10 5) » 1C

/w

I0 -5 D 5 10
Input

Input

Fig. 2. The four-level sigmoid function used for 4-PAM and 16-QAM and its derivative.
7, as compared to 5 used for the single level schemes, in order to provide better network
generalization4 and shorter convergence time during training. In order to accommodate the
four signal levels, the output non-linearity had to be modified. For this purpose a new
function was constructed by using scaled and shifted versions of the well known sigmoid
non-linearity. This new function /3(a) is given by Eq. 4

9(x) = , , * , g'(x) = ßg(x)[l-g(x)]
1 + e-f>*

/s(«) =
2 / 20\1 [1 2 . ,1 |"l 2 / 20\1

,/, ^ 2 ,/ 20\ 2 ,, , 2 ,/ 20\

The /? factor determining the steepness of each individual "step" in the function is set equal
to 3. f3(x) and fi(x), plotted for -10 < x < 10 are depicted in Fig. 2. Note that the same
technique can be used for constructing non-linear activation functions for neural-net based
receivers designed for other multi-level modulation formats.

For a 4-PAM signal, the minimum SIR at which we can train the neural network is 10
dB, for the same reason that we can't train the net for BPSK at a SIR of less than 0 dB. In
order to understand the 10 dB limitation, assuming maximum signal power normalized to 1,
consider a case where the user level is -1/3 while the interferer is +1. Assuming a SIR of
10 dB we imply that the interferer power is 1/10 with respect to the user. As far as signal
amplitude levels are concerned this translates to l/y/TÖ ~ 0.3162 which is very close to
1/3, effectively bringing the resulting signal level to approximately 0. It is important to note
here mat due to filtering, the signal levels are not constant; they fluctuate before and after
each level transition. Hence the amplitude in the aforementioned case will fluctuate around
0. This creates the same effect as in the case of SIR = 0 dB for BPSK, confusing the neural
net and preventing the training process from converging.

TRAINING AND BER PERFORMANCE RESULTS
This section presents results from training of specific neural net structures, and BER

performance evaluation results for single- and multi-level modulation schemes employing
the trained neural nets, obtained via computer simulation. Since Monte-Carlo error counting
techniques were employed, the BER results presented cover error rates down to 10'4, due
to memory and time limitations in the simulation. The digital simulation also introduced a
finite resolution on the signal representations, namely a number of signal samples per symbol
(SPS). When employing Butterworth filtering, SPS was set to 8, while with Nyquist filters, 16
samples per symbol were employed. The discrete time simulation was carried out in baseband
and perfect symbol timing synchronization was assumed for the coherent receivers against
which the neural-net based structures were tested. Note that, although the results presented
for the neural-net receivers also assume perfect symbol synchronization, simulations have

4 By better network generalization we imply that smaller RMS error for a random new signal set can be obtained after
training is completed.

539

shown that symbol timing errors of up to approximately 10-15% have negligible effects on
their BER performance.

Single-amplitude schemes
As mentioned in the previous section, for BPSK and QPSK a (14,5,1) neural net was

employed. Training in a single interferer CCI environment, at an SIR of 3 dB, with n - 0.8
and i = 0.01, resulted in an RMS error of approximately 0.005 in 11800 iterations. The
interferer symbol timing delay rf was random (uniformly distributed over one symbol
duration T), while its carrier phase offset 0p was set to 05. The BER performance of
neural-net (NN) assisted BPSK (NN-BPSK) as a function of the SNR ratio, as compared to a
coherent BPSK scheme, both operating in the aforementioned CCI environment, is illustrated
in Fig. 3. Note that the performance shown also holds for NN-QPSK versus coherent QPSK.
The filters employed in this case are of the Butterworth type. The gain in performance, for
an operating SIR of 3 dB and a BER level of 10"2 is approximately 5 dB. For an SIR of
5 dB at BER of 2xl0"4 it is approximately 4 dB and for SIR equal to 7 dB, at the same
BER level it's around 4.3 dB.

Fig. 4 illustrates the performance of a (14,5,1) neural net used for a Nyquist filtered
BPSK scheme. The excess bandwidth a = 1.0, the learning fi = 0.8, the momentum gain
£ = 0.012 and SIR during training equal to 3 dB. In this figure, the performance is plotted
as a function of the E3/N0, E, denoting the signal energy per transmitted symbol and N0
the noise one-sided power spectral density of the AWGN n(t). The gains in performance
when the signals are Nyquist filtered, are somewhat smaller than the case where Butterworth
filters are employed, but nevertheless still significant. At a BER level of 10"\ for SIR = 3
dB the gain is approximately 3.9 dB, for SIR = 5 dB it's 3.6 dB, and for SIR = 7 dB and 9
dB, approximately 3.3 dB. As it is intuitively expected, the gain provided by the neural-net
receiver will decrease as the SIR is increased. Note, however, that it remains roughly within
10% with an increase in SIR of approximately 50%. A (14,7,1) neural net was also trained
and evaluated under the same conditions but there was no observable gain in performance
with this increased number of hidden layer nodes. For the results of Fig. 4, the non-uniform
signal sampling technique was employed. Using SPS = 16 for the digital simulation, only
two center samples from each symbol period were used as input to the neural net, both in
the training and evaluation phase.

15 20

SNR (dB)

Fig. 3. Performance of Butterworth filtered NN-BPSK employing a (14,5,1) MLP, versus
coherent BPSK in combined CCI and AWGN; 1 interferer with random symbol timing delay
i"i (uniform over [0,T)) and 0 carrier phase offset Op.

Note that although this is not a realistic assumption, for one-dimensional schemes (eg., BPSK), carrier offset equal to
0 for the interfering signals is indeed the worst case. Any other phase offset value will result in reduced interference

amplitude since it will be scaled down by cos (fif). However, this is not the case for two-dimensional schemes.

540

■' Si =fc?£ "••*..
:*£'"■> ̂ «r^

** ■>- <a \ N •» ^-.
Ns. N\, x.#

"
Nu'*s«

's—N •^ '%,— "\.
—*&— t

\ \ \ ^
\ \ v.. \

\ i
\
\ -3 NN-BPSK: □

BPSK: »
SIR-9 dB
SIR-
SIR-
SIR.

\ * V \ *f\ \ *Sn

\ ' l v* \ X
-4 1

Es/No (dB)

Fig. 4. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP,
versus coherent BPSK in combined CCI and AWGN; 1 interferer with random symbol timing
delay rf (uniform over [0,T)) and carrier phase offset $i = 0.

The same neural-net structure was also trained and evaluated in a 3-interferer CCI
environment (i.e., Nc = 3), using BPSK. Note that when having 3 interferers instead of 1,
the minimum SIR level at which the network can be trained is less than the 3 dB used for
the single interferer case and. As expected, this number depends on the number of interferers
considered and can be found by taking the worst case of aggregate interference, i.e., all
interferers having the same signal level, with sign opposite to that of the legitimate user.
Assuming user power equal to 1, this case would correspond to a user level of +1 and all three
interfering signal levels equal to -1/3. As we assumed statistically independent interferers6,
these numbers correspond to a SIR of 5 dB. For the aforementioned neural net structure,
the SIR employed during the training phase was equal to 7.5 dB. This somewhat higher
value accounts for the signal envelope fluctuations due to filtering, providing training patterns
with no level crossings. The BER evaluation results for 3 co-channel interferers, training
parameters of n = 0.7 and £ = 0.01, are depicted in Fig. 5. It can be seen that the gain in
performance, for SIR = 7 and 9 dB, is less than the single interferer case (at a BER level
of 10'3), but still a respectable 2.8 dB, as compared to the coherent BPSK case. The reason
for this gain reduction is attributed to the fact that the co-channel interference appears more
and more like noise, as the number of interferers Nc is increased. This, in turn, prevents the
receiver from taking advantage of the neural-net pattern classification capabilities, with the
limiting case being AWGN, where no additional gain is available.

The (14,5,1) neural-net receiver structure was also evaluated in an ACI environment
consisting of a single interferer having /i4 — fc + 1/T. For Butterworth filtered signals,
training was carried out with /t = 0.5 and £ = 0.2 at SIR = 1.5 dB, yielding an RMS error of
about 0.01 after 6600 iterations. For Nyquist filters (o = 1.0), /t = 0.4 and £ = 0.008 at SIR
= 6 dB, yielded an RMS error of 0.01 after 7100 iterations. The much higher value of SIR
employed for the Nyquist case is due to the high signal fluctuation on the adjacent channel
signal after the receiver filter. This is specific to the root-of-raised-cosine Nyquist filter; it's
not the case with Butterworth filter employed in the previous case. Results for the Nyquist
filtered case are illustrated in Fig. 6; at BER = 10"3 and SIR = 6 dB, the performance gain
is approximately 3.2 dB. Note the error floor due to decision-level crossings caused by the
aforementioned signal amplitude fluctuations after the receive filter, at SIR = 3 dB.

The same (14,5,1) neural net, trained with single interferer and Nyquist filtering, was also
evaluated in an ACI environment with 2 adjacent channel interferers, one at /i* = fc + 1/T
and the other at f* = fc — 1/T, with T*, T£ uniformly distributed over one symbol duration

' When the interfering signals can be assumed statistically independent, the aggregate signal power is simply equal to
the sum of individual powers.

541

Es/No (dB)

Fig. 5. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP,
versus coherent BPSK in combined CCI and AWGN; 3 interferers with independent symbol
timing delays rf, r2

c, r3
c (uniform over [0, T)) and carrier phase offsets 9f = 8% = 0$ = 0.

T and 6^,62 uniformly distributed over [0,2TT). The results presented in Fig. 7, show
approximately 3.5 dB gain for both SIR = 10 and 12 dB. The error floors are more noticeable
in this case than that of Fig. 6 since there are now two low-frequency, modulated sinusoids
distorting the baseband legitimate user signal, each one belonging to one of two adjacent
channel interferers.

Multi-amplitude schemes
Neural-net structures were employed for the 4-PAM and 16-QAM schemes, operated in

a single interferer CCI environment, with rf uniformly distributed over one symbol duration
T and 0j equal to 0. The two net structures investigated were (14,7,1) and (28,7,1). The
latter processes a signal window having double the number of samples as compared to the

<5 JO

Es/No (dB)

Fig. 6. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP
versus coherent BPSK in combined ACI and AWGN; 1 interferer with symbol timing delay
n (uniform over [0,T)) and carrier phase offset 6f - 0.

542

IT
111
m

n
a
o

a

!^5£?V'

5*ü -*.-. ^«teV . ' " *****
>YS

*■" ^P===

X. * , ^ V/'FI , """••**.
X v. \\ *"**• ►»...'.'.''.','"

•*.

I 'v\ —~x.

V
""^Sk. ^

=
N

SIR.
SIR-

SIR
SIR
SIR

N-BPSK: D
BPSK: *

2 dB

****-.

OdB ^N; """^V '

"O 5 10 15 20

Es/No (dB)

Fig. 7. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP,
versus coherent BPSK in combined ACI and AWGN; 2 interfere« with symbol timing delays
T\ir2 (uniform over [0,T)) and carrier phase offsets 61,62 (uniform over [0,27r)).

former; namely 28 signal samples versus 14. The neural net receivers were trained at SIR
= 13 dB and 15 dB, the minimum being equal to 10 dB, as explained in Section 2. The
learning rate was set to /J = 0.7 and the momentum gain to £ = 0.2. These relatively large
values help the algorithm advance quickly in the first tens of thousands of iterations but do
not work well once the RMS error has dropped to a relatively low value. For this purpose,
both parameters were halved when the error would drop below 0.1 and 0.05. Thus, most
of the training was performed using n = 0.175, £ = 0.05. The convergence time is quite
longer than for the (14,5,1) net used with BPSK and QPSK, and the RMS error change is not
as smooth. It falls below 0.1 at approximately 45150 iterations and bellow the target value
of 0.005 at approximately 99000 iterations. For the 28-input net the number of iterations
rises to approximately 568000.

The BER performance of a Butterworth filtered 16-QAM scheme is illustrated in Fig. 8.

— 10

03

■**-5'**

"5? *^l
=*i -,

s \

sS s
r \~ —v \ \ \ \ \

—

,A N
V

NN-16-OAM: □
16-OAM: A

SIR-15dB
SIR-13dB

1 \ X,

V | \
\

30 35

SNR (dB)

Fig. 8. Performance of Butterworth filtered neural-net assisted 16-QAM (NN-16-QAM)
employing a (14,7,1) MLP, versus coherent 16-QAM, in combined CCI and AWGN; 1
interferer with symbol timing delay rf uniform over [0,T)

543

Results are presented for a neural-net based receiver employing a (14,7,1) net, the training for
which was carried out at the SIR values indicated on the figure, namely 13 and 15 dB. The
same values were used during evaluation. At a BER level of 10'3, for SIR = 13 dB the gain
with respect to coherently detected 16-QAM is approximately 3.3 dB, while for the SIR = 15
dB, it falls down to 2.4 dB. Increasing the number of input samples processed by the net does
indeed have a positive effect on the gain. The (28,7,1) neural-net based receiver, operating at
a SIR level of 13 dB, yields approximately an additional 1.9 dB of gain, at BER = 10'3. This
makes the overall gain with respect to the coherent receiver approximately equal to 5.3 dB.

REFERENCES
[I] R. P. Lippman, "An introduction to computing with neural nets," IEEE Acoustics, Speech

and Signal Processing Magazine, pp. 4(2):4-22, April 1987.
[2] J. A. Freeman and D. M. Skapura, Neural Networks: Algorithms, Applications and

Programming Techniques. Reading, MA: Addison-Wesley, 1991.
[3] D. B. Fogel, System Identification through Simulated Evolution: A Machine Learning

Approach to Modelling. Needham Heights, MA: Ginn Press, 1991.
[4] N. Alon, A. K. Dewdney, and T. J. Ott, "Efficient simulation of finite automata by neural

nets," Journal of the Association of Computing Machinery, pp. 38(2):495-514, 1991.
[5] S. Siu, G. J. Gibson, and C. F. N. Cowan, "Decision feedback equalization using

neural network structures and performance comparisson with standard architecture,"
IEEE Proceedings, vol. 137, Part I, pp. 221-225, Aug. 1990.

[6] B. Aazhang, B.-P. Paris, and G. C. Orsak, "Neural networks for multiuser detection in
code-division multiple-access communications," IEEE Trans. Commun., vol. COM-40,
pp. 1212-1222, July 1992.

[7] G. d. Veciana and A. Zakhor, "Neural net-based continuous phase modulation receivers,"
IEEE Trans. Commun., vol. COM-40, pp. 1396-1408, Aug. 1992.

[8] S. Feiz and S. S. Soliman, "Adaptive ml neural network based receiver for Q2PSK
modulated data-transmission systems," in Proc. of the 39th Vehicular Technology
Conference, pp. 263-269, May 1989.

[9] J. Choi, S. H. Bang, and B. J. Shev, "A programmable analog VLSI neural network
processor for communication receivers," IEEE Trans. Neural Networks, vol. NN-4,
pp. 484-495, May 1993.

[10] W. R. Caid and R. W. Means, "Neural network error correcting decoders for
convolutional codes," in Proc. ofGLOBECOM'90, pp. 1028-1031, Dec. 1990.

[II] H. M. Hafez and G. K. Chan, "Interference reduction using neural networks," in Proc.
of the 3rd Canadian Conf. on Electrical and Computer Engineering, Quebec, Canada,
pp. 33.1.1-33.1.4, Sept. 1991.

[12] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 1983.
[13] T. S. Rappaport, "The wireless revolution," IEEE Communications Magazine, pp. 52-71,

Nov. 1991.
[14] L. B. Milstein, R. L. Pickholtz, and D. L. Schilling, "Comparison of performance of

digital modulation techniques in the presence of adjacent channel interference," IEEE
Trans. Commun., pp. 1984-1993, Aug. 1982.

[15] J. Hertz, A. Krogh, and R. G. Palmer, Introductions to the Theory of Neural Computation.
Addison-Wesley, Redwood City, CA, 1987.

[16] F. Rosenblatt, "The perceptron: A probabilistic model for information storage and
organization in the brain," Psychological Review, pp. 65:386-408, 1958.

[17] M. J, A. El-Jaroudi, and R. Schwartz, "Formation of disconnected decision regions
with a single hidden layer," in Proc. of the International Joint Conference on Neural
Networks, volume 1, pp. 455-460, 1989.

[18] D. L. Chester, "Why two hidden layers are better than one," in Proc. of the International
Joint Conference on Neural Networks, volume 1, pp. 265-268, 1990.

[19] D. R. Hush, J. M. Salas, and B. G. Home, "Error surfaces for multi-layer perceptrons,"
IEEE Trans, on Systems, Man and Cybernetics, 22(5) 1992.

544

A HYBRID DIGITAL COMPUTER - HOPFIELD NEURAL

NETWORK CDMA DETECTOR FOR REAL-TIME

MULTI-USER DEMODULATION

George I. Kechriotis and Elias S. Manolakos

COMMUNICATIONS AND DIGITAL SIGNAL PROCESSING (CDSP)

CENTER FOR RESEARCH AND GRADUATE STUDIES

Electrical and Computer Engineering Department

409 Dana Research Building

Northeastern University, Boston, MA 02115

e-mail: elias@athina.cdsp.neu.edu george@cdsp.neu.edu

Abstract - We propose a hybrid digital computer-neural net-

work multi-user detector whose small computational complex-
ity makes it attractive for real-time CDMA detection. Theo-
retical results on the nature of the local minima of the Opti-
mal Multi-User Detector (OMD) objective function are sum-
marized, and a method that leads to a significant reduction on
the size of the optimization problem to be solved is outlined.

The preprocessing problem size reduction stage is followed by
a Hopfield Neural Network employed to solve the irreducible
(residual) problem. The performance of the proposed detector
is evaluated via simulations and it is shown to exceed that of
other suboptimal schemes at a much lower computational cost.

INTRODUCTION

Code Division Multiple Access (CDMA) is rapidly emerging as a spec-

trum efficient method of choice for the simultaneous transmission of

digital information sent by multiple users over a shared channel. The

spectral efficiency as well as the anti-jamming and other attractive prop-

erties make CDMA Spread Spectrum techniques useful in a number of

communication technologies such as cellular and mobile telephony and

0-7803-2026-3/94 $4.00 © 1994 IEEE 545

satellite communications. The major limitation of the CDMA techniques

however, is the so called near-far problem: When the power of the sig-

nals transmitted by the users becomes very dissimilar the conventional

matched-filter detector exhibits severe performance degradation, so that

more complicated detectors have to be employed.

It has been shown by Verdu et al. [1] that Optimal CDMA Multiuser

Detection (OMD) can be formulated as the solution to a quadratic in-

teger programming problem that is NP-complete. Therefore research

efforts have focused on deriving suboptimal schemes that are near-far

resistant and achieve near-optimal Bit-Error-Rate (BER) performance.

Among those reported in the literature we mention the multistage de-

tector (MD) proposed by Aazhang et al. [2], the decorrelating detector

by Verdu et al. [3], as well as the Viterbi based sequential decoding

algorithms in [4].

Recently in [5], Aazhang et al. showed that a multi-layer perceptron

can be trained to approximate the OMD discriminant function at a very

small performance loss relatively to the OMD. In [6], the authors of

this paper showed how Hopfield Neural Networks (HNNs) [7], can be

employed to solve the same problem with considerable performance gains

over the conventional detector. However both neural networks based

receivers suffer from scalability problems. In the feedforward neural

network case the number of neurons increases exponentially with the

number of the users and so does the training time. The problem is

not that severe in the case of the HNN receiver where the number of

interconnections increases only with the square of the number of users.

Since with currently available technology only relatively small size

neural networks can be manufactured, hybrid schemes that take ad-

vantage of both digital signal processing and neural network based ap-

proaches at a much smaller computational and hardware cost seem to

be the most attractive alternative. In this paper we propose a novel de-

tector that employs a digital computer (post-processing of the outputs

of the conventional detector) stage reducing the size of the OMD opti-

mization problem, with a small size HNN employed to solve a remaining

(irreducible) problem of the same form as the OMD.

546

BACKGROUND

In Spread-Spectrum CDMA a number of users share a communication

channel by transmitting information modulated by different signature

waveforms (codes) sk(t). At the receiver's end, the signal is the super-

position of all the individual transmitted signals and additive channel

noise:
K

r(t) = £ S 6*)ä*(* " iT ~ r*) + "<*)' * G R (1)

i=-P k=l

where sk{t) is the signature waveform of the kth user which is assumed

to be time-limited to the interval [0, T], rk € [0, T) are the relative

time delays between the users, b[l) G [-1,4-1] is the ith information bit

transmitted by the kth user, and 2P + 1 is the packet length. Moreover,

n(t) is additive zero mean Gaussian channel noise.

The objective of multi-user CDMA detection is to recover the infor-

mation bit streams of all the users from the received signal r(t). The

conventional CDMA receiver, consists of a bank of filters matched to the

signature waveforms of the users, followed by a threshold decision logic.

In the asynchronous CDMA case, the matched filter output correspond-

ing to the ith bit of the kth user becomes:

f = f r" r(t)sk(t - iT - rk)dt, for k = 1,..., K (2)
JiT-Tk

The decisions on the ith information bit of the kth user are made accord-

ing to the sign of y^\ i.e. b^ = sign(yk
l)). In the presence of severe

near-far problems (i.e. when the energies of the users are very dissimilar)

the performance of the conventional detector degrades severely. The op-

timal multiuser detector (OMD) on the other hand is near-far resistant,

and can be formulated for the most general asynchronous case as the

solution of the following quadratic integer optimization problem [3]:

bop4 = arg max {2yTb - bTHb} (3)
be{+i, -i}CP+i)K

In (3), y = [y-x
p y~2

p ...y~K
p\ yIP+1 ... y~K

P+1 I ••• I ^ •••
&--{ \ VP ■■■ 2/£F G R<2P+1)*xl and H G R(2P+I)K^2P+I)K is

defined as the symmetric cross-correlation matrix of the appropriately

time delayed signature waveforms.

547

In [6], [8] we have shown how an analog Hopfield neural network

can be used to solve the OMD problem. An HNN is a collection of

simple analog amplifiers that can be used to perform an almost instan-

taneous gradient descent algorithm in hardware. In particular if Tij is

the "synaptic weight" of the connection from the output of the ith am-

plifier to the input of the jth one, and /,• is the bias current running

into the ith amplifier, then as Hopfield showed in his seminal paper [7],

the output voltages of the OP-AMPs Vt will finally converge to a stable

state, regardless of their initial values. If the weights matrix T is sym-

metric and no self- feedback in the OP-AMPs is present (Tu = 0), the

final stable state reached by a network of N neuron units will be a local

minimum of the network energy function:

j N N N
£=-2££T^-X>7'- (4)

•=ij=i «=i

By setting the weights T^ and the biases /,- to reflect the objective func-

tion to be minimized, a fast gradient descent algorithm can be performed

in hardware by such an OP-AMP network. As shown in [6], [8] such a

suitable weights and biases assignment is: T = -2H and I = y + HI,

where H is obtained by fixing all the diagonal elements of H to a value
of zero, and 1 is an K(2P + 1) x 1 vector of ones.

THE HYBRID DETECTOR

In this section we summarize our theoretical results on the nature of

the local minima of the objective function (3) and we describe a very

efficient preprocessing stage that leads to a significant reduction in the

size of the optimization problem to be solved. The proofs of the propo-
sitions stated here can be found in [8].

PROPOSITION 1: If for some element i of the vector y as defined in (3)
it holds that:

(2P+1)K

E l^yl<M (5)

then the OMD's estimate for the corresponding transmitted information

bit will be: bopt<i = sign(y.) i.e. it will necessarily coincide with the

conventional detector's estimate, 6,-.

548

In other words, inspection of conditions (5) can help us to derive

information about the location of the solution of the OMD problem and

therefore to restrict the search space over which the optimization has

to be performed. Let us now denote by Sr = {i'i, »2, ■ ••»«,.} the set

of index values for which the inequalities (5) are satisfied (are "right"),

and Sw = {ji,J2,---Jnw} the remaining set of ("wrong") indices. We

can then partition the observation vector y according to the sets Sr and

Sw as follows: yT = [yj\yl] = [WiWa •••».,Ityiifo •••«;.,.]• If the

matrix H and the unknown vector b are partitioned accordingly as:

H =
ti-rr **-rw and b =

br

then the following proposition becomes true.

PROPOSITION 2: The OMD problem (3) can be reduced to a smaller

equivalent problem of the same form, in which yT is replaced by y^ew =

yj — b;rHru, and H is replaced by Hww.

Note that the same size-reduction procedure can be applied again to the

reduced OMD problem as well, leading to the algorithm described in Ta-
ble 1. The problem size reduction phase ends when either all conditions

(5) are violated, in which case either a Hopfield Neural Network algo-

rithm can be employed to solve the residual problem or an exhaustive

search may be performed, or when all of the conditions (5) are satisfied,

in which case the OMD solution is found.

While the computational cost of the multistage detector is equal to:

(number of stages) x (3(2P + l)-^2) additions, the computational cost

of the Reduced Detector (RD) depends on how many of the conditions

(5) are met during each iteration. If nr(m) (nw(m)) is the number of

symbols at the mth reduction step, for which conditions (5) are (are

not) satisfied, then it can be shown [8] that an upper bound on the

computational cost of the Reduced Detector per data packet is:

R

Nrd(add) = (2P + \)K + nw(l) ■ nr(l) + J^ (nl(m) + "»("») ■ Mm))
m=2

(6)
where R is the number of iterations required. During each step of the

algorithm the size of the optimization problem decreases and so does the

number of additions per step.
549

Initialization

y — output of conventional detector;

brd = sign(y);

Sw = {1,2,...,(2P+1)K); nw = (2P+l)K;

repeat

call reduceQ

until (nw = 0 or nr = 0)

procedure reduce()

Sr = { }; nr - 0;
for all i , j £ Sw

if(E,-,jes.,^.l^l<ly.l)
Sr = SrU{i}; Sw=Sw-{i};
nr = nr + 1; n^ = nw — 1;

end for

if (nw = 0 or nr = 0) break

else

for all i 6 Sw

Vi = Vi ~ Ej65r Hij ■ brd,j
Kd,i = sign(yi)

end for

Upon exit

brd holds the final estimate.

If nw ^ 0 then Sw holds the indices of the irreducible
problem.

Table 1: The Reduced Detector Algorithm.

550

In all cases that we simulated using MATLAB in a conventional work-

station, the size of the irreducible OMD problem was smaller than 32,

so that any one of the CLNN32 recently announced analog HNN chips

[9] could be used to provide good suboptimal solutions to the residual

problem, thus avoiding the need for computationally expensive objec-

tive function evaluations. The HNN was initialized to the estimate of

the conventional detector for the irreducible problem, and then let to

converge to its final state. Note that if more accurate results are de-

sired, numerous tries of the HNN with different initial conditions can

be performed in real time, and additional logic (at the expense of larger

computational cost) can be used to decide on the best of the resulting

local minima.

SIMULATION RESULTS

In all cases the Direct-Sequence Spread-Spectrum Binary PSK (DSSP-

BPSK) [10] signaling system was used. The proposed hybrid detector

(Reduced Detector followed by an HNN) was compared against the con-

ventional matched filters and the 10-stage multistage detectors.

Example 1: In this case we simulated a set of K = 3 asynchronous

users employed spreading codes of length L = 4 and transmitting pack-

ets of length 2P + 1 = 31. The relative delays of the users were chosen

such that the the conditions of worst case interference presented in [4]

are satisfied. The energy of user 1 was 10 times larger than the energy

of the other users. The RD detector was compared against the 10-stage

MS and the conventional detectors. The size of the irreducible prob-

lem never exceeded 12 for the set of symbols that we simulated. It is

clear from Table 2 that the RD outperforms the 10-stage MS detector,

whereas the matched filters detector completely fails to demodulate the

received information.

Example 2: A set of K = 8 asynchronous users is employing spread-

ing sequences of length L = 127 (Gold sequences [10]). The energy

of one of the users is 10 times larger than the energy of each of the

other users as in the previous examples, and the length of the packet

is again IP + 1 = 31. In Table 3 we compare the BER performance of

the hybrid detector to that of the 10-stages multistage and the conven-

tional detector. As the results suggest, the hybrid detector, at a much

551

SNR (dB) BER multistage BER hybrid (reduced) BER conventional
5 -1.3348 -1.3529 (-1.342) -0.9096
6 -1.5091 -1.5409 (-1.5233) -0.9297
7 -1.6448 -1.7016 (-1.6552) -0.9422
8 -1.8434 -1.9220 (-1.8982) -0.9515
9 -2.134 -2.2354 (-2.202) -0.9614

10 -2.4636 -2.5178 (-2.5747) -0.9723

Table 2: K = 3 asynchronous users, 2P + 1 = 31, L = 4 (conditions of

worst case interference). BER performance comparison of the conven-

tional, multistage (10-stages) and hybrid detectors. For the proposed de-

tector, the numbers in parenthesis correspond to the BER value achieved

without the HNN post-processing stage (RD stage only).

lower computational cost, outperforms slightly the multistage detector.

When a HNN post-processing stage is added, the improvement over the

multistage detector, becomes even larger. The maximum number of op-

erations (additions) required for the demodulation of one 8 x 31-bit long

data packet (evaluated over 10000 such packets) was 1204 and the av-

erage number of additions was 706, whereas the number of additions of

the 10-stage multistage detector is about 84 times larger (5952 additions
per packet per stage).

SNR (dB) BER multistage BER hybrid (reduced) BER conventional
4 -1.3004 -1.3176 (-1.2989) -1.2337
5 -1.4813 -1.5051 (-1.4797) -1.3780
6 -1.6432 -1.6825 (-1.6455) -1.5430
7 -1.8941 -1.9230 (-1.9008) -1.7320
8 -2.2570 -2.3388 (-2.3010) -1.9360
9 -2.6582 -2.7591 (-2.6702) -2.1868

Table 3: BER performance comparison of the Multistage, Hybrid (Re-

duced) and Conventional CDMA multi-user detectors: K = 8 asyn-

chronous users, 2P + 1 = 31, L = 127 (Gold sequences), maximum
near-far-ratio = 10

552

CONCLUSIONS - FURTHER RESEARCH DIRECTIONS

A novel hybrid digital computer - neural network CDMA multiuser de-

tector has been introduced. For a similar level of BER performance,

the computational complexity of the Reduced Detector is smaller than

that of other proposed schemes by more than one order of magnitude

in some cases. The Reduced Detector can be used in conjunction with

any other suboptimal scheme since the irreducible problem has the exact
same structure of the original OMD problem.

The small size of the irreducible problem allows for the use of off-the-

shelf available HNN neural chips to further improve the performance.

Issues that we are currently investigating include: The experimental

evaluation of the proposed scheme on available HNN chips; the efficient

implementation of the preprocessing stage on either standard DSP mi-

croprocessors or dedicated ASIC/systolic array VLSI architectures; the

optimal initialization of the HNN as well as iterative schemes that in-

crease the probability of converging to the global minimum; annealing

and other proposed HNN like algorithms implementable in hardware to
further improve the performance.

References

[1] S. Verdu. Computational Complexity of Optimum Multiuser De-

tection. Algorithmica, 4:303-312, 1989.

[2] M. K. Varanasi and B. Aazhang. Multistage Detection in Asyn-

chronous Code-Division Multiple Access Communications. IEEE

Trans, on Comm., 38:509-519, April 1990.

[3] R. Lupas and S. Verdu. Near-Far Resistance of Multiuser Detectors

in Asynchronous Channels. IEEE Trans, on Comm., 38:496-508,
April 1990.

[4] Z Xie, C. K. Rushforth, and R. T. Short. Multiuser Signal Detection

Using Sequential Decoding. IEEE Trans, on Comm., 38:578-582,

May 1990.

[5] B.-P. Paris B. Aazhang and G. Orsak. Neural Networks for Multi-

user Detection in CDMA Communication. IEEE Trans, on Comm.,

40:1212-1222, July 1992.

553

[6] G. Kechriotis and E. S. Manolakos. Implementing the Optimal

CDMA Multiuser Detector with Hopfield Neural Networks. In Pro-

ceedings of the Int'l Workshop on Applications of Neural Networks

to Telecommunications, pages 60-67, Princeton, New Jersey, Octo-

ber 1993.

[7] J. J. Hopfield. Neurons with Graded Response have Collective Com-

putational Properties like those of Two-State Neurons. Proc. Natl.

Acad. Sei. USA, 81:3088-3092, 1984.

[8] G. Kechriotis. Feedback Neural Networks in Digital Communica-

tions: Algorithms, Architectures and Applications. PhD thesis,

Northeastern University, Boston, 1994.

[9] A. Jayakumar and J. Alspector. An Analog Neural-Network Co-

processor System for Rapid Prototyping of Telecommunications Ap-

plications. In Proc. Int. Workshop on Appl. of Neural Networks to

Telecommunications, pages 13-19, October 1993.

[10] J. Proakis. Digital Communications. Prentice Hall Inc., N.J., 1988.

554

A HOPFIELD NETWORK BASED
ADAPTATION ALGORITHM FOR

PHASED ANTENNA ARRAYS

Mathäus Alberti
Dept. of Communications Engineering FB14/NT

University of Paderborn
33095 Paderborn

Germany

Abstract — One of the problems of adaptive antennas is
to find the weight factors for an array pattern optimizing
the signal to noise and interference ratio for the actual
signal situation. A neural Hopfield network is able to find
the optimal factors, if the direction to the desired trans-
mitter and the interfering transmitters are known [1]. To
actualize altering directions, the proposed random search
algorithm analyses the signal power of the antenna out-
put. In combination with the Hopfield network it can
track the desired signal and suppress interfering sources.
This is shown in simulations, which were carried out using
a digital controller of an array antenna (algorithm and
Hopfield network) and a host computer (signal situation,
antenna pattern and output power).

INTRODUCTION

Compared to omnidirectional antennas, phased antenna arrays
are more advantageous because of their ability to adapt the an-
tenna group pattern to a certain signal situation. A major task
is to find the weights W{ for the antenna element signals. Several
algorithms are known [2] to perform this with more or less hard-
ware. A method without need of element signals is to update the
setting of a phase shifter according to a quality signal from the
receiver [3, 4]. A random change in the setting of the phase shif-
ters is maintained or abandoned depending on the change of this

0-7803-2026-3/94 $4.00 © 1994 IEEE 555

quality signal.

Figure 1 shows a block diagram of an adaptive array. The si-
gnal to noise and interference ratio of the receiver input signal
is a function of the signal situation and the weight setting. Two
possible quality signals (there are certainly more) are the array
output power and the code error rate of a transmitted signal.

Fig. 1: Block diagram of the adaptive antenna system,
to,: Setting of the ith phase shifter; N: Number of an-
tenna elements

Maximizing the output power of the array antenna alone is more
than fast enough to adapt the group pattern for the demands of
mobile applications [5]. The exclusive use of this quality signal is
restricted to the case that the desired transmitter is the strongest
or the only one in the interesting frequency band.

Suppressing an interfering transmitter needs a quality signal with
more information. As an example, in [4] the error rate in the syn-
chronisation frame of the digitally broadcasted audio signal of a
DBS-Satellite1 was evaluated. This enables the array antenna to

direct Broadcasting by Satellite, e.g. TV-Sat

556

suppress an interfering source, but slows down the angular speed
for tracking from 100°/s to 0.5°/s. This is due to the small dyna-
mic of the quality signal used.

If both signals directly control the setting of a phase shifter, the
signal with the larger dynamic and rate of repetition suppresses
the influence of the other one.

The combination of both quality signals for a relatively fast adap-
tation with regard to interfering transmitters is possible, if each
signal is used for a different task. Estimated directions of signal
sources, e.g. determined by an initial sweep of an pencil beam,
are classified by the low dynamic quality signal from the receiver
as direction of a desired or interfering source. The high dynamic
quality signal from the output power of the array is used to track
the desired signal and the interferers. So the algorithm tries to
optimize the position of a certain transmitter, not the setting of
a phase shifter directly.

The last - but not least - step is to compute the weights W{(k)
for the estimated positions of the transmitters. This task can
be performed with a Hopfield network [1]. Due to its parallel
computing, the delay for each iteration needs not too much time
compared with the other parts of the algorithm. A drawback of
this network is the necessity to update the complete set of network
coefficients caused by the changing directions to the respective si-
gnal sources.

ALGORITHM

Estimation of signal direction

The algorithm based on the output power of the adaptive array af-
ter classification of possible signal sources is shown in Figure 2. It
changes the estimated direction to a signal source in an arbitrary
direction with a stepwidth A8.

557

Two cases must be considered in the algorithm:
— Altering the estimated direction to the desired source, an in-
crease of output power can be interpreted as an improvement of
the estimation, a decrease as a step in the wrong direction.
— Adjusting the estimation of the position of an interfering
source, an increase of output power can be interpreted as a step
in the wrong direction, a decrease indicates a better suppression
of the interfering transmitter.

Initialisation

Sorting and evaluation of
directions to transmitters

Selection of a source

Estimation of new direction:
ek = etl + A6

Simulation of the Hopfield net

Update of antenna weights

Reception of output power

Computation of difference AP of
actual to last output power

Updated direction =
)irection to desired signal^

Yes ^\ ^^ No

0 = 9 - 2 A6
k+1 k

Fig. 2: Block diagram of the search algorithm.

558

Hopfield network

The structure of the network is shown in Figure 3. Because it
is documented in [1], only a short rewiew for is given here.

9 l

?2M

cM12

b
21 J$22

bllr[b21 ^A12

0 IM

2M

-D hu

«Ml

-D
?2M

• • •

fM2 ^P $ fMM
^

Fig. 3: Network to find array weights [1], M = 2N

The problem to find the weights to,- for the estimated signal situa-
tion can be written in the form [1, 6]:

559

with regard to

and

Minimize 1 T
v P(v) = -v Gv (1)

Lt

Bv-e = 0 (2)

n — (2Rr —2Ri \ ,Q\
G - ^ 2Rt 2Rr) ' (3)

B=\ , (4)

(5)

Rr and R{ are real and imaginary part of the covariance matrix
R = E(X(t)X*(t)), So the steering vector of the desired signal and
v = (wir, w2r, • • •, WNT, wn, iü2i, • ■ ■, WNi)T■ G and B are the coef-
ficients of the Hopfield network, w is the vector of array weights.
X* denotes the transpose conjugate of X.

The covariance matrix R is computed from the estimated signal
situation to save the amount of hardware necessary to access the
single antenna element signals.

SIMULATION

The random search algorithm together with the hopfield network
is programmed on a TMS320E17 signal processor. Because this
device has a single accumulator architecture, the parallel architec-
ture of a hopfield network can only be simulated and its advantage
in speed is lost. In this study the ability to change the algorithm
and the network together with existing hardware was the reason
for this choice. As the weights W{ are quantized with a resolution
of m = 4 bit in real and imaginary part [7], the Hopfield network
finds its stable solution within five iterations. Figure 4 shows the
setup for the simulations.

560

Antenna simulator

- Signal situation
- Array pattern
- Calculation of received signal power
- Display of simulation data

Array weights
Wi(k)

Received power
P(k)

Antenna controller (TMS320E17)

Evaluation of received power
Estimation of signal situation
Computation of net weights
Simulation of Hopfield net

Fig. 4: Simulation configuration

Given the locations of desired signal and interfering transmitters,
the Hopfield network is able to compute a set of weights W{ even for
a more complicated signal situation, taken from [3]. The resulting
array pattern is shown in Figure 5 after selecting the possible
settings from a table [7] nearest to the output of the network.

i4 i3 i2

R/dB

Fig. 5: Beam pattern after adapting to signal s and four
interferences i, — discrete Wi, - - continuous W{, N = 16,
0S = -20°, 0ü_4 = -33°, -7°, 5°, 7°

561

Together with the random search algorithm based on the output
power it is possible to track the desired transmitter. Figure 6
shows a signal situation with an interfering source at a position
where otherways would be one of the first sidelobes of the simu-
lated linear array with N = 16 elements spaced A/2 apart (A as
average wavelength of the interesting frequency band). Figure 7
displays the signal to noise and interference ratio while tracking
the situation given in Figure 6.

Number of Iteration

Fig. 6: Signal positions of
transmitter

desired signal; - - interfering

CO
•o

I
lOQ 1 50

Number of Iteration >

Fig. 7: Signal to noise plus interference ratio;
(S/N)max = 12dB

The time for the antenna simulator to compute the signal situation

562

and the communications between the simulator and the controller
are not present in a complete antenna system. Subtracting them
from the time of an iteration, the controller was able to track the
signals with an angular speed of u = (7°/s)(ir/lS0°).
The relatively simple random search algorithm to provide the Hop-
field network with the estimated positions of the transmitters is
limited in the power quality signal. Shifting the estimated posi-
tion of an interfering transmitter within a minimum of the antenna
pattern influences the total received power as much as the slight
change in the main beam due to this shift. The Algorithm is able
to cope with the signal situation given in Figure 6 but fails for
the situation given in Figure 5. Further work has to be done for
improvements.

SUMMARY

In combination with a random search algorithm a hopfield net-
work can be used to track a signal source for mobile communica-
tions and cancel out an interfering transmitter without need for
the single antenna element signals. As quality signals for the ran-
dom search only the output power of the array and a reference
signal indicating the right transmitter is needed.

REFERENCES

[1] Chan, K., Chang, P., Yang, W.: A Neural Net Approach to
Real-Time Adaptive Array, Conf. Proceedings of the 21. Eu-
ropean Microwave Conference, 9.-12.9.1991, Vol.1, pp. 751-
756

[2] Monzingo, R. A., Miller, T. W.: Introduction to Adaptive
Arrays, Wiley & Sons, New York

[3] Grabow, W.: Numerische und experimentelle Untersuchun-
gen zum mobilen Satellitenempfang zirkulär polarisierter
Wellen mit adaptiven Planarantennen, Dissertation D 14-34,
Universität Paderborn, 1990

563

[4] Schrewe, H.-J.: Ein adaptives Antennensystem zum mobilen
Empfang des digitalen Satellitenhörrundfunks, Dissertation
D 14-65, Universität Paderborn, 1993

[5] Koschnick, P.: Eine adaptive Gruppenantenne für ein mo-
biles Verkehrsinformationssystem im Frequenzbereich um 12
Gigahertz Dissertation D 14-50, Universität Paderborn, 1991

[6] Kennedy, M. P., Chua, L. 0.: Neural Networks for Nonlinear
Programming, IEEE Trans. Circuits Syst., vol. CAS-35, pp.
554-562, May 1988

[7] Alberti, M.: Discrete weighting of digitized signals for adap-
tive phased arrays, Proceedings of the Third International
Symposium on Antennas and EM Theory (ISAE'93), pp.
675-678, Sept. 1993, Nanjing, China

564

BLIND DECONVOLUTION OF SIGNALS USING
A COMPLEX RECURRENT NETWORK

Andrew D. Back and Ah Chung Tsoi
Department of Electrical and Computer Engineering

University of Queensland, St. Lucia. 4072.
Australia.

back@si.elec.uq.oz.au, act@sl.elec.uq.oz.au

Abstract- An algorithm for the separation of mixtures of signals was derived
recently by Jutten and Herault under the assumption that the signals are inde-
pendent. This algorithm is based on higher order moments and has also been
applied to deconvolving signal mixtures. In practical problems where the order
of the convolving filter may be high, frequency domain approaches are known
to provide a more computationally efficient method of deconvolution. In this
paper, we introduce a complex recurrent network structure for performing blind
deconvolution. The aim is to investigate the performance of this approach for
separating unknown, convolved signals which may occur in a situation such as
the well-known 'cocktail-party problem'.

INTRODUCTION
Adaptive filtering techniques have been widely applied to noise cancellation and blind
deconvolution problems, where the aim is to obtain an enhanced signal based on some
knowledge of the signal or noise [20,23,35]. More recently, the problem of separating
mixtures of signals has been considered. In this case, the only assumption made is
that the signals are independent. In addition, there are multi-sensors which record the
signal. This situation is commonly encountered in practice, e.g. in the "cocktail-party"
problem, where the aim is to listen to a desired signal (speech) and other signals are
considered as noise. In such cases, traditional methods for adaptive noise cancellation
(e.g. [35]) are insufficient to solve the problem.

A novel method to overcome the problem of blind separation of sources has been
proposed recently by Jutten and Herault [21]. They proposed an algorithm which only
assumes that the sources are statistically independent. The blind separation of sources
problem consists of a mixture model, with a number of unknown input signals, and a
desired method of estimating those signals. The mixture model is described by

M

Xj(t) = ^ajiwit) (1)
;=o

where Uj(t) is the ?'th signal source, a,-,- is the (amplitude) weighting applied to the
signal from the ?th source and received by the jth sensor, and xj(t) is the sum of
received signals at the jth sensor. Based on this model, Jutten and Herault proposed a
method to estimate values for w,(/). The model developed by Jutten and Herault may
be described as follows

Y(t) = X(t)-WY(t) (2)

Y(t) = \yo(l),m(t),...,yM(t)]T (3)

X(t) = [x0(t),xi(t),...,xM{t)]T (4)
0 Woi • • • WOM

«'10 0 ••• W\M w
U>MO «'A/1

0-7803-2026-3/94 $4.00 © 1994 IEEE 565

Where it is tacitly assumed that the number of sensors is equal to the number of sources,
and the time constant of the network is small compared to that of the incoming signals,
and that the network is stable. Thus, the network output can be described as

Y(l) = (I + W)-lX(t) (5)

where I is the identity matrix. We define the vector of zero mean output signals as

y(t) = [ya(tlyl(t).-,yJt)]T

(6)

The weights wj ,■ arc updated by a stochastic gradient descent algorithm, a cost criterion
(for each output) is defined as

■hit) = E2,(l) (7)

= //?(/)-/?[</?(,)] (8)

which is the power of the zero mean output signal. The algorithm obtained by this
process is modified to update the weights using nonlinear functions which provide the
test for higher order moments [21]. Thus, we have

A«»jt = »//(.»/. (')).'/(?/,.(')) (9)

where 7/ is a learning rate constant, and f(x), n(x) are odd nonlinear functions. For
the simulations reported in Section 4 we used f(x) = x3,ai\6g(x) = arctan(x).

Note that in the Juttcn and Hcrault formulation, the network architecture used is a
recurrent network [21]. A related situation is that involving a convolutive model for
dispersive media, this was considered by Nguyen, Juttcn [26, 22], Platt and Faggin
[16], Lacoumc and Ruiz [24], Soon, Tong el. al. [30, 31] and Van Gcrven and Van
Compcrnollc [28] (Figure 1). In this case,

M P

;('■) = £!>;.•«,■('-</*) (10)

In a similar manner to that given by Julien and Hcrault, Platt and Faggin gave a weight
update equation for their model as

Awitj = »j/(i/,(/)).v(w,.(/-rf,-)) (11)

where the best reported results were obtained with /(x) = \x\, and g(x) - x. Previ-
ously, there has been significant work done on this topic, closed form solutions have
been presented in [3,6,7,33,34], while other models have been considered in [30,31].

The models developed by Juttcn and Hcrault, Platt and others are based on real signals.
In some situations however, it is desirable to be able to use complex signals. It is well
known, for example, that frequency domain adaptive fillers can have advantages over
time-domain filters [17], (though for some adaptive noise-cancelling applications,
these advantages are not apparent [9]). For conventional filter structures, frequency
domain adaptive filters (using complex signals) have advantages in two main areas.
The use of the Fast Fourier Transform (FFT) for complex weight update leads to a
reduction1 in computation with increased data |36|. Secondly, it is known that for

'The computational advantages are dependent on which scheme is used for processing, that is, whether
the algorithm implements a circular convolution 111|, or linear convolution |10J, |12j.

566

Convolution Mixture
Signall Modd Network

-o
Estimated Signal 1

Estimated Signal 2

Filter

Figure 1: Convolutive mixture model and the network proposed by Platt and Faggin.
In this case, each of the synapses is a filler. Note that we show only a two neuron
network. In practice, the principles discussed here apply to any size network, (provided
there are at least as many inputs as outputs).

the usual stochastic gradient algorithms, the convergence rate is proportional to the
eigenvalue spread of the inputs [37]. This serves as a limiting factor in the time-domain
filter. In a frequency-domain filler, the use of frequency bins provides an approximate
orthogonalization of the data [17], and the learning rate in each frequency bin can
be adjusted according to the power level present. This overcomes the problem of
eigenvalue spread [19]. In effect, a normalized algorithm can be applied in each
frequency bin [17], allowing the convergence rate to be improved for dependent inputs
such as speech. For those applications where a frequency domain implementation
does offer advantages, we present the algorithm contained herein.

For these reasons, we present a complex algorithm for blind source separation. The
complex algorithm is derived in Section 2. Computational complexity details are
given in Section 3, simulation results are given in Section 4 and conclusions are given
in Section 5.

A COMPLEX ALGORITHM FOR BLIND SOURCE
SEPARATION
The algorithm is developed by considering a complex model analogous to the real
case. Figure 2 shows the complex model for the case of two mixture inputs and two
outputs. The same techniques are applicable to larger network structures. From (3),
we define

Y(t) = \Y(t),Y(t-\),...,Y(t-N + l)) (12)

Taking the Fourier transform, and noting that the sampling rate in the frequency domain
is reduced by a factor of N, where N is the number of points in the FFT (assuming no
zero padding to overcome the problem of circular convolution), we have

Y(n) = FFT [Y'(0]

yoo(») yoi(n) •■■ yoAr-i(n)
yio(») yn(») ■•• yuv-i(n)

yMo(n) yjwi(n) ••• yMN-i(n)

t = nN (13)

where n is the new sampling index in the frequency domain and the bold typeface
represents variables in the frequency domain (following the convention used in [17]).
Define the complex model as

Y;(n) = [yjo("),yji(n),---.yjAf(«)]J

567

(14)

"1R

Figure 2: Complex blind source separation model, with two mixture inputs xi, X2,
and two outputs yi, y2. The network is used in every frequency bin.

Xj(») = [Xjo(").Xji(»l).---,XjA/(»)]J (15)

W;

0
WjlO

w_,oi
0

■ Wj-OA/
' WjiA/

. WjA/o WjA/i •• 6
(/ + W)- %■(») Yj(n) = (7 + Wr'X» (16)

Wc now derive the weight update equations. For clarity, the j subscript indicating the
frequency component index is dropped from the remainder of the paper. Following
[36], we minimize both the real and imaginary components of the weights simultane-
ously. Therefore, the total power y.(»)y* (>i) is minimized, (* represents the complex
conjugate), and

Ji = y,(»)y*(») = //?„('')+ ?/?,(»)

The weights arc adjusted by minimizing the instantaneous total power,

dJi
Wj*(»l+1) = Yfjt{n)-7)

dwjk
(17)

where, Wj<•(») = Wjkr}(n) + jwju(n). Following the procedure used by Jutten and
Hcrault, and updating the complex weights, wc have

AwjtR(n)

Awjk.,(n)

9Y(n)

OJi
OlfjH

7 + W)-^ + W>Y(„)
du'ji-R v" ' " ' cht'jtR

Omitting details, the weight changes (with / = j) are

Wjk(n + \) = wj(.(n) + AWj|.(n)

(18)

(19)

568

, , (dJj dJj \
\OWjkR OWjklJ

Wjk(n) + 2r]yl(n)y.(Ti) (20)

Previously, a higher order independence test was used in the weight update equation,
which, if applied in the frequency domain case, would result in an equation of the form

wit(n + l) = wjk(n) + 2ifi(£(n))g(y.(n)) (21)

where f() and g() are complex functions which operate on real and imaginary
components independently, i.e.,

f(x + JV) = ffi(x)+jfi(y) (22)

A function of this type was proposed also by Benvenuto and Piazza [2]. Note that
normally ffi(a) = //(«). If the above method was used in this case however, the
problem of obtaining the correct permutation matrix for the signals would be extremely
difficult to solve. The permutations would occur in the frequency domain, and be com-
plicated by an additional multiplication by a diagonal matrix of unit modulus complex
values. The approach used in this paper, is to perform the test for independence in
the time domain as before and transform the outputs to the frequency domain before
multiplying them together. Since the signals are not multiplied in the time domain,
but the multiplication of f(y)*g(y) is performed in each frequency domain bin, and
the problem of permutations between different frequency bands is overcome.

In this way we select a criterion which allows the algorithm to perform a task of
essentially the same difficulty as before in the time domain case (down to a permutation
matrix in the real valued output signals). The final weight update equations are

wit(n+l) = vrjt(n)+2riFtin)Gj(n) (23)

where the Fourier transform of each block of output signals passed through the non-
linear functions is computed, viz

Ffc(n)=FFT

Ft(n)=FFT f(yk(t))

f(yk(i)) Gj(n)=FFT\g(y.(t))

Gj(w)=FFT <J%(i)) (24)

where

m FFT" y>) (25)

Note that F*, Gj, represent vector processes, with the length determined by the
number of points in the FFT computation. A method of improving the performance
of the standard algorithm, is to include power normalization in each frequency band
[17].

It is possible that minimization of the above criteria may lead to problems of unstable
convergence as in the Jutten and Herault algorithm 113]. It is expected that the algo-
rithm presented here and the Jutten and Herault algorithm will have similar properties.
For example, convergence is only expected if the probability density functions of the
zero mean sources are even, while swapping the /(•) and g() functions may cause
a stable solution to become unstable [32]. Thus, the presentation of this algorithm
does not address some of the more fundamental problems associated with the Jutten
and Herault algorithm, but rather introduces a method for overcoming problems of
convolved and correlated input signals.

569

Table 1: Computational Complexity Ratios for the Frequency Domain Blind Source
Separation Model versus the Time Domain Model with M=2 and L=20.

N 8 16 32 64 128 256 512
Complexity Ratio 0.5 0.25 0.12 0.0614 0.0306 0.0153 0.0076

COMPUTATIONAL COMPLEXITY
Consider the convolutivc mixture model, where there are Ar real weights in each filter,
M sensors, M model outputs, and the model is applied to A' data points.

The computational complexity is determined as the sum of multiplications for both the
model outputs and the weight updates. The fast acting recurrent loop [21] is assumed
to have /, cycles per presentation of input data.

The complexity depends on whether the algorithm uses circular convolution or linear
convolution [11], [12], [17], we will only consider the circular convolution here.
For the circular convolution case, there arc 2A/ FFTs required for the computation
of outputs, and 3 A/ FFTs required to compute the higher order independence test
variables (Fk, Gj) (assuming g(n) ^ n), giving a total of 5M FFTs required for
every N data points. To compute the outputs, there will be 4L A'(M2 - M) real
multiplications required (over /, cycles). For the weight updates with real inputs, there
will be 6 A'(A/2 - A/) real multiplications required, giving a total of 5 M N \og2(N) +
(6 + 4I,)N(M2 - M) real multiplications for every N data points. The method of
computing the linear convolution for cither the overlap-add or overlap-save methods
arc described in [17], and arc not considered further in this paper. Table 1 shows
the comparison between the computational complexity of the time domain with the
frequency domain methods. It is expressed as a complexity ratio of the computation
required by the frequency domain method and that required by the time domain method.

SIMULATION RESULTS
In this section, results are presented in using the above complex algorithm for simu-
lations involving the separation of two speech signals. The voices were digitized at
8kHz and mixed according to the mixture model shown in Figure 1. The actual input
voice signals are shown in Figure 3 and the mixture signals arc shown in Figure 4

To maintain the symmetry of real outputs for real inputs, the imaginary weights were
set to zero [18].

As a means of verifying performance of the complex model, various lengths of data
were tried, with the model performing well in the ranges tested (16 - 128). In the
results shown, N = 64 (Figure 5).

While it is possible to implement a linear convolution model, for the example given
here, only the circular convolution model was used. The observed results show that
the complex model is indeed capable of performing separation of signals mixed in a
convolution model. For signal mi1), the signal-lo-noise ratio (SNR) is 8dB, and for
P2(t), the SNR is 9.4dB2. It should be noted that, as is usual with gradient descent
algorithms, better results would be possible by allowing the network to learn for
a longer period of time. The results obtained here are less favourable than those
reported by Platt and Faggin [16], who obtained around 20dB SNR for separating
speech and music using the architecture shown in Fig. 2. In their case however, the

These results were computed by normalizing the output signals yi (f) , ;g(r) to the same root-mean-
squarc (RMS) value as the corresponding inputs. Thus, wc use ;/[(') = yi(')"ri. and y^t) = yi(()72
where -yt = ii\ /.V2, and 72 = "2/.V1- The RMS value of j- is represented by x. Note that in the case
presented here, the outputs arc reversed with respect to the inputs.

570

(a) (b)

Figure 3: Input sources of two independent speakers taken while each speaker counted
"One.. two.. three ..", (a) ul(t), (b) u2(t). Sampling was done at 8Khz.

Mixtur* X (Coiv.)

S>apl«a (1D.4)

(a) (b)

Figure 4: Output from the mixture model, with each signal being a linear combination
of both speech signals: (a) xl(t), (b) x2(t).

571

N»pUi (10.4) ■••pi** (l(te4)

(a) (b)

Figure 5: Outputs from the frequency domain network which estimate the original
inputsignals: (a) yl(t), (b) y2(t). This test was performed without power normalization
and the performance is similar to the original lime domain model. For the case shown
here, the FFTs used N = 64. Learning commenced at the first sample, and occurred
over the whole interval shown. Note that the order of the output signals is reversed
from that of the input signals, due to the algorithm having no mechanism to sort the
outputs in any particular way. Such an addition could be readily implemented.

mixtures were such that one signal was attenuated; specific details were not given.
This contrasts with the results presented here, the estimated signals were of similar
magnitudes to the original ones (observe Figures 4(a) and 4(b)). Thus, the simulations
presented arc not aimed at showing the best performance possible, but simply to verify
the operation of the model. It would be interesting to compare the performance of this
algorithm with one which uses only second order statistics, however this is not done
here.

CONCLUSIONS
The algorithm developed by Juttcn and Hcrault for blind source signal separation has
shown promising results for real signals. In many practical situations however, it is
desirable to apply an algorithm to complex data. In this paper, we have derived a com-
plex algorithm for blind source signal separation which uses higher-order moments
as in the original approach by Jutten and Herault [21], but allows the use of complex
coefficients and data. The adoption or this method results in a more efficient imple-
mention of a blind source separation model for convolutive mixtures. Simulations
have verified the use of the algorithm for separating real speech signals.

Acknowledgements

The first author gratefully acknowledges support from the Electronics Research Lab-
oratory, Defence Science and Technology Organisation, Australia, and the Australian
Research Council. Appreciation is expressed to the Director, ERL, for permission to
allow this paper to be published. Thanks arc expressed also to John Shynk for helpful
advice.

References

[1] ST. Alexander, "A derivation of the complex fast Kaiman algorithm", lEEETrans.Acoust.
Speech, Signal Proc, vol. ASSP-32, no. 6, pp. 1230-1232,1984.

572

[2] N. Benvenuto, and F. Piazza, "On the complex backpropagation algorithm", IEEE Trans.
Sig. Proc, vol SP-40, pp. 967-969,1992.

[3] J.F. Cardoso, "Source separation using higher order moments", Proc ICASSP'89, vol. IV,
pp. 2109-2112, Scotland, 1989.

[41 J.F. Cardoso, "Blind Beamforming for Non-Gaussian Signals", 1EE Proc.-F, Radar and
Signal Proc, vol. 140, pp. 362-370, Dec, 1993.

[5] J.F. Cardoso, "Iterative Techniques for Blind Source-Separation Using Only Fourth-Order
Cumulants", Signal Processing VI: Theories and Applications, J. Vandewalle, R. Boite,
M. Moonen, A. Oosterlinck (Eds), Elsevier Science Publishers B.V., pp. 739-742,1992.

[6] P. Comon, "Independent Component Analy sis",Proc. Workshop on Higher-Order Spectral
Analysis,??. 174-179, France, 1989.

[7] P. Comon, "Separation of Stochastic Processes", Proc. Workshop on Higher-Order Spec-
tral Analysis, pp., France, 1989.

[8] P. Comon, C. Jutten, and J. Herault, "Blind separation of sources. Part TJ: Problems
Statement", Signal Processing, vol. 24, pp. 11 -20,1991.

[9] J.M Connell and C.S. Xydeas, "A comparison of acoustic noise cancellation techniques
for telephone speech", Proc. 6th Int. Conf. on Digital Proc. of Signals in Communications,
IEE, pp. 320-325,1991.

[10] G.A. Clark, S.R. Parker, and S.K. Mitra, "Efficient realization of adaptive digital filters in
the time and frequency domains", Proc. IEEE Int. Conf. Acousl., Speech, Sig. Proc, pp.
1345-1348,1982.

[11] M. Dentino, J. McCool, and B. Widrow, "Adaptive filtering in the frequency domain",
Proc. IEEE, vol 66, pp. 1658-1659,1978.

[12] E.R. Fcrrara, "Fast implementation of LMS adaptive filters", IEEE Trans. Acoust., Speech,
Sig. Proc, vol ASSP-28, no. 4, pp. 474-475,1980.

[13] J-C. Fort, "Stability of the Source Separation Algorithm of Jutten and Herault", Artificial
Neural Networks, T. Kohonen, K. Makisara, O. Simula, and J. Kangas (Eds), Elsevier
Science Publishers B.V. (North-Holland), pp. 937-941,1991.

[14] J.C Lee, C.K. Un, and D.H. Cho, "A frequency-weighted block LMS algorithm and its
application to speech processing", Proc IEEE, vol. 73, no. 6, pp. 1137-1138,1985.

[15] J.C Ogue, T. Saito, and Y. Hoshiko, "A fast convergence frequency domain adaptive
filter", IEEE Trans. Acousl. Speech, Signal Proc, vol. ASSP-31, no. 5, pp. 1312-1314,
1983.

[16] J.C. Platt and F. Faggin, "Networks for the separation of sources that are superimposed and
delayed". Advances in Neural InformationProcessingSystems4, J.E. Moody, S.J. Hanson,
R.P. Lippman (Eds), Morgan-Kauffmann Publishers, San Mateo, Cal., pp. 730-737,1992.

[17] JJ. Shynk, "Frequency-Domain and multiratc adaptive filtering", IEEE SP Mag., pp.
14-37,1992.

[18] JJ. Shynk, Personal Communication.
[19] P.C.W. Sommen, PJ. Van Gerwin, H.J. Kotmans, and AJ.E.M. Janssen, "Convergence

analysis of a frequency-domain adaptive filter with exponential power averaging and
generalized window function", IEEE Trans. Circuits Syst., vol. CAS-34, no. 7, pp. 788-
798,1987.

[20] T.G. Stockham, Jr. T.M. Cannon, and R.B. Ingcbretsen, "Blind deconvolution through
digital signal processing", Proc. IEEE, vol. 63, pp. 678-692,1975.

[21] C. Jutten, and J. Herault, "Blind separation of sources, Part I: an adaptive algorithm based
on ncuromimetic architecure", Signal Processing, vol. 24, pp. 1-10,1991.

[22] C. Jutten et. al.. Proceedings of the Int. Signal Processing Workshop on Higher Order
Statistics, Chamrousse, France, July 10-12,1991.

[23] Haykin S., "Adaptive Filter Theory", 2nd Ed., Prentice-Hall, 1991.
[24] J.L. Lacoume and P. Ruiz, "Separation of Independent Sources from Correlated Inputs",

IEEE Trans. Signal Processing, vol 40, no. 12, pp. 2074-3078,1992.
[25] M.A. Lagunas, A. Pages-Zamora, and A. Percz-Ncira, "High Order Learning in Temporal

References Array Beamforming", Signal Processing VI: Theories and Applications, J.
Vandewalle, R. Boite, M. Moonen, A. Oosterlinck (Eds), Elsevier Science Publishers
B.V, pp. 1085-1088,1992.

[26] H.L. Nguyen, C. Jutten, and J. Caelen, "Speech Enhancement: Analysis and Comparison
of Methods on Various Real Situations", Signal Processing VI: Theories and Applications,
J. Vandewalle, R. Boite, M. Moonen, A. Oosterlinck (Eds), Elsevier Science Publishers
B.V, pp. 303-306,1992.

[27] D.T. Pham, P. Garat, and C. Jutten, "Separation of a Mixture of Independent Sources
Through A Maximum Likelihood Approach", Signal Processing VI: Theories and Ap-
plications, J. Vandewalle, R. Boite, M. Moonen, A. Oosterlinck (Eds), Elsevier Science

573

Publishers B.V., pp. 771-774,1992.
[28] S. Van Gervcn, and D. Van Compcrnollc, "Feedforward and Feedback in a Symmetric

Adaptive Noise Canceller: Stability Analysis in a Simplified Case", Signal Processing VI:
Theories and Applications, J. Vandcwalle, R. Boite, M. Moonen, A. Oostcrlinck (Eds),
Elsevier Science Publishers B.V., pp. 1081-1084,1992.

[29] P. Ruiz, el. al. Proceedings of the Int. Signal Processing Workshop on Higher Order
Statistics, Chamroussc, France, July 10-12, 1991.

[30] V.C. Soon, L. Tong, Y.F. Huang, and R. Liu, "A Wideband Blind Identification Approach
to Speech Acquisition Using a Microphone Array", Proc. ICASSP , vol I, pp. 293-296,
1992.

[31] V.C. Soon, L. Tong, Y.F. Huang, and R. Liu, "A Robust Method for Wideband Signal
Separation", Proc. IEEE Int. Symp. Circuits and Systems, vol I, pp. 703-706, 1993.

[32] E. Sorouchyari, "Blind separation of sources. Part III: Stability Analysis", Signal Pro-
cessing,yo\. 24, pp. 21-29, 1991.

[33] L. Tong, V.C. Soon, Y.F. Huang, and R. Liu, "Indeterminacy and Identfiability of Blind
Identification", IEEE Trans. Circuits and Systems, vol. 38, no. 5, pp. 499-509, May, 1991.

[34] L. Tong, Y Inouc, and R. Liu, "Waveform Preserving Blind Estimation of Multiple
Independent Sources", IEEE Trans. Signal Processing, vol 41, no. 7, July, 1993.

[351 B. Widrow, J. Glover, Jr., J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hcam, J.R. Zei-
dlcr, E.Dong, and R.C. Goodlin, "Adaptive noise cancelling: principles and applications",
Proc. IEEE, vol. 63, pp. 1692-1716, 1975.

[36] B. Widrow, J.M. McCool, M. Ball, "The complex LMS algorithm", Proc. IEEE, pp.
719-720,1975.

[37] B. Widrow, S. Stearns, "Adaptive Signal Processing", Prentice Hall, 1985.

574

IMPROVING THE RESOLUTION OF A
SENSOR ARRAY PATTERN
BY NEURAL NETWORKS

Christian Bracco, Sylvie Marcos and Messaoud Benidir
Laboratoire des Signaux et Systemes, E.S.E.

Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
Phone :(33) 1 69 41 80 40, Fax :(33) 1 69 41 30 60

E-mail: Marcos@lss.supelec.fr

Abstract- The sensor array pattern is the spatial response of an array of
sensors to an incident monochromatic plane wave. It is known to have a
resolution which is a function of the number of sensors. In some applications
the number of sensors may be small for technical or economical reasons. We
here present and analyse a feedforward neural network structure which is able,
by learning, to improve the resolution of the array pattern for a fixed and small
number of sensors.

1 INTRODUCTION

Sensor array signal processing deals with the problem of extracting information
concerning radiating sources from signals which are simultaneously received on
M spatially distributed sensors . The information of interest is the number
of sources and the directions of arrival (DOA) of the transmitted waves with
respect to the array. Beamforming is the most usual method for dealing with
this problem. It consists in weighting the sensor outputs and in constructing
the variance of the resulting output signal as an estimator of the sources DO As.
Beamforming therefore performs a kind of spatial filtering which produces
beams in the direction of a number of possible DOAs among which the true
DOAs can be found. The array pattern is the response of the beamformer
to a monochromatic plane wave. The width of the main lobe in the array
pattern which is an approximation of the resolution capability of the array,
is an increasing function of the number of sensors. In some applications the
number of sensors may be small for technical or economical reasons. However,
there are other array processing methods with a higher resolution than the
beamforming method [1]. Most of them come from a generalization of the
spectral analysis methods. They all rely on the statistical properties of the
received signals. Our aim is to design a feedforward neural network with
sigmoi'ds able to produce beams with a higher resolution than the classical
beamforming for a fixed and small number of sensors, and which is independent
of the statistical characteristics of the received signals. The improvement of the
array response to a monochromatic plane wave will only take into account the
array manifold. This paper is also devoted to open new insights and viewpoints
concerning the use of neural networks as an alternative to the classical DOA
estimation methods.

0-7803-2026-3/94 $4.00 © 1994 IEEE 575

In the following section, we recall the beamforming technique and the classical
array pattern. In Section 3, we describe the two proposed neural networks
structures and the learning process. In Section 4, the performances concern-
ing both learning and generalization are presented and analysed for each of
the proposed two networks. In particular, the choice of the number of hidden
neurons and the choice of the learning set are investigated. Section 5 is the
conclusion.

2 THE CLASSICAL ARRAY PATTERN

Consider an array of M sensors on which N incident waves impinge (M > N).
At a given frequency and for a particular snapshot, the M - dimensional vector
of the received signals can be written as

x = As + n (1)

where A = [a(0i),a(02)> • • • ,&{0N)] is the M x ./V-dimensional matrix of the
steering vectors a(0„), 0n being the DOA of the source with respect to the
normal of the array, s is the JV-dimensional vector of the complex amplitudes
of the sources and n is a noise vector. Each steering vector is some multidi-
mensional transfer function between the source signal and the signal received
on the sensors.
The steering vectors belong to the manifold of the possible wavefronts defined
by A = {a(0),6 G 0} where 0 is the set of the possible DOAs. The definition
of this manifold requires that the model of the propagation of the waves and
the reception of the signals should be known so that this manifold only depends
on the parameter 6.
Beamforming consists in weighting the sensors outputs and in constructing

FMO) = E[| at(0)x |2] (2)

where f denotes Hermitian transposition. The beamformer performs a spatial
filtering in the direction 6.
Let us assume that the received signal x corresponds to a deterministic monochro-
matic plane wave such that x = a((?o) in the noise free case. The response of
the beamformer (2) denoted by

^o(0)=|at(0)a(0o)|
2 (3)

is called the array pattern. For example, in the case of a linear array of
equispaced sensors for which the intersensor spacing is half the received signal
wavelength, the vectors of the manifold A are of the form

a(0) = nei»'S'n9
ei2irsin9eJ(A/-l)jrsinflVr i^\

The array pattern thus becomes

_ sin(M*(sin(0) - sin(00))/2)
M ; Msin{Tr(sin{0) - sin{00))/2) K '

The width of the main lobe which is an approximation of the resolution capa-
bility of the array, is a function of the number of sensors M. Figure 1 exhibits
the array pattern for a linear array with A sensors steered in the direction of
#o = 0. We can see that, the main lobe width is approximately 30 degrees. We
can check that two sources spaced by less than 30 degrees cannot be resolved.

576

Let us depict in Figure 2 a neuronal system which consists of a single layer of
quadratic units and which can construct the classical array pattern (2). The
weights relating the input a(0) to the quadratic units are steering vectors a(0;)
chosen in the manifold A. The response as a function of 9 of each unit i is the
array pattern (2) (Figure 1) steered in the direction of 0;.
We propose to replace the structure of Figure 2 by a two-layer feedforward
networks (three layers with the input layer) implementing sigmoi'ds.

3 THE PROPOSED NEURAL NETWORKS

Two different structures are proposed.
The first one is depicted in Figure 3. It consists of subnetworks, each of them
having a single output constrained by learning to give a desired array pattern.
Each subnetwork is assigned to one DO A and has its own hidden layer. As
it is well-known, a two-layer network can approximate any regular function.
We can then train the proposed structure to approximate a desired response
for each output unit.
The second structure is depicted in Figure 4. It consists of a single network
with multiple outputs and with a single hidden layer shared by all the outputs.
Each output is assigned to one DOA. The number of outputs is equal to the
number of DOAs to which an array pattern is steered.
In both structures, input i of the network receives the information delivered
by sensor i + 1 of the array. We do not take into account the output of the
reference sensor, which is a constant. Actually, the network inputs consist of
the real and imaginary parts of the sensors outputs. The network therefore
contains 2(M — 1) inputs.
In order that the network finds out the DOAs 0; of the N underlaying sources
impinging on the array, it is necessary to train it by supervised learning. The
training set consists of vectors a(0) of the manifold A, corresponding to dif-
ferent values of 9 in the range of [0, 60] degrees.
The target vector t(0) stands for the desired output of the network.
When vector a(0) is presented at the input of the network, the target tf,-(0)
of the output neuron i assigned to a DOA 0,-, is a value of a desired pattern
/0;(0). An example of a desired pattern corresponds to the combination of a
Gaussian function with mean 0, and standard deviation 69, with a hyperbolic
tangent function. Function /e;(0) is sampled according to the angles present
in the training set. Note that learning a target equal to 1 as a desired response
when a(0j) is present at the input of the network and equal to 0, when it is not
present, was found to introduce oscillations during the generalization phase.
Learning is based on the multidimensional minimization of the cost function

C(W,B)= J2 IK,B(0)-t(0)||2

samples of 8

where SW,B(0) is the response computed by the network when a(0) is at the
input, and W, B stand for the weights and the biases of the network, re-
spectively. Each neuron implements a sigmoid as an activation function. The
minimization of the cost function and, consequently, the adaptation of the
weights and the biases are performed by the Levenberg-Marquardt algorithm
[2]. The weights and biases are randomly initialized within [-1, 1] with a
uniform probability.
Let us make some comments concerning the range of the angles present in the
training set. Indeed, according to (4), the inputs of the network are of the
form

577

fm(0) — cos(7r?7?sin 6) gm(0) — sin(7rmsin 0) (6)

These functions oscillate for 6 in the range of [0, 60], even for small values of
m. Between two successive extrema of the oscillations, there is a linear part
that we refer to as a "slope". We have observed that the network performs its
response by linear combinations of these slopes. The more elementary slopes
there are, the easier it is for the network to build intermediary responses in its
hidden layer to fit the desired output. In the range of [60, 90], there are fewer
oscillations. The networks under consideration were clearly found to converge
more slowly than for the range [0, 60].
Another comment is that we need to use both real and imaginary parts of the
input vector to avoid any ambiguous behaviour.
The next Section is devoted to the analysis of the performances of the pro-
posed networks. This is done with the help of computer simulations.

4 SIMULATION RESULTS

4.1 First Network consisting of subnetworks
As the subnetworks are independent, we here investigate the performances of
one of the subnetworks.
The network has 4 input neurons corresponding to a 3-sensor array. The
subnetwork consists of 6 hidden neurons. It is constrained to have an array
pattern whose main lobe is 8 degrees. This resolution is much thinner than
the resolution of the classical array pattern.
First, the subnetwork is trained by presenting at the input a vector a(#) corre-
sponding to a. single source with DOA 0 taking its value within the range of [0,
60]. The DOAs which arc presented during the learning phase are represented
by small circles in Figure 5a. The convergence of the network is obtained in
150 epochs. We stop the algorithm when the total error is 0.09. Note that
the input vector a(0) is normalized before being presented to the network in
order to have the same response of the network, whatever the amplitude of the
source. Figure 5a exhibits the array pattern obtained after learning. Clearly
the network performs satisfactorily when inputs, which were not in the training
set, are presented.
Now let, us present at the input of the trained subnetwork, the vectors a((?) +
«("int.) where 0mi is the DOA of an interference source and where 0 scans the
range of [0, 60]. Figures 5b exhibits the response of the network steered in the
direction of 20 degrees, for 0jnt = 0. It appears that the pattern in Figure 5b
is deteriorated compared to the pattern of Figure 5a.
In order to compensate for this deterioration, the learning of the subnetwork
is performed by presenting two sources at the input. The training set now
consists of vectors of the form a(#,) + a(0j), Ö, and 0j scanning [0, 60]. The
input vector is still normalized before being presented to the network. As the
subnetwork has a single output, we have to introduce a single target. The
value of the target is computed as follows

t2(0i)0j) = max(t(0,)J(0j))

where /((?,) = felt(0i) is the desired array pattern steered to the DOA QQ. This
criterion which may not be the best one, especially allows us to take a decision
when both 0\ and flj arc in the same lobe.
There is a compromise to do between a thin sampling in order to avoid oscilla-
tions of the response during generalization, and a larger sampling to decrease
the convergence time. We here make the following choice. For angles in the

578

range of [16, 36], the sampling step is 2 degrees inside the lobe and 4 outside.
The hidden layer of the subnetwork consists of 4 neurons. The training is
achieved after 10 seconds CPU time on a HP 735 for a squared error of 0.1

For angles close to 0 or 60 degrees, as the oscillations of fm(0) and gm(0)
are scarce, we need more hidden neurons. In adding neurons, we observe sec-
ondary lobes due to an interference. This requires a thinner sampling. We
choose 2 degrees in the lobe and 1 degree outside it. CPU time is then around
10 mn for the same error.
Figure 6 exhibits the response of the subnetwork steered to 20 degrees when an
interference source is presented. By opposition to Figure 5, the array pattern is
found correct for every interference source. If the interference source is outside
the main lobe, the array pattern keeps its form when 0 scan the range of JO,
60]. See, for example, the case 0int = 0. When the interference source is inside
the lobe the subnetwok computes a value as close as possible to feo(0\nt- For
example, in the case of 0int = 20, the response of the subnetwork remains
approximately 1 as 0 scan the range [0, 60]. Note that the generalization to
the case where the two sources presented at the input of the subnetwork have
different amplitudes failed.
Figure 7a illustrates the response of the entire network containing all the sub-
networks, when one source is presented at the input with DOA 0 scanning the
range of [0, 60]. The training set included two parts. The first one consisted
of the presentation of two sources and the second part consisted of the pre-
sentation of only one source. The second part is redundant but seems to have
stabilizing effects on the generalization. We can see the 16 output neurons
responses plotted together on a same graph. The overlapping of the lobes is
such that the output neuron recognizes the DOA to which it has been assigned
when its response is larger than 0.7. Note that the learning might have been
pursued at the cost of an increase in complexity and convergence time.
Figures 7b-c exhibit the network response when two sources are presented dur-
ing the generalization phase. In the first case, the interference source belongs
to the training set while, in the second case, it does not belong to it. In both
cases, the network performs satisfactorily.

4.2 The second network consisting of a single network
This network has a number of outputs equal to the number of DOAs for which
we want to design array patterns. During the training, output neuron i is set
to one when a source with DOA 0; is presented at the input of the network,
and zero when the source has DOA 0,- with j ^ i.
As shown in Figure 8a, the network creates its own lobes. A bad choice
of the number of hidden neurons may be balanced, to a certain extend, by
constraining the response of the network to have a desired shape around 0,-.
This constraint helps the network to converge when the number of hidden units
is too small and it does not prevent the network to converge when the number
of hidden units is sufficient. The desired shape of the response is a part of the
hypertangent-Gaussian function as already used for the first network.
An experimental result is that the number of hidden neurons is approximately
JVh = -Cjf = ^ where N0 is the number of outputs. The responses of all the
outputs of°the network to the presentation of one source the DOA of which
scans [0, 60], are plotted together on the same graph in Figure 8a.
As for the first network, the generalization capacity of this network fails when
two sources are presented at the input. It is therefore necessary to process
the learning with two sources presented at the input. In this case, the number
of neurons in the hidden Layer was found to be approximately Nh = gC^.
Note that, in both evaluations of Nh, CP

N which is the number of different

579

combinations of p elements among N elements, is the length of the training
set. The coefficient 1/2 or 1/3 characterizes symmetries that the network
seems to create for the corresponding training set.
In order to avoid oscillations in the generalization response, it is necessary as in
the previous case to constrain the responses of the outputs to a desired shape
around the DOA to which they are steered. To facilitate the convergence we
introduce an additive sensor, i.e. an additive network input.
Figure 8b exhibits the behaviour of the network output when a source with
DOA ranging over [0, 60] and an interference source with fixed DOA 0int are
presented at the input. The network here has 6 outputs. For example, when
0int = 5, the response of the output neuron assigned to the DOA 5 degrees is
almost 1 when the DOA of the other source is scanning the range of [0, 60],
whereas the responses of the other outputs have the form of the desired pattern.'

5 CONCLUSION

The present paper is a preliminary work of a more general study of the pos-
sible use of neural networks as an alternative to the classical DOA estimation
methods. The first advantageous consequence of the present work is that the
necessity in the classical approach of increasing the number of sensors to reach
a desired resolution is replaced by the use of feedforward neural networks and
by the learning of a desired pattern with a given resolution. This can be of
great interest when the use of a great number of sensors is not possible for
economical or technical reasons. Another advantage of our approach is that,
once the neural network is matched to a given manifold of possible received
signals, the detection of sources and the DOA estimation can be performed
in real time which is actually not the case with the classical high resolution
methods.
In this paper we have presented two structures of feedforward networks to
localize sources. We have experimentally investigated the choice of the number
of hidden units and the choice of the training set in order to not only improve
the resolution of the array pattern, given the number of sensors, but also
to make the network behave satisfactorily during generalization. The design
and the convergence of the first network consisting of subnetworks were found
much simpler than those of the second proposed network consisting of a single
network. In the second case, the convergence quickly becomes very slow, and
we need, for example, more than one hour of CPU time on a HP 735 to have
access to networks with more than ten outputs.
In order to further improve the capacity in generalization of the proposed net-
works, it is required to include in the training set examples of combinations of
an arbitrary number of sources with different amplitudes.

References
[1] Don H. Johnson, Dan E. Dudgeon, Array signal processing. Concepts and

techniques Prentice Hall Signal Processing Series, A. V. Oppenheim editor
1993.

[2] MATLAB, Neural Networks Toolbox, 1993.

580

Figure 1: The classical array pattern. £

""-■:-*(zJH)—

Figure 2 : The neuronal representation of the beamformer.

Sigmotds

Sensors

1 □

2 D

M-i a

Real pan

Imaginary pan

> N

Figure 3 : Network consisting of sub-networks.

Sensors

a

a

Real pan

Imaginary pan ■

Figure 4 : Single network with multiple outputs.

581

a) b) i x 10 teia»0
.A 1

1M 1
1

ut

•t*

ut i
•*
I»

uf

L»

/ V . • • i • ••• • ,

Figure 5 : Array pattern of a sub-network steered in the direction 20 deg
Learning is performed with a single source present at the input
a) 'o': angles in the training set, plain line : response of the network in the
generalization phase with one source present,
b) 2 sources are presented with 9jm=0.

a)
tera*0 b)

0.95

085

d)

08

0.6

0.4

0.2

t«a-2i

teta=25

oo

v o
o o
o

20 40

Figure 6 : Array pattern of a sub-network steered in the direction
Learning is performed with 2 sources at the input,
a) eint=0, b) eint=18. c) 8jn,=21 , d) 6mt=25 .
6=21 and 6=25 do not belong to the training set.

50

20 dec

582

Figure 7 : Array patterns of all the sub-networks plotted together.
Learning is performed with 2 sources.

a) one source is presented to the
network

Fl

u

T n rv v\

U

inT

J b) 2 sources are presented to the
60 network and 6}nt=0, which

belongs to the training set.

10 20 X «0 SO
■nglt (dlgam)

MU-49 miOTWrl (44-S2) tmtnn

c) 6;nt=49, which does not belong
to the training set.

r
£0.6

*
I

m VI

y
10 20 X 40 SO 60

583

Figure 8 : Array patterns at the ouput of the network.

K2I8I3 1/1 ftOsanpM

20 »
viglt (dtgraas)

a) the learning is performed with one source and the target is 0 or 1, and one source
is presented to the network

ma»? ossoaaMd output

098 \ f ^^-^
0.96

\ /
0.94 \ /
092 ' \J i

SO 60

b) 2 sources are presented to the network and 6jnt=7. learning is performed with 2
sources and 9jnt=7 does not belong to the training set.

584

Other Applications

SENSITIVITY ANALYSIS ON NEURAL NETWORKS FOR
METEOROLOGICAL VARIABLE FORECASTING

ale sk ik -Je Hz Hz sk

Castellanos, J .; Pazos, A. ; Rios, J. ; Zafra, J. L.

**Facultad de Informätica - Universidad Politecnica de Madrid
Campus de Montegancedo, s/n. Boadilla del Monte.

28660 Madrid (SPAIN)
E-MAIL: jcastellanos@fi.upm.es FAX: 34-1-3367412

*Universidade da Corufia. Castro de Elvina, 76. 15071 - A Coruna

Abstract - The problem that arises in a neural network with many
inputs is being able to eliminate the irrelevant ones. In the particular
case of short-term weather forecasting, there are variables that may
have little or no impact on the forecasts. A technique of sensitivity
analysis of outputs over inputs has been applied to the trained network.
Thus the most relevant inputs have been determined, as have less
important inputs that can be eliminated. By employing this technique, a
smaller sized neural network is obtained which also has a greater
capacity for generalization.

1. INTRODUCTION

Neural networks have proven their effectiveness in predicting the future
behaviour of time series [5, 7]. In this paper, the time series traces the
behaviour of a meteorological variable. Many studies have been conducted
on weather forecasting in this century. Highly complex statistical models,
such as those by Box and Jenkins [1], have come up with the best results in
wide area weather prediction, employing a large amount of different data
from satellites, ground stations, weather balloons, etc.

Our research has centred on forecasting one meteorological variable,
using data collected at one ground weather station. Values of this variable
and other complementary variables collected beforehand are used to this
end. This complicates the already complex weather forecasting problem still
further as local data are used. The meteorological variable selected for
forecasting was temperature.

Several training sets were selected, where the number of days'
recordings supplied to forecast the following day's observations varied. The

0-7803-2026-3/94 $4.00 © 1994 IEEE 587

sets also differed as to the number of meteorological variables they
contained. Several network structures were tested as part of a multilayered
perceptron. The number of hidden layers, the amount of neurons and the
interconnection schema were varied. The learning process was carried out
using the gradient backpropagation algorithm [2, 6].

Having observed that the various models receiving different information
led to similar results, an empirical study was undertaken to determine the
minimum number of necessary variables that had to be supplied to a neural
network to get similar performance. The determination of the minimum set
was to offer two major advantages. The first is the increase in efficiency and
in the capacity for generalization produced by using a smaller sized
network. The second benefit is the result of studying the relationship
between the different variables, which may bring out knowledge that is
possibly hidden by surplus information.

The technique employed to conduct the sensitivity analysis is based on
the calculation of the partial derivative of the outputs over inputs to the
network. This method of analysing the inputs to a neural network has been
successfully applied to discriminate the relevant variables in modeling the
behaviour of a nuclear power plant [4].

The derivative of the output of the network over the inputs is determined
taking a description of the activation calculation of any neuron in the
network:

i

where Ojn, Ojn_1 are outputs of the jth neuron of layer n and the ith neuron
of layer n-1 of the network, respectively, f is the activation function and \V;J
is the weight of the connection between the ith and the jth neurons.

To develop the expression of the partial derivative of the output of the
network over the inputs:

do] _ do] a>r

a>\ far a>\ (2)

The first term of the second member of the equation can be solved using
equation (1):

*; _.
do. n-\ ^Wßfinelj) (3)

588

Thus the first term can be calculated from the known data at the level of
neuronj of layer n. On the other hand, the second term can only be solved
recursively by successively applying the formula:

The calculation process ends when the partial derivative of layer 1 over
layer 0 (input) has been found. This is calculated using the expression:

|1=/(>^K (5)
dok

Thus, the partial derivative of output over input would be calculated
beginning with layer 1 and applying equation (5) and would be propagated
to subsequent layers employing equation (3).

The process would work as follows. A pattern is presented to the
network and is forward propagated, calculating the input derivatives for all
the neurons. Then, the values of the partial derivatives are forward
propagated for each neuron of the input layer until the desired output is
obtained. This consists in the partial derivative of each unit of the output
layer over that unit of the input layer. The values thus obtained are averaged
out to an absolute value for all the outputs to obtain the importance of the
input as compared to all the outputs.

2. DESCRIPTION OF THE DATA AND THE NEURAL NETWORK
USED

The data employed in this study were collected at Barajas airport
(Madrid). They were in MET AR format, the code used to encode ordinary
meteorological observations for aviation. The following five meteorological
variables were chosen form the great abundance available: pressure, dry
temperature, visibility and wind direction and speed. The observations were
made every half an hour and data covering seven years were available, of
which six have been employed in learning and the remaining year was
reserved as a test set to check learning quality. The choice of this number of
years, as well as the cadence of observations, amounting to a total of 48
observations a day per variable, give some idea of the huge size of the
training sets.

The data were standardized taking the maximum and minimum values
over the whole period and linearly mapped to the interval [-1, 1]. The

589

variable chosen for forecasting was temperature. Indeed, the aim was to
forecast the 48 observations for one day, on the basis of the values of given
meteorological variables, including temperature. The different observations
matched a given number of days (1 to 3). Different combinations of the
variables were tried, whereby at least three and at most the five of above-
mentioned variables were always taken.

The architectures employed ranged from networks with no hidden layers
to partially connected four-layer networks.

As regards the activation function used, different functions were
assessed in this case too in order to compare their performance. These three
functions were:

• Systole 2: This function discussed in [3] is defined as

f(x) =2.5xe~x . It has the advantage of considerably reducing
the number of iterations needed for the network to converge on a
valid solution.

• Sijjmoidal function, defined as:

• Wide sigmoid, with a wider output range [-1.71. +1.71]. It is
defined as:

'(x)=1-71T^i7 <7>

The model's error was measured in two ways. The first of these is the
mean square error:

where ET is the total error for all of the patterns P. Ej is the error for the ith
pattern. N is the length of the output layer, and dj and Oj are the desired and
real outputs, respectively. Standardized data were measured. The second of
these measures is the percentage of the forecasts that are no further than
0.02 from the real value, also in the case of standardized data. This
deviation, translated to the dynamic temperature range, represents a
difference of at most half a degree centigrade.

The neural networks were trained using the gradient backpropagation
algorithm. Learning was considered to be complete when test set
performance was found to fall parallel to a fall in learning set error. The
intention here was to maintain the network's generalization capacity.

590

A three-layer multilayered perceptron was selected from the networks
providing higher performance, as it had a higher number of input variables
and a more general structure. The sensitivity analysis was applied to this
network in particular. The size of the input layer was 720 neurons
(48*3*5), as it received three days' data on the five variables, and it was
fully connected to the intermediate and the output layers. The intermediate
layer had 20 neurons, fully connected to the output layer. The output layer
was made up of 48 neurons, the same number as the temperature
observations to be forecast per day.

The activation function that performed best was the above-mentioned
Systole 2. Thanks to this function, fewer learning iterations were needed to
obtain a mean square error level of 0.011671 in learning and 0.013014 in
testing. These values are equivalent to a success rate of 94.57% and 90.08%
for the learning and test sets, respectively. The above values were the best
obtained under the stoppage criterion established to prevent the neural
network's generalization performance from falling. The sensitivity analysis
was applied to the network trained thus.

3. SENSITIVITY ANALYSIS RESULTS

The first study conducted on the basis of the sensitivity analysis was to
determine the relative importance of each meteorological variable in
forecasting temperature. The results are shown in Figures 1 to 5. These
graphs plot the variable observations over the three days on record along the
abscissa axis, the third day being the most recent. The variable's influence
is represented along the ordinate axis. Note that all the graphs have been
drawn to the same scale.

The results to be inferred from the analysis of the graphs would appear
to be contrary to intuition, as the importance of atmospheric pressure
(Figure 1) is negligible, for example, the visibility variable being more
important (Figure 3).

591

0,2 i
0.18
0,16
0,14
0.12

0,1
0.08
0,06
0.04
0.02

0
 ^_„ /■v_^,, ^ -—VAA—^_y_-^ /l/f _^/L._yw-JV

Day 1 Day 2 Day 3

Figure 1. Importance of Pressure

Figure 2. Lnportance of Temperature

Figure 3. Importance of Visibility

592

0,2
0,18
0,16
0.14
0,12

0,1
0.08
0,06
0,04
0,02

0 J
\A_^~ ̂ /\z^~.\j^-J^ A,^7i'>A-'K/-vw^—. /■ ^^-AAA-A^

Figure 4. Importance of Wind Direction

0,2 T
0.18
0,16
0,14 J
0,12

0,1
0,08
0,06
0,04
0,02

Figure 5. Importance of Wind Speed

The most important variable by far is temperature (Figure 2), though it
is found to be of maximum importance in the later observations of the
period.

As regards wind, it should be pointed out that wind direction (Figure 4)
has little influence on forecasting and is of similar importance to
atmospheric pressure. Wind speed (Figure 5) is considerably more
influential, being of relatively significant importance in the later
observations of the period.

The analysis of the graphs provides a guide for proceeding to eliminate
given variables. They could have been eliminated manually, but the use of
an automatic procedure to eliminate the less significant variables was
preferred. The inputs were ordered on the basis of their importance, without
taking into account the variable in question. Two networks have been
generated on the basis of this classification, eliminating the less influential
inputs and the connections between these and other neurons. Sixty per cent
of the inputs were eliminated in the first and 85 % in the second. The

593

remaining network structure was maintained, as were the weights of the
best performance obtained. The thresholds chosen led to the effective
elimination of given variables, such as pressure.
The performance of the networks built thus was assessed in comparison to
the original network, and it was found to fall. Bear in mind that the
elimination of inputs and the resulting loss in connections produces an
imbalance in the trained network. This phenomenon was solved after a
short process of adjustment of the original weights (5 learning iterations
using backpropagation) to obtain much improved performance. The
comparison between the three neural networks is shown in Table 1. The
performance of the learning set (Tr) and the test set (Tst) of the original
network arc shown, as is the performance of the nets after 60 % and 85 %
of their inputs had been eliminated, both before and after the above-
mentioned adjustment. It should be pointed out that network performance
with 60 % elimination of inputs is fairly good compared with the original
network. This gives some idea of just how unimportant the eliminated
inputs arc:

NETWORK EAN SQUARE ERROR FITNESS %
First Net (Tr.) 0.011671 94.57

First Net (Tst.) 0.013014 90.08

60% Net (Tr.) 0.015557 77.96

60% Net (Tst.) 0.015178 80.72
60% Net (5 It., Tr.) 0.011733 92.62
60% Net (5 It.. Tst.) 0.011563 92.84
85% Net (Tr.) 0.025433 30.84
85% Net (Tst.) 0.024396 36.36
85% Net (5 It.. Tr.) 0.012983 88.58
85% Net (5 It.. Tst.) 0.012847 92.01

Table 1. Neural Network Comparison

In view of the performance offered by the less complex networks, it can
be said that the process of eliminating inputs to forecast the temperature
variable has been a success. The networks obtained using this method are
an improvement on the original network in terms of generalization
capacity, while there is a slight fall in learning set performance. This
phenomenon can be explained by the smaller size of the network, which
means that it does not concentrate on the peculiarities of the learning set but
on the useful features that are repeated.

594

4. CONCLUSIONS

In this paper, a technique for forecasting an atmospheric variable is
presented, which eliminates given input data and improves network
generalization, leading to savings in computing time and the number of
connections.

These results may also be applied to the other atmospheric variables,
and data from other stations may be used to confirm the relative importance
of given variables over others for one area or application field.

ACKNOWLEDGEMENT

This paper was prepared and written with the collaboration of
CETTICO (Centre for Technology Transfer of Knowledge Engineering,
Spain).

REFERENCES

[1] Ameen, J.R.M. "Discount Bayesian models and forecasting." PhD
Dissertation. University of Warwick. 1984.

[2] Rumelhart, D., Hinton, G. and Williams, R. "Learning Internal
representations by error propagation." Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1:
Foundations, D. R. Rumelhart & J. L. McClelland, Eds. Cambridge,
MA: MIT Press, 1986.

[3] Segovia, J. "Redes de Neuronas Recurrentes para el Reconocimiento
de Patrones Temporales." PhD Dissertation. Madrid: Universidad
Politecnica de Madrid. 1992.

[4] Uhrig, R. E. et al. "Enhancing Nuclear Power Plant Performance
through the Use of Artificial Intelligence." Final Report. Department
of Nuclear Engineering. University of Tennessee. 1992.

[5] Weigend, A., Huberman, B., Rumelhart, D. "Predicting Sunspots
and Exchange Rates with Connectionist Networks." Nonlinear
Modeling and Forecasting, SFI Studies in the Science of
Complexity, Proc. Vol. XII, Eds. M. Casdagli & S. Eubank. 1992.

[6] Werbos, P. J. "Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences." PhD Dissertation. University
of Harvard. 1974.

[7] White H. "Economic prediction using networks the case of IBM
daily stock returns," Proceedings of the IEEE International
Conference on Neural Networks, San Diego, 1988, pp. 11-451 - II-
459.

595

Continuous-time nonlinear signal processing:
A neural network based approach for gray box

identification*

R. Rico-Martinez, J. S. Anderson and I. G. Kevrekidis
Department of Chemical Engineering, Princeton University,

Princeton NJ 08544

Abstract

Artificial neural networks (ANNs) are often used for short term dis-
crete time series predictions. Continuous-time models are, however, re-
quired for qualitatively correct approximations to long-term dynamics
(attractors) of nonlinear dynamical systems and their transitions (bifur-
cations) as system parameters are varied. In previous work we developed
a black-box methodology for the characterization of experimental time
series as continuous-time models (sets of ordinary differential equations)
based on a neural network platform. This methodology naturally lends
itself to the identification of partially known first principles dynamic mod-
els, and here we present its extension to "gray-box" identification.

1 Introduction
Artificial Neural Networks (ANNs) have proven to be a valuable tool in nonlinear
signal processing applications. Exploiting ideas common to nonlinear dynamics
(attractor reconstruction) and system identification (ARMA models), method-
ologies for the extraction of nonlinear models from experimental time series
have been developed (e.g. [1, 2]) and applied to experimental data. In previous
work, we have discussed some inherent limitations of these techniques (based
on discrete-time schemes) in characterizing the instabilities and bifurcations of
nonlinear systems depending on operating parameters.

An alternative approach, resulting in continuous-time models (sets of Ordi-
nary Differential Equations (ODEs)), also based on a neural network platform,
was devised and implemented [3, 4, 5]. The approximations constructed in that

* This work was partially supported by ARPA/ONR, the Exxon Education Foundation and
an NSF PYI award. RRM acknowledges the support of CONACyT through a fellowship.

0-7803-2026-3/94 $4.00 © 1994 IEEE 596

work can be described as black-box; no insight from first principles modeling of
the system was incorporated in them.

In this work we extend the approach to cases where portions of the algebraic
forms of the set of ODEs describing the dynamical evolution of the system are
known. We attempt to capture the behavior of the overall system by "hard-
wiring" the known parts and approximating the unknown parts using a neural
network (gray-box identification).

In what follows we first briefly outline our black-box approach for the identi-
fication of continuous systems. This discussion naturally leads to the extension
to gray-box identification. Finally, we illustrate its use through an application
to the modeling of a reacting system with complicated nonlinear kinetics.

2 Black-box approach

Consider the autonomous ODE

x" = F(X;p) (1)

X e TV, p e TV, F : TV x TV t- TV

where X is the vector of state variables, p is the vector of operating parameters

and X is the vector of derivatives of the state variables with respect to time.
In previous work we showed a way of constructing such a set of ODEs from
discrete-time experimental measurements of the state variables only ([3, 4, 5],
see also [6]). We embedded the training of a neural network that approximates
the function F(X;p) in a numerical integrator scheme. Both explicit and im-
plicit integrators can be (and have been) used. In addition, we illustrated how
the approach can be used when time series of only a single state variable are
available.

Consider the simple implicit integrator (trapezoidal rule) formula for Eq. 1:

Xn+i =Xn + ^[F(Xn;p) + F(Xn+1;p)] (2)

where h is the time step of the integration, Xn is the value of the vector of states
at time t and Xn+i is the (approximate) result of integrating the set of ODEs
to time (t + h). Figure 1(a) schematically depicts a neural network constructed
using this numerical integrator as a template. The boxes labeled "neural net-
work" represent the same neural network evaluated with two different sets of
inputs for each training vector. Given the implicit nature of the integrator,
the "prediction" of the integration depends on itself. Training was therefore
done using standard recurrent network training ideas [7, 8]. Alternatively, a
nonlinear algebraic equation solver can be used, coupled with the training, to
solve exactly for the predicted value at every iteration and for every training

597

Figure 1: (a) Schematic of the evaluation of a neural network embedded in the
implicit integrator (trapezoidal rule) of Eq. (2). The implicit dependence of the
prediction of the state on itself results in a backward (recurrent) connection,
(b) Schematic of the evaluation of a neural network for the gray-box approach.
The known part of the model (G(X;p)) is evaluated along with the unknown
part (F(X;p)), approximated by a neural network. In order to calculate errors
(for training) the contribution of the known and unknown parts are combined
using the integrator to give the state of the system at the next sampling time.

vector. Further details can be found in references [4, 5]. The use of explicit
integrators is discussed in [3]. This identification procedure has been tested for
experimental systems exhibiting complicated dynamics (see e.g. [3, 4]).

3 Gray-box approach

The approach discussed aljpve can be combined with first principles modeling
for cases where the full state vector is known while the understanding of the
modeling of the system is only partial. Such an example is encountered in
modeling reacting systems, when the kinetics of the reaction are not known a
priori while inflow and outflow or heat transfer are well understood and easily
modeled.

As in the case of black-box approximations, we embed the training of the
neural network in a numerical integrator scheme. For gray-boxes, the known
part of the right-hand-side of the ODEs is explicitly calculated ("hardwired")
and the neural network is trained to approximate only the unknown parts.

Let us assume for the purposes of the illustration presented here that the
first principles model of a given system takes the simple form:

X = G(X;p) + F(X;p) (3)

598

where G(X;p) represents the known part of the model and F(X;p) is the un-
known part. Note that the methodology is not restricted to models of the
additive form of Eq. (3).

Figure 1(b) schematically depicts the training procedure for an implicit in-
tegrator. A "global" network is used to predict the state at the next time step.
Some of the weights and nodes in this network are fixed because of the "known"
part of the model; some are fixed because they pertain to the integration scheme
and its constants. A neural "sub"-network is also contained in the scheme, which
will upon training approximate the unknown parts of the right-hand-side of the
system ODEs. We again use the implicit integrator of Eq. (2) as the basis for
training this network, which - due to the implicit nature of the integrator - has
recurrent connections and therefore requires multiple evaluations.

4 An illustrative example
In order to illustrate the capabilities of the gray-box approach we will make use
of simulated data from a model reacting system [9]. It consists of a well-stirred
reactor in which a single irreversible reaction A -» B occurs on a catalytic
surface. The mass balances for species A on the catalytic surface and the gas
phase take the general (dimensionless) form:

^ = KaIL(l-e)-Kd0e-L--rB1-KR9e -
CLT

™ = i-n + u'[Kdee-L^tsl -KaIl(l-e)] (4)
dr

where 9 is the fractional coverage of the catalytic surface, II is the partial pres-
sure of the reactant in the gas phase, 7 is the dimensionless temperature, T is
the dimensionless time and Ka, KR, Kd, a*, ß and IT are constants. This has
been suggested as one of the simplest models that can give rise to oscillations in
isothermal catalytic reactions; its main characteristic is the coverage-dependent

desorption activation energy (the e" V term in Eq. (4)) caused by adsorbate-
adsorbate interactions.

To illustrate the dependence of the dynamics on an operating parameter,
we obtained time series from this system for several values of the dimensionless
temperature 7 (keeping the remaining parameters Ka = 35, a* = 30, Kd = 350,
II* = 0.36, KR = 8.5 and ß = 0.2 constant). Depending on the value of 7, the
system may evolve towards a steady state, towards oscillatory behavior, or to
either of the two depending on the initial conditions. The variegation in long-
term dynamics makes this example a good test of the approximating capabilities
of the neural network.

Figure 2 shows the bifurcation diagram for this system: a branch of steady
states undergoes a subcritical Hopf bifurcation to oscillatory behavior for 7 «

599

Figure 2: Bifurcation diagram for the single species surface reaction system with
respect to the dimensionless temperature 7. Solid lines denote stable steady
states, dashed lines unstable steady states, open circles unstable limit cycles
and filled circles stable limit cycles. The maximum 6 of the periodic trajectory
at each value of 7 is marked.

2.941. There is a small range of values of 7 where a stable large amplitude oscil-
lation coexists with a stable steady state (starting at about 7 ss 2.9076). As 7 is
increased the system exhibits, as its sole long-term attractor, a large amplitude
limit cycle that disappears at 7 « 3.841 via another (now supercritical) Hopf
bifurcation.

Figure 3 shows phase portraits of the system for several values of 7 in the
range of the bifurcation diagram of Fig. 2.

5 Network construction and results

Using data representative of the periodic phenomena described above, we tested
the neural network ODE-gray-box algorithm for identification. The training set
included several time series (0 and II vs T) for values of 7 before the subcritical
Hopf (including the region of bistability), after the subcritical Hopf (limit cycle
behavior), as well as after the supercritical Hopf at high values of 7.

For our illustration we assume that all terms in Eq. 4 are known except for
the term representing the rate of desorption of the reactant from the catalytic

surface. That is, we replace the term Kd0e~ " T
+
 , with an unknown function

f(6,7) to be approximated through a neural network. The gray model we seek
to construct is of the form:

dO
TT = KaU(l - 6) - f(9,j) - KR0e-

600

.« 7=3.0

■'1 1 •■Uli Uli
ft 10 0 5 10

na (>) tin» (a)

0 .2 .4 .» 0 .2 .4 .» 0 .2 .4 .ft • • •

Figure 3: Long term attractors for 7 values in the range of the bifurcation
diagram of Fig. 2. Top row: phase portrait of the stable limit cycle at 7 = 3.0
along with segments of the two corresponding time series. For the stable steady
states (7 = 2.9 and 7 = 3.85) phase portraits of transients approaching the
steady state are shown. In the regions of bistability (7 in the range (2.925,2.94))
the unstable (and thus experimentally unobservable) limit cycle in the interior
of the large amplitude stable limit cycle is also drawn.

601

Figure 4: Predicted desorption rate as a function of surface coverage (9) and
dimensionless temperature (left) and relative prediction error (right). The plot
on the right shows the difference of the predicted minus the actual desorption
rate normalized by the actual rate.

™ = l-U + W[f(6,y)-KaJl(l~e)] (5)

The (feedforward) neural sub-network, embedded in the numerical integrator
of Fig. 1(b), involves two inputs [6 and 7), one output (f(6,7)) and six neurons
with sigmoidal (tanh-type) activation function in each of the two hidden layers.
The derivatives of the error measure (energy function) with respect to network
parameters needed for the training algorithm are obtained using the chain rule
and (due to the recurrence) the implicit function theorem.

The training set consisted of a total of 2950 points allocated in the following
manner: 250 points for 7 = 2.9, 450 for 7 = 2.91, 500 for 7 = 2.925, 500 for
7 = 2.94, 250 for 7 = 3.0, 250 for 7 = 3.0, 250 for 7 = 3.2, 250 for 7 = 3.4,
250 for 7 = 3.8 and 250 for 7 = 3.85. The time step of the integrator was
0.06 dimensionless units for all the time series used (roughly one twentieth of
the period of the oscillation observed at 7 = 3.0). More points are included
in the region of multistability in an effort to capture accurately the hysteresis
phenomena. Training was performed using a conjugate gradient algorithm with
frequent restarts (see [4, 5] for a discussion). Convergence was achieved after
approximately 300 network parameter updates.

The sub-network succeeds in capturing the basic form of the behavior of the

602

••••
' \
o
o
o

^---^m

I 1

e.8 3.0 3.2 3.4 3.8 3.B 4.0

y

Figure 5: Predicted bifurcation diagram for the single species surface reaction
system with the gray-box neural network approximation of the desorption rate.

rate of desorption with respect to 6 and 7 (surface coverage and temperature).
Figure 4 compares the actual desorption rate (as a function of (6,7)) with the
network predictions. More importantly, the dynamic behavior (including the
infinite-time attractors) of the system (Eq. 5) also compares favorably with the
original system (Eq. 4). Figure 5 shows the predicted bifurcation diagram using
the form of the desorption rate given by the network. The network correctly
predicts a subcritical Hopf bifurcation at low 7, as well as a supercritical Hopf
bifurcation at higher values of 7 (at a slightly lower value of 7 than for the
original system, Fig. 2).

The neural network gray-box approximation can be used to extract impor-
tant mechanistic information pertaining to the fitted step - and thus possibly
discriminate among rival candidate first principles models. For example, Fig. 6
shows that the network predicts a linear dependence of the logarithm of the
desorption rate versus — at constant 0, in agreement with desorption being an
activated process. Fig. 6 shows also that the predicted slopes of these plots (and
thus, the activation energies) vary linearly with 8, consistent with an assumption
of attractive adsorbate-adsorbate interactions (as was indeed the case).

6 Summary

We have extended a previously developed black-box neural network methodol-
ogy for the characterization of experimental systems as continuous-time models,
so as to allow the identification of unknown parts of first principles models. Such
modeling efforts incorporate the insight obtained from the first principles mod-
eling (algebraic forms of the ODEs describing the dynamical evolution of the
system) in a neural network framework capable of approximating (after training)

603

I,,

»e=o.i5
*e=o.2i
• 6=0.27
oe=0.33

-6 ^N
-• • \^
-1 \
-» •
-9 -

-10 • NO

-11

-ia ■

-13

-u D
 i . . . i i i i i i

1/7

Figure 6: The linear dependence of the natural logarithm of the desorption
rate with respect to A at constant 6 is correctly captured by the neural network
gray-box approximation (left); furthermore the predicted slope of the lines varies
linearly with 9 (right), in agreement with the assumption of adsorbate interac-
tions used to generate the training data.

unknown parts of the model.
The capabilities of this gray-box approach were illustrated using a single

species surface reaction system. In this illustration we assumed that the expres-
sion for the rate of desorption of the reactant is not known and approximated
it through a neural network. Both the short- and long-term dynamic behavior
of the system is well approximated by the hybrid model resulting from training.
Furthermore, a study of the properties of the fitted desorption rate may yield
insight in the physical mechanisms underlying it, and thus possibly assist in
discriminating among rival first principles models.

Discrete-time models (based on neural networks) are trained to predict the
result of integrating the model equations over some time period. It is difficult to
"unravel" the contribution of known parts of the model to this result from the
contribution of the unknown terms. When, on the other hand, the equations
themselves are approximated (as opposed to the result of integrating them), the
procedure naturally lends itself to incorporating processes whose modeling is
established to the gray-box model.

The type of overall network presented here (with some parts of its architec-
ture available for training, and some other parts fixed by either the known parts
of the model or the integrator scheme) may prove to be a valuable tool towards
understanding the dynamics of experimental systems. The particular choice of
recurrent nets templated on implicit integrators presented here is motivated by
the anticipated stiffness of chemical kinetic equations. Feedforward implemen-
tations based on explicit integrators are also possible. We are currently working
on variants of training algorithms for recurrent nets and their implementation

604

on parallel computers.

References

[1] A. S. Lapedes and R. M. Färber. Nonlinear signal processing using neural
networks: Prediction and system modeling. Los Alamos Report LA-UR
87-2662 (1987).

[2] A. S. Weigend and N. A. Gershenfeld. Time series prediction: Forecasting
the future and understanding the past. Addison-Wesley (1993).

[3] R. Rico-Martinez, K. Krischer, I. G. Kevrekidis, M. C. Kube and J. L.
Hudson. Discrete- vs. continuous-time nonlinear signal processing of Cu
electrodissolution data. Chem. Eng. Comm., vol. 118, pp. 25-48 (1992).

[4] R. Rico-Martinez. Neural networks for the characterization of nonlinear de-
terministic systems. Ph. D. Thesis, Department of Chemical Engineering,
Princeton University (1994).

[5] R. Rico-Martinez and I. G. Kevrekidis. Continuous-time modeling of non-
linear systems: A neural network approach. Proc. 1993 IEEE Int. Conf.
Neural Networks, IEEE Publications, vol. Ill, pp. 1522-1525 (1993).

[6] S. R. Chu and R. Shoureshi. A neural network approach for identification
of continuous-time nonlinear dynamic systems. Proc. of the 1991 ACC, vol.
1, pp. 1-5 (1991).

[7] F. J. Pineda. Generalization of back-propagation to recurrent neural net-
works. Phys. Rev. Letters, vol. 59, pp. 2229-2232 (1987).

[8] L. B. Almeida. A learning rule for asynchronous perceptrons with feedback
in a combinatorial environment. Proc. IEEE 1st Ann. Int. Conf. Neural
Networks, San Diego, CA., pp. 609-618 (1987).

[9] I. Kevrekidis, L. D. Schmidt and R. Aris. Rate multiplicity and oscillations
in single species surface reactions. Surf. Sei., vol. 137, pp. 151-166 (1984).

605

A QUANTITATIVE STUDY OF EVOKED
POTENTIAL ESTIMATION USING A

FEEDFORWARD NEURAL NETWORK

Adriana Dumitras* , Adrian T. Murgan*, Vasile Lazarescu*
Member, IEEE Member, IEEE

* Electronics and Telecommunications Dept
Technical University of Bucharest, Romania

1-3 Armata Poporului Blv., Bucharest, Romania
phone: (401) 6 31 78 00 ext. 420,322

email: adadum@vala.elia.pub.ro
atmurgan@vala.elia.pub.ro, vlazarescu@vala.elia.pub.ro

Abstract —-We have used a multilayer perceptron to estimate the evoked
potentials, masked by the EEG signal. The problem was studied on synthetic
signals, generated as given in ([10]) and error criteria other than standard L2-
norm were taken into account. We showed experimentally that, as suggested
in ([2]), better results could be obtained this way, if the parameters were
properly adjusted. An average performed on a few ensembles strongly
improves the result and the number of ensembles is lower than quoted in other
approaches. We have also studied the influence of the window length and of a
different number of hidden units upon the convergence speed and test error.
Though good results were obtained in this quantitative study, the trained
network which resulted should be tested on real data, in order to get a
complete outlook upon this problem.

INTRODUCTION

In the research of brain's electrical activity, the spontaneous and evoked
activities were intensely studied, from both clinical and experimental points of
view,. An important tool is the electroencephalogram (EEG), a recording of the
brain's electrical activity. If there is no observable intervention, the EEG activity is
called spontaneous ([11]). This background activity can be changed by central or
peripheral stimuli, allowing the study of the evoked activity.

The evoked potential (EP) is an anwer to a stimulus and it can be noticed
using microelectrodes, macroelectrods plased on the cortex or using electrodes
placed on the skul. When using the third method, an extraction of the EP from the
EEG signal, which masks it, it's necessary and one encounters a well-known case
in biomedical signal processing,, when a physiological signal has its components of
interest obscured by much larger signals due to different processes ([11]).

A classical approach to enhance the EP's signal components, is based on
filtering the data ([11], [1]), while another one takes into account artificial
intelligence (AI) methods, including expert, neural and fuzzy systems ([1]). One
should remark that: a) the EP is a very low amplitude signal, compared with the
0-7803-2026-3/94 $4.00 © 1994 IEEE 606

EEG; and b) the EEG signal is nonlinear. Neural network capabilities, as
nonlinear models, ([7], [4], [10]), drove to good performances, when the signal
characteristics were not known, though the results strongly depended on the neural
architecture and the learning strategy ([5], [13]).

In this paper, we have considered the problem of EP estimation, using a
feedforward network. A multilayer perceptron was chosen, trained with the
standard backpropagation algorithm and some some of its extensions,
concerning different error criteria. Changes in the structure of the network were
also experimented, in order to improve the results and the convergence speed. The
purpose was analysing from a quantitative point of view the performance of this
structure in solving the EP problem. In the following, by network we are going to
refer to a multilayer perceptron.

THEORETICAL APPROACH

The EP problem

The problem we approach is that of estimating the values of the evoked
potential signal from the given data samples. The signal is present, but it is buried
in the background EEG, which is obscuring it. This activity may be considered as
noise, additive to the clean signal:

xnoisy(t) = xclean(t) + n(tX „ . . °i
where Xclean(t) is the correct evoked potential, n(t) is the EEG activity and
Xnoisytf)is the measured s'g"31- We assume t*131 ^ EEG and EP si8nals are not

correlated. The problem is finding an estimation x~(t) so that X(x) is minimized,
where K is a general norm: ||xclean(t) - x~(t) || ([8], [12]). Many times, this is the
L2-norm.

The Multilayer Perceptron

Among the neural networks, the multilayer perceptron has the most frequently
encountered applications. It is widely used in biosignal processing, too. The results
are promising, as long as the data were adequately preprocessed ([11]). In solving
nonlinearly separable problems, at least two active layers are needed ([7], [4], [9]).

The architecture shown in Figure la consists of an input layer, which passes
forward the input values, the hidden layer, which is responsible of an internal
encoding during the learning process and the output layer, also active, like the
hidden one. The layers are made up of nlnput, nHidden and nOutput nodes,
respectively.

The Learning Rule in its standard form uses a gradient search method, which
updates the weights in the network for each input vector ([13]). The
backpropagation algorithm (BKP) was built on the basis of the least-squares error
(Euclidian or L2-norm) criterion ([2]), which is a first-order descent method.

Let the network be as depicted in Figure la, with x(t) the input vector, where

Xj=x(k-r), r = 0,nlnput-l, are its components, given by a tapped delay line,
607

ÄSf £S H T" VeCt°rS fr°m "* Wdden and *e out layer respecüvely^Qne should make an assumption regarding the relationship between
x(k) wih the "»dex "k" and time V. The usua

x(k-nlnput+l)

nlnput nHidden nOutput

Figure la:The network architecture

. — . . *..v usual
technique« k=t ([5]) and it was adopted

1n\!2°We shaI1 /ollow the notation:
Äin-n,d=rw.h] and jjhid-outj , for ^

weight vectors, where the neurons in the
layeü_ arc:

i = l,nlnput, h = l,nHidden, j = l.nOutput.
Each neuron in the active layers yields its
output by forming the weighted sum of the
outputs of the neurons in the immediately
preceding layer, adding the bias and passing
the result through its characteristic nonlinear
activation function. For example, in the »de„ .aye,, fc * »,alion ^T'» S^S

nlnput
net = Z

n i=l
w. *x. + ih i 6. ; f(mt)=a*-~exp(-S*m\

1+ (- ^

JÜÜ",TSTi » '*"" *• S'eePneSS **"£"£ 'a- value is a constant, x, is the l-th component of the input vector and »ft» ic »v.» u-
value. When passing from hidden to the output vlltSv'ues are calc^ ated Tn
the same way. Once the output values y-t are available, for S^JS^

can be evaluated, comparing the actual value with the desired value dj. The error

function ([2]) may be selected from Table 1, where e: n = d - v • Tknallv
JP jp Jjp. usually,

nOutput
2

j=l
3(ejp) (3)

nPat nOutput
= 2 2

P=l j=l
3(ejp)

(4)

1 nPat nOutput
~^ 2 S nOutput * nPat p=l j=i 3(ejp) (5)

608

The weights are updated backpropagating the error, in order to find the
optimum weight vector that minimizes it. The gradient of E is calculated and the
weight vector at iteration "t" is adjusted in the direction of the steepest descent
([7], [2], [9] et.al), with Ep given by (3) and r\ a learning constant:

w(t+l) = w(t) + Ti(-VE)
P (6)

The calculus of the gradient yields ([7], [2], [9]) eq. (7) for any two neurons "q"
and V, for a pattern "p", 8r is node's V error and yq is node's "q" output value,

given by eq. (8) for the output nodes j = l.nOutput, and by eq. (9) for the hidden
nodes, with index "k" over all the nodes in the previous layer, the error is
propagated from.

Table 1: ERROR FUNCTIONS

Error function |e. |<ß
JP

|e. |>ß
JP

LI - norm 3(ejp) = |ejp| 3(ejp)Hejp|

L2 - norm 3(ejp) = 0.5 * e2p 3(ejp) = 0.5*e2p

Huber's error
function 3(ejp) = 0.5*e2

p 3(ejp) = ß eJP -0.5*ß2

Hampel's error
function

ß2 7teiD
3(ejp) = — (1-cos—^-)

7t ß

ß2
3(ejp) = 2-^—

7t

Logistic
function

3(e:) = ß2ln[cosh(J£-)]
JK ß 3(ej) = ß2ln[cosh(^.)

iV ß

Wqr(t + 1)-Wqr(t) = -T1 qrv
dEn 3E dymt Snet .

P -_- P PJ Pi s --r\ = riö y
3wnr fl out dnet . dw r Q 'qr dy

PJ PJ qr

(7)

-out
PJ

5E„ dy out
PJ

dE

öyp? 9net PJ dy

p J, l 53(eip)
BuTfj(netpj) = fj(netpj)—^f-
PJ

609
dy

PJ
(8)

8phd=f!h(netph)pPkwkh (9>

There are several approaches to increase the convergence speed and to avoid
the algorithm getting stuck in local minima. One could mention adaptive
parameters (bias, momentum a, slope of the activation function) and other error
criteria than L2-norm ((2], [9]). With a momentum term, 0 < a < 1, (7) becomes:

wqr(t + l)-wqr(t)= Tl5ryq+ot(wqr(t)-Wqr(t-l)) (10)

and a could be adaptively adjusted, too. This holds also for the bias, a relation
similar to (10) can be written if one considers the bias as a weight value for a
suplimentary node in the structure, having always as an input the "1.0" value.
Remark: in the equations (7), (8), (9), (10), which give the adaptation for both

hid
hidden - output and input - hidden weights, with yq = y^ , h = l,nHidden and

y = = x-, i = l,nlnput, when taking into account the error criteria in Table 1, only

the expression for 80ut changes ([2]).

EXPERIMENTAL RESULTS

We used synthetic evoked potentials, generated as ([10]) quoted from literature:
the "clean" signal consisted of one full sine wave, followed by a half attenuated
sine wave. Noise resulted after filtering random numbers with uniform
distribution, with the 11-point smoothing filter ([10]):

nj = (-36 z i_5 + 9 z {A + 44 z j_3 + 69 z j_2 + 84 z M + 89 z j + 84 z i+1 +
+ 69 z i+2 + 44 z i+3 + 9 z i+4 - 36 z i+5)/429 (11)

There are plotted in Figures: lb.) the unfiltered noise, 2.) the filtered noise (200
samples), 3) the clean and noisy EPs, 200 samples and 4) the clean and noisy EPs,
576 samples. We have considered N number of samples, and a window of length
W (W odd). Each pattern consisted of W samples, read as the window was sliding
one step (sample) to the right and a set of N input patterns resulted. The desired
output value was always considered to be the correct value placed in the middle of
the window. Experiments shown in Table 2 were carried out:

1. An 11-7-1 network was trained (see Table 2). The influence of N is given in
Table 3, for N = 200 and N = 576. For a number of patterns N = 576, the
training error decreases more rapidly to a lower value than for N = 200 (when
error= 0.011 was the minimum we could achieve with this structure and N = 200).

2. The learning curves for the experiment 2 (Table 2) are shown in Figure 5. It
was clear that adaptive biases and slopes speeded up the convergence.

3. We trained the network (see Table 2), requiring a maximum training error
= 0.00066 for different nlnput (odd) values. As nlnput is the window length W,
Table 4 shows its influence on the convergence speed and test error. If W is too
small, the nonlinear relations between the current data sample and samples outside
the window cannot be learned by the network ([13]). For nlnput = 5 and 7, the test
error is lower because the network is not making any encoding, as nlnput <
nHidden, but still, the network performs a poor noise removal. If W is large, too

610

many correlations can be unexpectedly captured by the system ([13]).
nInput=W=13, the test error is higher as compared to other experim. cases.

Table 2: EXPERIMENTS

For

Constant
parameters

Ex
P

nr.

ninp.
(=W)

nHid nPat
(N)

nEpochs Bias Err.
crit.

Train
EP

• a = 0.1
• s = 0.5
• nOutp= 1
• a = 0.5
• f(net) as

(1)
• desired
sign=clean
EP
• test sign
=noisy EP

1 11 7 200 variable ct. L2 clean

11 7 576 variable ct. L2 clean

2 11 7 576 variable ct. L2 clean

11 7 576 variable adapt L2 clean

3
5 79
11,13 7 576 variable adapt L2 clean

4 11 6,7,8 576 variable adapt L2 clean

5 11 7 576 1050 adapt L2
Hub.
Hamp
Log.

noisy
other
than
train.

Table 3: THE INFLUENCE OF N (NUMBER OF
PATTERNS) UPON THE TRAINING ERROR

Nr. of
patterns

Epoch
s

Total number
of samples

Training
error

200 512 102,400 0.0110

576 153 88,128 0.0011

4. The influence of the
number of hidden units on
the training error
(experiment 4, Table 2) is
shown in Figure 6.
Adding a hidden unit did
not improve the test error,

Table 4: THE INFLUENCE OF THE WINDOW LENGTH

nlnput nHidden nOutput Epochs Total nr. of patt. Test error

13 7 44 25,344 0.1199

11 7 69 39,744 0.1118

9 7 87 50,112 0.0802

7 7 10 5760 0.0597

5 7 10 5760 0.0378

on the contrary, though the convergence speed increased. There are methods given
in literature, to determine, the number of hidden units, but our concern here was
not finding an optimal structure. One could find out, though, following the
suggestion of ([13]), whether the number of neurons in the hidden layer was too
high, by checking the rank of the autocorrelation matrix of the output hidden
units. This matrix would have had rank deficiency if at least one hidden unit's
output would have been linearly dependent on the rest of the hidden units.

After these tests, we decided to use an 11-7-1 network, which proved to be a
tradeoff between the convergence speed and performance in the test phase, in the

611

cases studied above. Training the network on a clean EP (input signal and desired
output signal) and testing it on a noisy EP, as we did, showed what one could have
told in advance: the network wasn't able to cope with the noisy input signal
satisfactory. The output signal (test phase) vs. the desired one, is shown in Fig. 7.

5. This experiment (Table 2) took into account various error criteria. Training
was performed for 1050 epochs (i.e. 604,800 input patterns), with input weights
randomly chosen, but the same for all phases of the experiment. The output
signals in the test phase, for the mentioned error functions are plotted in Figure
9,10,11,12. Better performance was obtained, for the same training conditions, if
we considered other error criteria than the L2-norm. For the resulting networks,
the mean square error when testing with noisy EP is given in Table 5.

Also, this experiment checked the assertion made in ([2]) regarding the strong
dependance of the new error criteria on the value of the controlling parameter ß.
For a large value of ß, the learning algorithm is practically equivalent to the
standard BKP algorithm ([2]) and it may show a learning curve as given in Figure
8. On the other hand, if ß is very small, then the first derivative of the error
function closely approximates the signum (hard limiter) function ([2]). If ß is too
low, the network may not learn (for example, if ß < 0.1, the network is not able to

Table 5: THEMSE ERROR FOR THE RESULTING NETS pass the flrst steP' the

output signal may be as
given in Figure 12).

It is also well-
known, that average
evoked potentials have a
reduced variation in the

framework of a specific stimulus ([11]). In ([10]), a strong improvement of the
performance was shown, if average on a small set of ensembles was considered.
We argue that, due to better results obtained when using other error criteria than
standard L2-norm, performance is improved when averaging on a few ensembles
(Figure 11, for the logistic function, 5 ensembles).

Experiment 5 (Table 2) was repeated, chosing the desired value at a specific
moment of time, as the next value following the window, i.e. if the input values
were noisy x1; XJJ, the desired value was the correct x12, etc. There was no
evident improvement due to this new context learning. The only apparent
advantages were, the possibility of selecting the nlnput value either odd or even,
and the intuitive predictive quality of the network, as being able to give the
following value, based on the past 11 input values.

CONCLUSION

Experimentally, we have chosen to use a multilayer perceptron with the
structure 11-7-1. When trained on a clean EP signal and tested on noisy EP, it
showed out poor performance, as the network did have in the training phase no
information about the noise from the real EP so, we further trained it on nosiy EP
and tested on other noisy EPs. Five experiments were carried out, which led us to
the conclusion that for the same training parameters and number of patterns, better
performance could be achieved when using error criteria other than the standard

612

Training error function MSE test error
L2-norm 0.09040
Huber, ß = 0.01 0.08912
Logistic, ß = 0.001 0.08705

L2-norm. We argue that, selecting such a new criteria and adjusting the
parameters, an average of the results obtained in a few tests could be made, as
usual in this particular problem, but the number of ensembles is lower than in
other cases. Our results can be improved if further carefully chosing the ß
parameter. The influence of the window length and of a different number of
hidden units upon the convergence speed and test error were also studied.

Our future work would have to take into account the idea of finding a
minimum structure by one of the available methods. Also, we are aware of the fact
that studying the performances on synthetic data, gives only a part of the overlook
upon this matter, so it is necessary to test the obtained network on real data.

REFERENCES

[I] J Robert Boston, Rule Based System for Interpretation of Evoked Potential Waveforms;
IEEE Engineering in Medicine & Biology Society 11th Annual Intl. Conference, IEEE,
1989;
[2] A. Cichoki, R. Unbehauen, Neural Networks for Optimization and Signal Processing;
J.Wiley & Sons, UK, 1993;
[3] Hans Gaunholt, Adriana Dumitras, Digital Filtering with Neural Networks; Report ISSN
0105 - 8541, IT - 93 - 141; Institute of Circuit Theory and Telecom., Technical University
of Denmark, Lyngby, Denmark, May, 1993;
[4] R. P. Lippmann, An Introduction to Computing with Neural Nets; IEEE ASSP
Magazine. USA, 1987;
[5] O. Nerrand, P. RousseL, Ragot, L. Personnaz, G. Dreyfus et al., Neural Network
Training Schemes for Non-Linear Adaptive Filtering and Modelling; UCNN-91:
Proceedings of the Intl. Joint Conference on Neural Networks. July 8-12, 1991, Seattle,
WA, USA, IEEE Inc., Vol. 1;
[6] S.Roberts, L.Tarassenko, Analysis of the sleep EEG using a multilayer network with
spatial organization-. JEE Proceedings-F. Vol. 139, No. 6, December 1992;
[7] D.E.Rumelhart, J.L. McClelland and the PDP Research Group, Parallel Distributed
Processing. Explorations in the Microstructure of Cognition, Vol.1: Foundations;
Cambridge, MA, MIT Press, USA, 1986;
[8] Mischa Schwartz, Leonard Shaw, Signal Processing: Discrete Spectral Analysis,
Detection and Estimation; McGraw Hill Inc., USA, 1975;
[9] Nazif Tepedelenlioglu, Ali Rezgui, Robert Scalero, Ramona Rosario, Fast Algorithms
for Training Multilayer Perceptrons; in Branko Soucek (ed.) and The IRIS Group: Neural
and Intelligent Systems Integration; John Wiley & Sons, Inc., USA, 1991;
[10] A. Uncini, M. Marchesi, G. Orlandi, F. Piazza, Improved Evoked Potential Estimation
Using Neural Network; IJCNN - 90; Proceedings of the Intl. Joint Conference on Neural
Networks. San Diego, California, 1990; IEEE Inc., 1990, Vol. 2;
[II] R. Weitkunat (ed.), Digital Biosignal Processing; Elsevier Science Publishers, The
Netherlands, 1991;
[12] B.Widrow, S.D. Steams, Adaptive Signal Processing; Prentice-Hall, Engl. Cliffs, NJ,
1985;
[13] Quizhen Xue, Yu Hen Hu, Willis T.Tompkins, Neural-Network-Based Adaptive
Matched Filtering for QRS Detection; IEEE Transactions on Biomedical Engineering, Vol.
39, No. 4, April 1992;

613

614

s -1. 1 1 1 1
0 P4 |0

•H « c "^T^
4* C ft gJ^L ■ '" PL,
U ft-« ~*S"r~'~* W

s
— CO
(4 ""* V** C

CM 0) A,*ZZ'->- «
-4* ft 0) ■

Ü a « w+
•P4 OH h ***■ ^-^^w o
+» +» U ■^^r
M 3 > "rt O «
ft ' *"•»?'
0 ■ *iZ&
ij - 1 1 -
,. «^;
iH ••— -fc
H —r

*_irs

ft
-P4

Cx ' _i'j ̂ S»l 1 1

NEURAL ESTIMATION OF KINETIC
RATE CONSTANTS FROM DYNAMIC

PET-SCANS

Torben Fog, Lars Hupfeldt Nielsen and Lars Kai Hansen
CONNECT, Electronics Institute B349

Technical University of Denmark,
DK-2800 Lyngby, Denmark

email: lkhansen@eileen.ei.dth.dk

S0ren Holm, Ian Law, Claus Svarer, and Olaf Paulson
Dept. of Neurology,

The University Hospital of Copenhagen
DK-2100 Copenhagen 0, Denmark

Abstract. A feed forward neural net is trained to invert a simple
three compartment model describing the tracer kinetics involved
in the metabolism of [18F]flourodeoxyglucose in the human brain.
The network can estimate rate constants from Positron Emission
Tomography sequences and is about 50 times faster than direct
fitting of rate constants using the parametrized transients of the
compartment model.

INTRODUCTION

Positron Emission Tomography (PET) is an important tool for mapping of
brain metabolism and functionality [2]. The primary target of PET is recon-
struction of concentrations of certain radioactive tracers. The usefull tracers
emit positrons that are locally annihilated to produce two 511 keV gamma
rays propagating in opposite directions. The 3D distribution of the tracer
can be reconstructed from the geometric constraints of coincident counts,
using standard techniques (filtered backprojection). An important class of
tracers are chemically equivalent to compounds that enter the basic brain
metabolism. By reconstructing such tracer distributions important aspects
of brain metabolism have been revealed. Furthermore, by investigating the
transient response to tracer injection, it is possible to identify fundamental
kinetic rate constants. In this study we investigate the latter approach. The
basic kinetic model was proposed by Sokoloff et al. [1]; in subsequent stud-
ies the model was used to estimate rate constant in lumped regions. In the

0-7803-2026-3/94 $4.00 © 1994 IEEE 616

work of Kanno et al. [3] pixel by pixel estimation of the rate-constants was
introduced. This scheme has, however, not found wide spread use due to
the complexity of the task of fitting the kinetic model transient to the large
number of individual pixel transients. In this work we show how a neural
network may substitute for such tedious parameter fitting procedures. The
neural network system is trained to produce a smooth map relating a given
transient with its most likely rate constants. This will provide a much faster
estimation time for the individual pixel rate constants

SOKOLOFF's KINETIC MODEL

We consider here the kinetics of the compound [18F]flourodeoxyglucose (FDG).
The kinetics of this tracer is similar to glucose in the initial metabolic steps.
It passes through the blood-brain barrier (BBB), and is phosphorylized in a
process past the BBB analogous to glucose. Then it ceases to react further
and is effectively trapped. The kinetics can be modelled by a compartemental
model involving one compartment representing the tracer density in the ar-
terial blood outside the BBB, Cp; one compartment representing the socalled
precursor pool, Cgj and finally a compartment representing the phosphoryl-
ized fraction behind the BBB, C^; see figure 1. In current experiments the
arterial concentrations are measured continuously along with the scan, hence
the concentration Cp can be considered a control parameter for the compart-
ment model.

BBB

Blood plasma Brain tissue

Precursor pool Metabolic products

FDG
% %

FDG-6-PO,
9

FDG
- #*. \

c;

Figure 1: Sokoloff's three compartment model applied to phosphorylization of
[18F]flourodeoxyglucose (FDG). The star on the concentrations signifies that we
consider tracer amounts and constants

Following the injection of the tracer, hence, the rise of the arterial blood
concentration Cp, the flow through the BBB starts. The measured PET tracer
activity is the sum of the activities of the two compartments to the right of
the BBB c.f. figure 1,

617

c; = cE + c*M (l)

The dynamics of the three compartment model is given by:

dc; _dc% dc^
dt ~ di + dt {l]

with

^f = KC'E, (3)

and dC*
-Ji =)cic*P-kW*E-k;c'E. (4)

The reverse reaction rate constant (k^) corresponding to k^ is neglected.
These equations are straightforward to integrate providing the two time de-
pendent concentrations,

C*E(t) = kle-^+k^t f e^+k'^'Cp{t') dt'
Jo

(5)

dt' (6) c*M{t) = k*1ki f [e-(**+^(' / e(*;+*3*)«"c^(f") dt"
Jo l Jo

Following injection these solutions describe the transient activity in terms
of the measured Cp(t) and the three rate constants. Conversely, for a given
transient Cp(t) and for given measured sum of concentrations C*(t) we may fit
the three rate constants. An example is shown in figure 2. We use a simple
least squares cost function for the fit, hence implicitly assuming Gaussian
residuals. Optimization over the three parameters was carried out using a
second order Newton scheme1

There are two different approaches from here. Up til now most studies as-
sume that the rate constant arc homogeneous in regions, see e.g. [1, 2], and the
rate constants are fitted from the regional average activity transient. Alterna-
tively we can fit individual rate constants for each pixel in the reconstructed
volume [3], and analyse for homogeneity. However, since it is quite tedious to
fit the kinetic model, the latter approach has not found widespread use. In
the upper panel of figure 3 we show the result of such a pixel by pixel fit. The
artifacts outside the elliptic area of the brain are due to the reconstruction
scheme used (Filtered backprojection).

The database used for these experiments arc PET data collected at the
PET center at Rigshospitalet, Copenhagen. The subject described in this
paper is a 43 year old woman with multiple sclerosis. Data are aquired on a

'Based on the solution to the kinetic model it is straightforward to compute the second
derivatives.

618

GE4096 plus (General Electric Medical Systems), sampling 15 slices simulta-
neously. The dynamic scans after injection of 200 MBq F-18 labelled FDG are
performed over 60 minutes, yelding 34 contiguous time frames of increasing
duration in order to provide a reasonable sampling of the C* curve: (10@6
sec; 3@20 sec; 8@60 sec; 5@120 sec; 8@300 sec). A single such curve is shown
in figure 2. Images were reconstructed in 128a;128 matrices (2mm2 pixels) by
standard Filtered backprojection (Ramp filter with Hann window). Correc-
tion for attenuation is based on a separate transmission scan with a rotating
Germanium pin source. For further introduction to PET scan techniques see

e.g. [2]

Figure 2: C*(t) as measured by PET for a single pixel, as produced by the kinetic
compartment model with the fitted rate constants, and as estimated by the neural
network.

To avoid the tedious fitting procedure we here investigate the possibility of
identifying the inverse modeloithe kinetics: we search for a map that provides
an estimate of the three rate constants for a given observed transient. Our
basic vehicle will be a simple feed-forward network.

What should be used for inputs?. The PET transients depend, c.f. equa-
tions (5-6), on the rate constants and on the time dependent arterial concen-
tration (Cp). If we want to generalize from one set of pictures to another set
(possibly another subject) we would need to provide both the observed PET
transient and Cp(t). This will be pursued in future studies. In this work we
tentatively train the network to predict the rate constants for pictures of a
single sequence of PET images, hence, Cp is the same for all pixels and we
need not provide it as input. In particular we train the network on transients
from a small subsample of one slice of the PET volume scan Subsequently we
apply the trained network to get the rate constants for the (large) remaining

set of pixels.

619

20 40 60 80 100 120

«vJ ™<3^r' -1

20 40 60 80 100 120

Figure 3: Image (slices) showing the k* rate constant as determined by fitting the
kinetic model (pixel by pixel) using a second Newton scheme (upper panel) and
as determined by the neural net operating as inverse model for the kinetics (lower
panel). The artifacts outside the elliptic area of the brain are due to the "Filtered
backprojection" algorithm used for reconstruction.

620

— 1 I 1 1 1

— Backprop training

 Backprop test errt

 BFGS training err

 BFGS test error

error

r

ar

: ; : : :
Ü

\ [

i >>

H: i i i r
:*>■ : : :

i .IIIIII

0 50 100 160 200 250 300 350 400 450 500
TIME

Figure 4: Comparison of time developments for the training process of standard
Backpropagation and the BFGS scheme.

NETWORK DESIGN

The network considered is a standard feed forward net with a single layer of
hidden units. The activation function of the hidden units are hyperbolic tan-
gents, while the output units are linearly activated. The particular network
for this study had 34 inputs corresponding to the activity transient of a given
pixel. The net had ten hidden units and three output units. We trained the
network by a pseudo second order scheme, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm see e.g. [4]. This algorithm is a variable metric
method that constructs a sequence of matrices approximating the inverse
Hessian. Using BFGS instead of e.g. standard Backpropagation [5] provides
a significant speed-up. This is quantified in figure 4, showing the time devel-
opment of the training process with backprop and with the BFGS method
respectively. Note the scale is in arbitrary CPU time units not iterations,
since a backprop iteration is faster than a BFGS iteration.

For most adaptive systems the objective is not to learn the training set,
but rather to perform well on a much larger set of conceivable inputs, i.e.,
generalization. The generalization ability depends on architecture and on size
of the training set. Hence, for a given architecture, it is important to estimate
the necessary number of training cases (pixels) to obtain good generalization.
This relation is quantified by the so-called learning curve of the architecture
as shown in figure 5. We note that a mere 4000 pixels are needed to obtain
the asymptotic level of the test error.

Finally we apply the trained network to produce a full estimate of a "slice"
of the PET scan as presented in the lower panel of figure 3. It is quite
remarkable that the image quality of the rate constants reconstructed by the

621

i ^ :

/ i

 I ; ; ■ ■■■ ' ; \ \ \ ■ '

■

 ; '. ;.. ; :
 TRAINING ERROR
-- TEST ERROR ; .

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
TRAINING SET SIZE

Figure 5: Learning curve for the feed forward net trained by BFGS, approximately
5000 pixels are needed to reach the asymptotic generalization level (about a quarter
of the pixels in an image (slice)).

networks inverse model is less noisy than quality obtained from the fitting
procedure. The reason is that the network capacity is limited by the inherent
constraints of the network architecture, while the Newton fit can lead to
arbitrarily (wrong) rate constants for a given pixel if the transient is very
noisy. We also note that the execution time for the feed forward network is
about two percent of the average time needed to obtain the kinetic constants
by fitting the transients with the Newton method.

CONCLUSION

We have shown how a feed forward net may be used for identification of the
inverse model for three compartment PET tracer kinetics. Not only is the
use of the feed forward net significantly faster than fitting the kinetic model,
but our tentative results seem to indicate that the rate constant distribution
is regularized by the constraints imposed by the network architecture.

ACKNOWLEDGMENTS

This research was supported by the Danish Natural Science and Technical
Research Councils through the Computational Neural Network Center (CON-

NECT).

622

REFERENCES

[1] L. Sokoloff, M. Reivich, C. Kennedy, M.H. Des Rosiers, C.S. Patlak, K.D.
Pettigrew, O. Sakurada, and M. Shinohara: "The C-14-Deoxyglucose Method
for the Measurement of local Cerebral Glucose Utilization: Theory, Proce-
dures and Normal Values in the Conscious and Anesthetized Albino Rat"
Journal of Neurochemistry 28 897-916, (1977).

[2] M.E. Phelps: "Positron Emission Tomography (PET)". In: J.C. Maziotta and
S. Gilman (Eds.): Clinical Brain Imaging, Principles and Applications, F.A.
Davis Company, Philadelphia (1992).

[3] H. Sasaki, I. Kanno, M. Murakami, F. Shishido, and K. Uemuda: "Tomo-
graphie Mapping of Kinetic Rate Constants in the FDG model Using Dynamic
PET". Journal of Cerebral Blood Flow 6 447-454 (1986).

[4] W. Press et al.: Numerical Recipes in 'C Cambridge University Press.

[5] D. E. Rumelhart and J. L. McClelland: "Back-propagation of errors" in Par-
allel Distributed Processing. Explorations in the Micro structure of Cognition,
Vols. 1-2, MIT Press, Cambridge, Massachusetts (1986).

623

AUDITORY STREAM SEGREGATION BASED
ON OSCILLATORY CORRELATION

DeLiang Wang
Laboratory for AI Research, Department of Computer and Information Science

and Center for Cognitive Science, The Ohio State University
Columbus, OH 43210-1277, USA

Telephone: 614-292-6827; Fax: 614-292-2911
Email: dwang@cis.ohio-state.edu

Abstract - Auditory segmentation is critical for complex auditory
pattern processing. We present a generic neural network
framework for auditory pattern segmentation. The network is a
laterally coupled two-dimensional neural oscillators with a global
inhibitor. One dimension represents time and another one
represents frequency. We show that this architecture can in real
time group auditory features into a segment by phase synchrony
and segregate different segments by desynchronization. The
network demonstrates the phenomenon that auditory stream
segregation critically depends on the rate of presentation. The
neuroplausibility and possible extensions of the model are
discussed.

1. INTRODUCTION

At any time a listener is being exposed to acoustic energy from many
simultaneous auditory events. In order to recognize and understand such dynamic
environment, the listener must first disentangle the acoustic wave and capture each
event. This process of auditory segmentation is referred to as auditory stream
segregation or auditory scene analysis [1]. It is a critical part of auditory
perception.

Auditory segmentation was first reported by Miller and Heise [6] who noted
that the listeners split the signal with two sine wave tones into two segments.
Segmentation could be obtained with as little as a 15% difference in frequency and
throughout the entire frequency range from about 150 Hz to 7000 Hz. Bregman
and his collaborators have carried out a series of studies on this subject. In one of
the early studies [1], subjects were asked to report the temporal order of the six
tones in the sequence. Three of them were in a high frequency range, and the other
three in a low frequency range. This situation is simplified into Figure 1. The
results showed that at high rates of presentation, subjects perceived two separate
sequences corresponding to the high and low frequency tones respectively, and they
were able to report only the temporal order of the tones within each sequence, but
not across the two sequences. This basic phenomenon of stream segregation was
repeatedly verified in different contexts [4] [1], In general, if auditory patterns are

0-7803-2026-3/94 $4.00 © 1994 IEEE 624

displayed on a spectrogram, the results are consistent with Gestalt laws of
grouping that have been expressed in the visual domain.

Frequency

Time

Figure 1. Six alternating high and low frequency tones as displayed in a
spectrogram.

von der Malsburg and Schneider [9] proposed perhaps the only neural network
model that addressed the problem of auditory segmentation. They described the idea
of using neural oscillations for expressing segmentation, whereby a set of features
forms the same segment if their corresponding oscillators oscillate in synchrony
and oscillator groups representing different segments desynchronize from each
other. Using a fully connected oscillator network, they demonstrated segmentation
based on onset synchrony, i.e., oscillators simultaneously triggered (a segment)
synchronize with each other. Generally, a fully connected network indiscriminately
connects all the oscillators which are activated simultaneously by different objects,
because the network is dimensionless and loses critical geometrical information.
Because of this, their model could not extend very far. For example, the model
cannot demonstrate stream segregation which requires an account of frequency
proximity. Computer algorithms have been developed to separate two speakers on
the basis of different fundamental frequencies [7] [12]. The success of these models
is quite limited, and it is not clear how the models could be extended to handle
sound separation beyond two talkers speaking voiced sounds.

In the following, we will present a model for auditory stream segregation.
Similar to the model of von der Malsburg and Schneider [9], our model is based on
the idea of oscillatory correlation, whereby phases of neural oscillators encode the
binding of sensory components. However, both the single oscillator model and the
neural architecture are fundamentally different from those used by von der Malsburg
and Schneider. Simulations show that the model demonstrates the basic
phenomenon of stream segregation. The framework proposed here promises to
explain a variety of experimental observations and to provide an effective
computational approach to auditory segmentation (see also [11]).

2. NEURAL ARCHITECTURE

The building block of an oscillator network model is a single oscillator, which
in this model is defined as a feedback loop between an excitatory unit and an
inhibitory unit

625

~J = -xi + 8x(xi ~ ß>'i + S{ + // + pj (la)

dt = -Ayi + gy(axi) (lb)

*'W = l+exp[.fv-e^7T re{X'y] (1C)

where a and /} are the coupling parameters between the two units. 5(- represents
input from the other oscillators and /,- represents external stimulation. A is the
decay parameter, and p denotes the amplitude of a Gaussian noise term, g/v) is a
sigmoid gain function with threshold 6r and parameter T. Eq. 1 is essentially a
simplification of the Wilson and Cowan model [13], and the oscillations are driven
(induced) by external stimulus.

Inspired by the idea of dynamic links [9], we recently introduced a mechanism
called dynamic normalization [10]. In this scheme, there is a pair of connection
weights from oscillator j to i, one permanent r,-.-, and another dynamic 7(/-.
Permanent links reflect the hardwired structure of a network, while dynamic links
quickly change their strengths from time to time, depending on the current state of
the network. More specifically, dynamic normalization ensures that each oscillator
has equal overall dynamic connection weights (/,•.-) from all its input oscillators.
With this mechanism, we showed that when triggered by a stimulus, a network of
oscillators with just local connections exhibits emergent synchrony across the
stimulated regions in the network [10]. Contrary to fully connected ones, locally
coupled oscillator networks preserve geometry of input patterns.

The fact that auditory segmentation depends on the rate of presentation calls
for a representation of time. In this model, time is treated as a separate dimension.
In the simplest form, the segmentation network is a two-dimensional matrix: rows
represent frequency (pitch), and columns represent time. This architecture is shown
in Fig. 2. The input entering the network always stimulates the left end and the
activity of the entire plane shifts towards the right end after a certain time delay, D.
In other words, the value of the excitatory unit (*,-) of an oscillator, except the
leftmost ones, is set equal to that of its left neighbor every shift step D. Thus, the
duration of a tone is represented by the number of consecutive oscillators excited
by the tone along its corresponding frequency channel.

There is a common inhibitor y which receives excitation from every oscillator
of the network, and sends inhibition back to it:

d = -xy+sy(jrlxi) (2)

Where A. is the decay parameter of the inhibitor as defined in Eq. lb. Nx =

X h(x0, a normalizing parameter equal to the number of active oscillators. The

626

global inhibitor prevents different segments from accidentally grouping together.
Intuitively, when the oscillators of one segment reach the peak of their
oscillations, they cause the inhibitor to fire strongly. This in turn exerts strong
inhibition on other oscillators, and thus prevents them from reaching their peaks of
activities.

Frequency

Input / C
Channel

Global Inhibitor

Figure 2. Two dimensional time-frequency matrix for auditory segmentation.
The thin arrowheads indicate the direction of activity shift.

In addition to the shift connections, we assume a priori (genetically
determined) permanent connectivity between oscillators in the segmentation
network (Fig. 2), which, except for the self connection, takes on a two
dimensional Gaussian kernel. Assume that the two dimensional indices of
oscillator i are (r;,/j-)> representing the time and frequency coordinates respectively.
Oscillator i connects to oscillator j with strength

T{j = Exp[
(tj-tj)2 -Ml

]. (3)
a f

where the parameters at and <x- determine the widths along the time axis and the
frequency axis of the Gaussian kernel, respectively. The self connectivity Tu = 0.
In sum, internal input S,- to oscillator i is (cf. Eq. la):

Si' I
J

J--X- -py (4)

where ß is a parameter.

627

3. SIMULATION RESULTS

The above architecture for auditory stream segregation has been simulated
using a matrix of oscillators with six rows representing distinct frequency
channels, as shown in Fig. 2. A sequence of alternating tones HLHLHL is used as
input, and it is presented to the network in real time. All H tones are assumed to
trigger the same frequency channel, and so are all L tones. The two triggered
channels are three rows apart (see Fig. 2). When an oscillator in the left end is
triggered, a random phase is generated for it. After a fixed time interval, the
activities of the network shift one column to the right. The sequence is repeatedly
presented to the network, as in the psychological experiments.

In order to relate to real time, it is assumed that a basic step in simulation
corresponds 0.05 ms. The shift time interval is 80 ms. In the time-frequency
domain, the presentation rate of a tone corresponds to the number of oscillators
occupied by the tone along the time axis. We conducted three groups of
simulations with presentation rates 160 ms, 240 ms, and 320 ms per tone,
corresponding to fast, medium, and slow presentations, respectively. Thus, for fast
presentation each tone occupied two oscillators, for medium presentation three
oscillators, and for slow presentation four oscillators.

When the presentation rate was fast (2 oscillators per tone), a network of 6x12
oscillators was simulated. Except a brief beginning period of each column (shift
interval), all active oscillators of the H channel quickly reached synchronization,
and so did the oscillators of the L channel. The oscillators of one channel
desynchronize with those of the other channel. This phenomenon was particularly
stable after the first cycle of sequence presentation was finished. Figure 3 shows
the combined activity of the frequency channels for a typical interval after the entire
sequence was presented. The top panel of the figure depicts the stimulation
pattern, showing that one tone occupies two oscillators, while the middle and the
bottom panels show the combined activities of the H and L frequency channels
respectively. Synchronization within the same frequency channels and
desynchronization across the two channels are clearly illustrated in this form of
display. Relating to the experiments, stream segregation occurred for this rate of
presentation, and two streams were segmented apart in real time.

When the presentation rate was medium (3 oscillators per tone), a network of
6x18 oscillators was simulated. Similar to Fig. 3, the top panel of Fig. 4
illustrates the stimulation condition. The lower two panels show the combined
activities for the H and L channels, respectively. As shown in the figure, the
oscillators within each channel did not synchronize, but instead exhibited two
distinct phases after an initial transient. Actually, two neighboring H tones formed
one segment, two neighboring L tones formed another segment, and one H tone
and its neighboring L tone formed yet another segment. As can be seen from the
display, there were three distinct phases in total. In sum, for the medium
presentation rate, phase synchrony was not reached across the entire same frequency
channel. Rather, partial stream segregation, e.g. among two consecutive H or L
tones, was exhibited in the simulation.

628

5tlOOtfOOttOO
a u
3

IOOIIOOIIOOII
Time *~

kMV/VKJVMV

JVMVK/VAX^
Figure 3. Top panel: a snapshot of the stimulus pattern in the H and L
channels. Middle and bottom panels: The combined activities of all the
oscillators in the H and L channels, respectively. The parameters a = 0.6, ß
= 2.5, p = 0.01, X = 1.0, 9X = 0.6, Qy = 0.15, T = 0.025, Ot = 2.75, oy = 1.8, ß
= 0.5, Ii = 0.7 if oscillator i is externally stimulated, and /,- = 0.0 otherwise.

Finally, when the presentation rate was further slowed down to 4 oscillators
per tone, a network of 6x24 oscillators was simulated. Again, the top panel of
Fig. 5 shows the stimulation pattern. From the combined oscillations in the
lower two panels, one can easily observe that there are three distinct phases within
each frequency channel. Each phase corresponds to one tone. In other words, there
was no phase synchronization at all between different tones of the same frequency.
Rather, one tone was grouped into one segment with a neighboring tone of the
other frequency. This can be seen by comparing the lower two panels with respect
to time. In sum, with this rate of presentation, one tone formed a segment with
one neighboring tone of another channel, and the six tones were segregated into
three segments.

From these simulations, we can conclude that tones can be grouped together
based on their similarities in frequency, and segmentation critically depends on the
rate of presentation. Stream segregation is best for high rates of presentation,
absent for low rates, and is intermediate for medium rates of tone presentation.
Why does such behavior occur? The behavior can be explained by competition and
cooperation in the network. The neighboring oscillators representing the same

629

tone always synchronize because they are strongly coupled with each other [see
(3)]. For the fast presentation, neighboring tones of the same frequency are
separated by only two oscillators (the top panel of Fig. 3). Thus, strong coupling
among them group them into the same segment. With every thing else the same,
slowing down the rate of presentation increases the distance between the
neighboring tones of the same channel, and thus reduces their coupling. Recall
that each oscillator has the same overall amount of incoming dynamic links. So
the reduced coupling will increase the relative coupling across the different
channels. That explains why with slower presentation, neighboring tones in time
are more likely to be grouped together. In the case of Fig. 5, only neighboring
tones in time are grouped into the same segments. The global inhibitor serves to
segment the stimuli on the entire network into different segments.

o c
3

ooo ooo ooo

ooo ooo ooo

Time

Figure 4. Top panel: a snapshot of the stimulus pattern in the H and L
channels. Middle and bottom panels: The combined activities of all the
oscillators in the H and L channels respectively. The parameter values are the
same as in Fig. 3.

4. DISCUSSION

There is ample evidence suggesting the existence of neural oscillations in the
brain. It has been observed that local field potentials in the visual cortex and the
sensorimotor cortex show stimulus-driven synchronous oscillations [3] [8]. The
range of the frequencies of these oscillations is between 20 and 80 Hz, often
referred to as 40 Hz oscillations. 40 Hz oscillations of auditory evoked potentials

630

o c

&

oooo oooo oooo

oooo oooo oooo

Time

Figure 5. Top panel: a snapshot of the stimulus pattern in the H and L
channels. Middle and bottom panels: The combined activities of all the
oscillators in the H and L channels respectively. The parameter values are the
same as in Fig. 3.

were also observed by Galambos et al. [2]. These oscillations can last for several
cycles after the stimulus presentation is over. The observation was later confirmed
by Madler and Pöppel [5], who further found that these characteristic oscillations
were absent from the patients with deep anesthesia.

An important element of the architecture of the model is the use of shift
circuits with delay lines. Time delays of neuronal responses have been found at
various levels of the visual pathway, and it appears that delays become longer in
higher auditory structures. In the cat auditory cortex, electrophysiological
recordings identify up to 1.6 second delays in response to identical tones separated
by certain periods or a sequence of different tones.

Although Sect. 3 shows only the preliminary simulation results of auditory
stream segregation, the model is not limited by the stimuli used. For example, the
three high (low) tones do not have to trigger the same frequency channel. As long
as they trigger nearby frequency channels, auditory segmentation based on
frequency similarity will occur. This is because synchronization of oscillators
depends on the connection strengths between them, and oscillators with similar
frequency coordinates have relatively large mutual connection strengths according
to the Gaussian kernel (3). By the same token, each tone need not be a pure tone.
A tone with frequency modulation will work similarly. In essence, the priori
connectivity pattern of a Gaussian kernel strongly biases towards the grouping of
sounds that have continuous frequency transitions, which is consistent with the
analysis of speech perception [1]. Of course, the basic architecture of Fig. 2 must

631

be extended in order to incorporate other qualities of auditory stimuli, such as
amplitude, rhythm, harmonics, timbre, etc. However, the basic principles of this
model should remain the same.

ACKNOWLEDGMENTS The preparation of this paper was supported in
part by ONR grant N00014-93-1-0335 and NSF grant IRI-9211419.

REFERENCES

[I] A.S. Bregman, Auditory Scene Analysis. Cambridge MA: MIT Press, 1990.
[2] R. Galambos, S. Makeig, and P.J. Talmachoff, "A 40-Hz auditory potential

recorded from the human scalp," Proc. Natl. Acad. Sei. USA, vol. 78, pp.
2643-2647, 1981.

[3] CM. Gray, P. König, A.K. Engel, and W. Singer, "Oscillatory responses in
cat visual cortex exhibit inter-columnar synchronization which reflects global
stimulus properties," Nature, vol. 338, pp. 334-337, 1989.

[4] M.R. Jones, "Time, our lost dimension: toward a new theory of perception,
attention, and memory," Psychol. Rev., vol. 83, pp. 323-355, 1976.

[5] C. Madler and E. Pöppel, "Auditory evoked potentials indicate the loss of
neuronal oscillations during general anesthesia," Naturwiss.. vol. 74, pp. 42-
43, 1987.

[6] G.A. Miller and G.A. Heise, "The trill threshold," J. Acoust. Soc. Am., vol.
22, pp. 637-638, 1950.

[7] T.W. Parsons, "Separation of speech from interfering speech by means of
harmonic selection," J. Acoust. Soc. Am., vol. 60(4), pp. 911-918, 1976.

[8] J.N. Sanes and J.P. Donoghue, "Oscillations in local field potentials of the
primate motor cortex during voluntary movement," Proc. Natl. Acad. Sei.
USA, vol. 90, pp. 4470-4474, 1993.

[9] C. von der Malsburg and W. Schneider, "A neural cocktail-party processor,"
Biol. Cybern., vol. 54, pp. 29-40, 1986.

[10] D.L. Wang, "Modeling global synchrony in the visual cortex by locally
coupled neural oscillators," in Proc. of the 15th Ann Conf. Cognit. Sei.
Soc. Boulder CO, 1993, pp. 1058-1063. For a more extended version, see
D.L. Wang, "Emergent synchrony in locally coupled neural oscillators,"
IEEE Trans, on Neural Networks, in press.

[II] D.L. Wang, "A computational theory of temporal pattern segmentation," in
Neural representation of temporal patterns. H. Hawkins, T. McMullen, and
R. Port, Ed. New York: Plenum, to appear, 1995.

[12] M. Weintraub, "A computational model for separating two simultaneous
talkers," in IEEE ICASSP. Tokyo, 1986, pp. 81-84.

[13] H.R. Wilson and J.D. Cowan, "Excitatory and inhibitory interactions in
localized populations of model neurons," Biophys. J.. vol. 12, pp. 1-24,
1972.

632

APPLICATION OF NEURAL NETWORKS FOR
SENSOR PERFORMANCE IMPROVEMENT

S. Poopalasingam, C.R. Reeves and N.C. Steele
Control Theory and Applications Centre, Coventry University,

Priory Street, Coventry CVl 5FB, U.Kingdom.
Tel: +44 203 838972, Fax: +44 203 838585.

email : NSTEELE@uk.cov.ac.

Abstract. Sensor technology has developed in parallel with advances
in the fields of electronics and computing. Beyond obtaining a suit-
able sensing element, stringent demands on accuracy has led to con-
tinued developments in the improvement of compensation and cali-
bration techniques. Typically, signal conditioning would attempt to
minimise the effects of zero offsets and nonlinear temperature and
pressure effects. Conventional analogue compensation methods have
been phased out in favour of digital methods which provide a lower
cost solution due to the reduction in test and calibration time. How-
ever, digital methods currently employed have been deemed to be in-
sufficiently accurate or highly memory intensive, thus there is a need
for an alternative approach that provides a compromise between the
above. The use of neural networks may offer this compromise, with
the added advantage of possessing certain characteristics that could
contribute to the development of a smart transducer

Introduction

Classical transducers relied on analogue circuitry to store compensation and cal-
ibration data. Typically, analogue 'storage' components such as laser-trimmed
resistors and potentiometers were used. With the advent of digital technology,
non-volatile memory components such as EPROMs and RAMs were phased in
to take the place of analogue components. The practice adopted was then to
obtain sensor calibration data during the manufacturing process. Based on data
provided, a table of correction coefficients is derived and stored in memory, thus
making memory requirements an issue to be considered. In an attempt to reduce
memory requirements, reduced density look-up tables with linear interpolation
have been implemented.

Another widely used approach has been to use compensating algorithms. In
this approach, the sensor output surface is modelled using polynomial fitting
techniques. The memory requirements are dramatically reduced because only

0-7803-2026-3/94 $4.00 © 1994 IEEE 633

the polynomial coefficients need to be stored. It has been found, however, that
such an approach is incapable of producing the required accuracy even when
using high order polynomials.

In an attempt to find a compromise between the memory requirements of the
look-up table approach and the poor accuracy for the polynomial fitting method,
the possiblity of using neural networks in this application has been investigated.
The work reported in this paper has been based on pressure transducers that
have wide-ranging applications from consumer applications to the aerospace
industry. The accuracy required is application dependent and ranges from 0.01%
to 2.0% of the full scale output (FSO). The added advantage of using neural
networks is the ability to realise a generic mapping for a specific type of sensor,
thus eliminating the need to obtain individualized sensor data. It is also likely
that the neural network based calibration module can be implemented within
the sensor housing, eliminating the need for external hardware support and in
line with the aims of developing a smart transducer. Initial work concentrated
on compensating for temperature and pressure nonlinearities. The accuracy
level after linearizing the temperature and pressure effects will be limited by
the hysteresis effects and time-related stability.

A multilayer perceptron (MLP) based compen-
sation module

Data from two types of devices were used. The first device was used in a
feasibility study and was selected due to its relatively good temperature stability,
however no validation data was available for this device. The second device, also
a silicon based transducer, was then used to obtain sufficient data for validation
and to realise a generic mapping for that particular type of sensor. This paper
concentrates to a larger extent on the feasibility study carried out, although the
findings from this study have been applied to the second device.

The ability of a neural network to realise an arbitrary nonlinear mapping
is well established [1], [2]. The mapping to be realised was the inverse sensor
characteristics. The training data consisted of calibration data obtained under
controlled laboratory conditions. The response of the first device within a spec-
ified pressure range for different temperatures is shown in Figure 1. The sensor
response readings were the output of an analogue to digital converter.

Training was carried out using the backpropagation learning algorithm. As
a first approach, optimal network parameters were heuristically found. The
required error specification for this transducer is an error range of within 0.1%
of the FSO. The error based on the FSO is referred as the full scale error (FSE).
As a network approximation ability measure, the average of the integral of the

634

15000

0 250 50 100 150 200

pressure(kPa)

Figure 1: Characteristics of first device for different temperatures

squared full scale error measure (AIFSE) was used. Using single and two layer
networks, very similar results were obtained. Analysis of the performance of
the single layer network was carried out and the error distribution within the
input space was plotted. From the results, it was apparent that the worst cases
occur at the edges and in high temperature regions of the input space, this is
shown in Figure 2. The error criterion for this plot has been increased to 0.3%
to clearly illustrate where the points of poor approximation lie. The symbol '*'
indicates cases classified as 'good' and V the poor.

In an attempt to improve performance at the edges of the input space, sev-
eral approaches were investigated. The first method was to use nonlinear scaling
of inputs. It was hoped that this method would improve the edge effects as well
as reduce the amount of nonlinearity the network was required to learn. How-
ever, this method fared very poorly. As a next step, redundant information
was introduced. Although by no means conclusive, it was discovered that intro-
ducing fewer cases a larger number of times tended to produce better results.
The introduction of redundant information gave an improved performance of
approximately 10% but resulted in longer training times due to the larger train-
ing set. Due to the fact that both the above approaches did not give much
improved results, it was conjectured that if the training set contained data over
a wider region than the operating region of the sensor, the poor approximation
at the edges of the input space could be improved. To test this, as data over
a wider operating region were not available, the existing data set was reduced
by removing cases lying on the edges of the input space. The network trained
with the reduced data set produced cases exhibiting large errors at the edges
of the reduced input space. The cases at the edges of the reduced data space
previously lay on the centre of the original input space and exhibited low er-

635

15000

§ 10000

t-l

t-l o
CM c

5000

0

-5000

*
0
*
*
*
*
*
*

*
*
*
*
*
*
*
*

1

*
*
* *
*
*
*
*

*
*
*
*
*
*
*

o
* *
*
*
*
*
*

1

o
*
*
*
*
*
*
*

*
o
*
*
*
*
*

*
* *
*
*
*
*
*

*
o
* *
* *
0 *

*
o
* * * *
o

-

* * * * o * * * * o -
* * * * * * * * o *

-50 0 50 100 150

temperature

Figure 2: Distribution of cases within the input space

ror values. Thus, the above conjecture would appear to be supported by these
findings.

Optimization of network structure using Genetic
Algorithms(GA)

To confirm that optimal network structures were being utilised in the above,
a GA was used for the full training set. Using an appropriate performance
measure, found by the GA was a single layer network which resulted in an
improvement of 10% over the previous findings obtained using the single layer
network. Although this finding is comparable to that of the best result found
by introducing redundant information, it is more efficient in terms of training
set size, and thus training times. The results obtained using different MLP
architectures are summarised in Table 2. With only 41% of the test cases
lying within the error criterion at best, attention was focussed on an alternative
learning paradigm.

The Radial Basis Function (RBF) approach

Due to the long training times required by the backpropagation and the poor
match to the error criterion, the RBF network was implemented. As discussed
by Poggio and Girosi in [3],[4], RBF networks have the best approximation prop-
erties. Moreover, the higher degree of local computation results in faster training

636

Table 1: SUMMARY OF MLP RESULTS
NETWORK % OF CASES < 0.1% FSE

2-7-1
100 training cases

31

2-9-1
100 training cases

37

2-15-1
100 training cases

32

2-7-1
154 training cases(18*3)

41

2-8-1
100 training cases
(selected by GA)

40

2-5-3-1
100 training cases

38

times. The kernel function used in the RBF was a Gaussian nonlinearity. Se-
lection of the Gaussian centres was carried out using the fc-means algorithm in
the initial phase of implementation [5]. The scaling parameters in the Gaussian
were set to unity. The number of centres were then chosen to obtain the best
fit. The networks with centres found using the clustering algorithm fared poorly
compared with the those with regularly spaced centres. This can be explained
in terms of the distribution of the data within the input space. Using the RBF
there was an improvement of 39% over the results obtained using the best MLP
network, i.e. that found by the GA.

The choice of scaling parameters for a given application can be carried out in
numerous ways. In [6], some possible approaches are discussed. For the problem
of sensor calibration, the optimal scaling parameters values were selected using
a GA [7]. Compared to the most favourable result obtained using the RBF
networks with unity parameter values, similar results were obtained but with a
reduction of hidden unit numbers by approximately 80%. Thus, with optimal
kernel function parameters the RBF network outperformed the MLP network of
comparable size in terms of both mapping accuracy and efficiency. A summary
of the results obtained using the RBF network is given in Table 2. The three
figures appearing in each block in the second and third columns of the table
correspond to a measure of the AIFSE, the percentage of test cases lying within
0.1% of the desired response and those lying within 0.4% respectively.

637

Table 2: SUMMARY OF RBF RESULTS
No. of centres fc-means regular spacing

13 6.356 6.282
(<T=1) 4 4

14 15
30 0.176 0.021

(*=1) 18 52
69 99

50 0.008 0.011
(«7=1) 79 69

100 100
10 0.008 -

(a = 4.32) 79 -
100 -

Validation of inverse model and obtaining a generic
model

Due to the lack of data, severe limitations were placed on the ability to validate
the model obtained for the first device. Data from the second device was used
to model the inverse behaviour, and as was the case with the first device, the
network approximation was good over the entire operating temperature range.
This is shown in Figure 3. The dotted line in the figure represents the mapping,
the solid line represents the network approximation.

Validation of this model is currently being carried out. The next step would
be to attempt to realise a generic inverse model for this particular sensor type
as opposed to individual sensor model. Data from three sensors of this partic-
ular type is available to realise this general model. Analysis of the data seems
to indicate that the bridge resistance readings may be critical as an input in
training the network.

Hysteresis Effects

Having considered issues pertaining to temperature and pressure nonlinearities
and because hysteresis imposes a limit on the attainable sensor accuracy, some
consideration needs to be given to the elimination of hysteresis. Hysteresis
effects exist for both pressure and temperature variations. The data was ob-
tained under laboratory conditions for pressure and temperature ramped across

638

<A n.05
+->

o
> 0
+->
3

!3 -0.05
O
o -0.1
iyj
Ö

CO -0.15
0 150 50 100

Pressure(kPa)

Figure 3: Characteristics of second device for different temperatures

the operating range of the sensor. Only pressure hysteresis is being considered
currently due to constraints in time available for testing. The data was treated
as a time series and a recurrent network with a Widrow delay network at the
output was used. Using a method proposed in [8], the <5-test, the minimum
embedding dimension of this series was found to be two. Using this information
to design the network configuration, the hysteresis time-series was successfully
reproduced by the neural network. The next stage of this work will involve
obtaining data from the transducer based on the outcome of an experimental
design as it is a realistic assumption that the pressure excursions that a sensor
is subjected to in a practical application will not range from minimum to maxi-
mum in a regular fashion. As such, these issues need to be carefully considered
in order to obtain representative data for purposes of training the compensation
module to minimise the hysteresis effects.

References

[1] V.Y. Kreinovich. Arbitrary nonlinearity is sufficient to represent all functions
by neural networks : A theorem. Neural Networks, Vol. 4:pp 381-383, 1991.

[2] K. Funanashi. On the approximate realisation of continuous mappings by
neural networks. Neural Networks, Vol. 2:pp 183-192, 1989.

[3] T. Poggio and F. Girosi. Networks for Approximation and Learning. Pro-
ceedings of the IEEE, Vol. 78:pp 1481-1497, September 1990.

639

[4] F. Girosi and T. Poggio. Networks and the best approximation property.
Biological Cybernetics, Vol. 63:pp 169-176, 1990.

[5] M.T. Musavi et al. On the training of radial basis function classifiers. Neural
Networks, Vol. 5:pp 595-603, 1992.

[6] J. Moody and C.J. Darken. Fast learning in networks of locally tuned pro-
cessing units. Neural Computation, Vol. 1 , 1990.

[7] A. Whitwood. Neural Networks and Genetic Algorithm Coursework. MSc.
Mathematical Modelling and Computer Simulation, Coventry University,
1993.

[8] P. Hong and C. Peterson. Finding the Embedding Dimension and Variable
Dependences in Time Series. Neural Computation (submitted), March 1993.

640

NEURODEVICE - NEURAL NETWORK DEVICE
MODELLING INTERFACE FOR VLSI DESIGN

Pekka Ojala, Jukka Saarinen and Kimmo Kaski
Tampere University of Technology, Electronics Laboratory,

P.O. Box 692, FIN-33101 Tampere, Finland
e-mail: ojala@ee.tut.fi, jukkas@ee.tut.fi, kaski@ee.tut.fi

Abstract A novel, fast and accurate neural network tool is proposed for effi-
cient technology independent implementation of the interface between device
modelling and circuit simulation. Modified backpropagation, conjugate gradi-
ent and Levenberg-Marquardt optimization algorithms are applied in network
teaching. Simulations show fast convergence and an excellent fit of recalled
characteristics to the measured device data. The utilized algorithms are robust
and capable of presenting the entire device characteristics unaltered even with
largely reduced amount of the teaching material. The good monotonicity of the
neural network generated device data facilitates the usage of the method in cir-
cuit simulation purposes. Possible further applications of implementing circuit
level macromodels with this technique are discussed.

INTRODUCTION

The integration of measured semiconductor device behaviour or data from numer-
ical device simulators into a circuit simulator has been a long standing problem for
the integrated circuit design. For digital circuits the requirement of accurate func-
tional modelling includes knowledge of device currents together with the internal
and external RC-products to facilitate proper timing simulations. For analog circuit
designs the simulation has proven more difficult. The linear circuit gain is governed
by the small-signal parameters, transconductance and output conductance, and their
frequency behaviour. Therefore, accurate and continuous models for small-signal
parameters over the complete operation region are required. Precision modelling of
analog circuits requires accurate presentation of the substrate effects in dc- and ac-
operation, as well. Other inaccuracies have been attributed to poor or non-existent
modelling of the subthreshold region, non-linearities in device operation and voltage
dependent capacitances.

Typical approaches for the device modelling interface to circuit simulation have
included analytical, parameterized semiconductor device models [1,2], table look-
up models with various interpolation techniques [3,4], and a more atypical method
of tensor product splines [5].

The most widely applied approach of using parameterized analytical models for
presenting electrical characteristics of a device has been troubled with several diffi-
culties. The parameter extraction presents a difficult problem even if the models are

0-7803-2026-3/94 $4.00 © 1994 IEEE 641

physically sound and include every possible physical phenomena that completely
describes the device. Two approaches can be utilized in the device parameter extrac-
tion. First, the parameters for physically based models can be defined from the time
consuming extracting measurements for the device. Second, the extracted inaccurate
set of parameters can be fine-tuned in a general non-linear optimizer to fit the model
to the measured or numerically simulated device data [6,7,8]. This approach is, how-
ever, capable of producing highly unphysical interpretations of the device parame-
ters with unexpected and detrimental effects during circuit simulation.

To overcome the difficulties in parameterized models, a variety of table look-up
methods with different interpolation techniques have been used [3]. These models
typically store the device current in a table. For a four terminal device such as MOS-
FET or MESFET, a 3D table is formed as a function of gate, drain and substrate po-
tential. The table size, therefore, grows as the third power of the number of input
vectors, and becomes the limiting factor in the modelling accuracy.

NETWORK STRUCTURE AND METHODOLOGY FOR MODELLING

The neural network that is implemented in this study is a three-layer feedforward
perceptron network that consists of input, hidden, and output layers. Each layer con-
tains several processing elements with sigmoidal nonlinearities. Cybenko [9] has
shown that this network can be used to approximate arbitrary functions, i.e. it can
model any continuous nonlinear transformation. The network is feedforward in the
sense that each unit receives inputs only from the units in the preceding layer. The
network converts input signals according to connection weights. During learning,
connection weights are adjusted in a direction to minimize the sum of squared errors
between the desired outputs and the network outputs.

In the following, the subscripts kj and i refer to any unit in the output, hidden,
and input layers, respectively. The total inputs to unity in the hidden layer or unit k
in the output layer is

netr = yL(lLWrs0s\ r = k>r> '=*'■: (')
S yi,j,k J

where wrs is the weight from the .9th unit to the rth unit and Os represents the output

of unit s in the hidden and input layers. A sigmoidal nonlinearity is then applied to
each unit r to obtain the output as

O = ■ — or O = tnnhfnet -6), (2)
' exP{-{«fr-er)}

r y r r)

where 9,. serves as a threshold of unit r. Hence, each layer communicates with all
successive layers. There is no feedback within the network between layers of indi-
vidual units and no communication with other units in the same layer.

In the learning process, the network is presented with a pair of patterns, an input
pattern, and a corresponding desired output pattern. Learning comprises of changing
the connection weights and unit thresholds to minimize the mean squared error be-
tween the actual outputs and the desired output patterns with the gradient descent

642

method. The activity of each unit is propagated forward through each layer of the
network by using (1) and (2). The resulting output pattern is then compared with the
desired output pattern, and an error for each output is calculated.

We have minimized the error in the network using three different gradient based
optimization algorithms. These include the modified back-propagation algorithm
[10], the conjugate gradient [11], and Levenberg-Marquardt algorithms [11].

To accelerate the convergence of the standard back-propagation algorithm, we
have used the modified back-propagation method presented by Vogl et.al. [10]. This
algorithm includes three main modifications. The first modification is that the net-
work weights are not updated after each learning pattern. Instead, the weights are
modified only after all input patterns have been presented. The changes for each
weight are summed over all of the input patterns and the sum is applied to modify
the weight after each iteration over all the patterns. Other modifications include the
altered learning rate r\ which controls the step size and the momentum factor a. The
learning rate r] is varied according to whether or not an iteration decreases the total
error for all patterns. If an update results in reduced total error, t| is multiplied by a
factor <|) > 1 for the next iteration. If a step produces a network with a total error more
than a few percent above the previous value, all changes to the weights are rejected,
r| is multiplied by a factor ß < 1, a is set to zero, and the step is repeated. When a
successful step is taken, a is reset to its original value. For a successful step a re-
sembles momentum as it tends to favour the change of weights to the earlier suc-
cessful direction.

The conjugate gradient algorithms are standard optimization algorithms [11]
which apply information from second order Taylor-series approximation to choose
the search direction more carefully than the steepest descent algorithm. The search
is chosen in a conjugate direction which means that the new search direction is or-
thogonal to all the previous directions. This makes the method faster than the steep-
est descent method with a line search optimized step size to provide a direction that
is orthogonal only to most recent iteration. In our implementation no line search
was performed to optimize the step size but a constant step in the new conjugate gra-
dient direction was chosen. The information from the numerical estimate of the sec-
ond derivative was used to modify the size of the step to be taken to the previous
conjugate direction and this together with the present gradient direction provided the
new conjugate direction.

The Levenberg-Marquardt optimization algorithm [11] applies, similarly as the
conjugate gradient method, numerically estimated information from the second de-
rivative of the cost function. In addition, the diagonal elements of the second deriv-
ative matrix are assumed to contain information on the scale of the problem. This
information is used to optimize the step size. The Marquardt parameter, which is al-
tered according to the success in optimization, is summed to diagonal elements of
the Hessian matrix. The Levenberg-Marquardt method changes, therefore, from the
inverse Hessian type method far from minimum to the steepest descent method close
to the minimum. Both the conjugate gradient and the Levenberg-Marquardt meth-
ods were used in a batch mode to update the network weigths. Similarly, as for the
modified back-propagation algorithm, the weigths were modified only after all input
patterns were presented to the network.

643

RESULTS, COMPARISONS AND DISCUSSIONS

For the circuit simulation several characteristic data from the devices are required
to facilitate the variety of analyses of interest, namely the operation point, transient,
dc- and ac-analysis. The required data, for example for FET-devices includes the
terminal currents versus bias voltages and terminal non-reciprocal non-linear rela-
tionships of capacitances versus bias voltages. Typically, these models also present
small-signal parameters analytically for the FET. In Fig. 1 we present the method-
ology for providing these data to the circuit simulation environment by using a per-
ceptron network that was described above.

Processing Element

Neural Network

' Neural Networic
Device Model
in Circuit
Simulation

Interface to
Neural Network

Interface to
Circuit Simulation

Figure 1:
Neural network device modelling methodology.

As the targets of our neural network device characteristic modeller, we have cho-
sen a GaAs MESFET data and short channel device modelling data from BSIM
MOSFET model. The GaAs MESFET data serves as a fairly difficult task because
the simulation accuracy of analog GaAs circuits has consistently been worse than
for comparable Si MOSFET technology owing to less evolved device models. The
BSIM model data was chosen to study the effects of device geometry on the model-
ling accuracy. In Fig. 2 a) we present the modelling results for the drain current
curve family of GaAs MESFET with a geometrical form factor W/L = 50\imJ2\im
(data from [12]). The modelling output from the network is marked with 'o' and it
is superimposed on the training data that is marked with V. A very good fit with an
average relative error of 1.41 per cent was reached. The precision modelling of the
dc-curve family for GaAs MESFET has been difficult with the analytical models be-
cause of the complicated second order phenomena in device physics. These device
anomalies include backgating or sidegating effects from adjacent devices, impact
ionization triggered leakage current to substrate and gate terminal, drain potential
induced barrier lowering for short devices, and deep level trapping dependent leak-
age current and subthreshold characteristics [12]. Therefore, even with a set of op-
timized model parameters the above scale of modelling error has been unavailable.

A more demanding test for the network is performed by reducing the amount of

644

training material to one half of the original data by removing every other gate bias
value from the data set and calculating the network weights again for the remaining
data. These weights are further used to recall the original data set to interpolate the
curves for every other value of gate bias. Fig. 2 b) presents the result of modelling
the interpolation of data. The measured data in this particular test is marked with V
and the learnt data for the trained points of data set with '*'. The interpolated, re-
called data corresponding measured points is marked with 'o' and the recalled mesh
data with '.'. The interpolated data points show 6.25 per cent residual error in mod-
elling, compared with 1.81 per cent for the data that was used in teaching. The sub-
stantial reduction of the teaching material has not lead into a catastrophic modelling
failure. Instead, the network is still able to present the intermediate data points with
reasonable and adequate accuracy.

jdO-'

"T~r-

>•' . • •
8"

$,■■*#«#■■*• •
jl««—■»— -m-

. .
.—.—■—■—iii t

' .»• .1- .*
.•*■ •«' . , . .■■ •

I*".-- s • .•
■•-■

• ■
.«• .•• «. X

•'•'•••' .-o * " 'J . .* ■

•:!••.••■••

:«•■■.-•••• • ■■
•«• '*

?«..-..
. ■» ■

.-«• .-•■ •*■'
^■■•"

• .■:»:••■••■::.

■iSfe:!!!;:
::*: i[::*: '.'.%•

'.i'. '.i'.

•••

'A'

,;< lit! i
-1- ML iti !»

Drain bias, VdsfV] Drain bias, Vds[V]

a) b)
Figure 2:

a) Measured and neural network generated characteristics for GaAs
MESFET drain current versus drain and gate voltages, V: measured
data, 'o': simulated data, b) Interpolation capability of the neural
network, V: measured material, '*': learnt data corresponding teaching
points, 'o': interpolated data,'.': mesh data.

The evolution of the modelling error for the above data is presented in Fig. 3. Here
we have shown the modelling error from 0 to 500 epochs, where each epoch repre-
sents one update for the weigth vector. The conjugate gradient method requires larg-
er number of epochs than the Levenberg-Marquardt method. On the other hand, the
Levenberg-Marquardt algorithm uses an order of magnitude more CPU-time for one
epoch updating than the conjugate gradient method. Both algorithms are capable of
finding a better minimum with considerably less epochs than the standard and mod-
ified backpropagation method.

Next, we present an example of small-signal parameter modelling, namely the
GaAs MESFET output conductance and transconductance. The output conductance
modelling with analytical models has suffered from discontinuous models between
regions of device operation. In comparison, the neural model provides fully contin-

645

uous and monotonous modelling (Fig. 4). The network learnt the teaching material
with the final relative error of 2.26 per cent. In comparison the typical accuracy for
analytic output conductance modelling with optimized model parameters has re-
mained at 5-10 per cent for analog CMOS technologies [7]. The result of the
transconductance modelling is presented in Fig. 5 with the temperature and gate po-
tential as input variables. The residual relative error in Fig. 5 is 4.6 per cent.

Residual absolute error

200 250 300
Epochs

Figure 3:
Evolution of the sum of squares error with the used algorithms.

For transient and ac-analysis the device capacitances will have to be accurately
modelled. In Fig. 6 we present the measured [13] and recalled gate to source capac-
itance modelling with the network. The nonlinear relationship of capacitance wrt
gate bias is accurately reproduced.

In order to provide a useful and fast device modelling interface neural network
will have to be capable of modelling device data with more than two input dimen-
sions. The 3D table look-up models allow presentation of the FET device data with
respect to all three terminal potentials differences (Vgs, Vds, Vsb). We demonstrate
the similar modelling by adding a third processing element for the 3D input data-
vector in our network. In Fig. 7, recalled GaAs MESFET drain current characteristic
is presented for the subset of learnt gate bias regime, from 0.0 to 0.3 V. The average
relative error for the network was 2.28 per cent. Previously, a 3-4 per cent relative
error for short-channel Si MOSFET had been demonstrated with 3D table look-up
technique [3].

To estimate the capability of the network to present variable device geometries,
we have generated device length and width dependent small geometry MOSFET
data using BSIM-model with realistic model parameters [1]. The device channel
length and width were varied from 2|im to 8[im. Nine different device geometries
were used in teaching the network. We used a two-stage network where the first
stage implements the electrical dependences and the second stage the geometrical
factor of the device. The representative modelling results are given in Fig. 8 for de-

ftdfi

vice size of W/L=4|J.m/4p.m with Vbs=0. The overall relative sum of squares error
after the second stage for all data was 7 per cent with the average error of 0.8 per
cent. The teaching was performed using the Levenberg-Marquardt method with
1000 epochs.

Drain bias, Vds[V]

Figure 4:
GaAs MESFET output conductance modelling with the neural network.
Solid lines as measured data, 'o': data recalled by network.

,_, 6

e o

o
3 •o c o o

10 HIDDEN NODES

100 000 ITERATIONS

-1.5 -0.5

'gs [V]
0 0.5

Gate bias, VB

Figure 5:
GaAs MESFET transconductance modelling wrt gate bias and
temperature. Solid lines as measured data, 'x': data recalled by network.

We have also implemented the perceptron network in SPICE circuit simulator,
and tested the operation in dc- and transient analysis. There is no convergence prob-
lems in simulating the NeuroDevice since the modelling functions are smooth and
continuous. In our example, the perceptron network device modelling interface for

647

one device size of Fig. 2 requires total of 21 network weights for two dimensional
data and two bias units. If the third input dimension is included in network with five
hidden layer elements, total of 26 weights are required. For more than five process-
ing elements in the hidden layer, the number of weights will be higher. These
weights will have to be stored in memory for each presentation of data. The amount
of stored weights presents a remarkable saving of memory when it is compared to
the table look-up method. About 500-1000 datapoints will have to be saved for each
channel length for the table to attain the same accuracy. Therefore, we use only 3-5
per cent of the memory that is used in a typical implementation of the table look-up
method.

In terms of the CPU-time the implemented neural network interface can be more
efficient for circuit simulation than analytical models if only one device size and one
stage of network is used. The device modelling task is required to be performed only
once and circuit simulation is performed sequentially with fast recollection of the
model from the stored weight-vector. Therefore, the implemented neural network
device modelling interface is also capable of reducing the time-consumption of cir-
cuit simulations.

T:Vgs = 0.0V

Q:Vgs = 0.3V

Sidegate bias [VJ "* " Drain bias[V]

Figure 6:
3D drain current modelling as a function of drain, gate and substrate
(sidegate) bias for GaAs MESFET with a feature size of W/L = 50um/
2\im. Solid lines as measured datapoints, dashed lines as data recalled by
network for gate bias values 0.0 and 0.3 V.

CONCLUSION

The method of realizing the interface between device modelling and circuit simu-
lation using neural network algorithms has been shown to produce excellent fit to
the measured data. The objective of presenting a general device characteristics in
circuit simulator environment can be reached. Any kind of circuit element can be ac-

curately modelled and represented, and a standard automatable neural network can
be set up for the construction of these representations.

The implemented algorithms combine a fast learning rate with efficient and accu-
rate recall of the learnt material. The method is especially suitable for applications
where physically justified analytic device models lack the required accuracy. These
include deep submicrometer devices and novel device structures with as of yet un-
clear physical phenomena. Also, the technology independent approach for the mod-
elling facilitates quick adjustment to the new device structures, materials and
technologies.

The macromodelling of complex circuit structures with easy neural network pa-
rameter presentation vastly simplifies the required simulations for large systems. It
reduces efficiently the required memory for the circuit presentation and simulation.
The proposed NeuroDevice facilitates and encourages the user to model complex
topologies. In simulation it promotes the inclusion of desired behavioural informa-
tion of general phenomena with easy to extract neural network weights, which are a
fully compact and ideal form to present, save and transfer knowledge.

REFERENCES

[1] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, "BSIM: Berkeley Short Channel
IGFET Model for MOS-Transistors," IEEE Journal of Solid-State Circuits, vol. SC-22,
no. 4, Aug. 1983, pp. 558-566.

[2] Y. P. Tsividis and G. Masetti, "Problems in Precision Modeling of the MOS Transistor
for Analog Applications," IEEE Transactions on Computer-Aided Design, vol. CAD-3,
no. l,Jan. 1984, pp. 72-79.

[3] A. Rofougaran and A. A. Abidi, "A Table Lookup FET Model for Accurate Analog Cir-
cuit Simulation," IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. CAD-12, no. 2, Feb. 1993, pp. 324-335.

[4] T. Shima, H. Yamada, and R. L. M. Dang, 'Table Look-up MOSFET Modeling System
Using a 2-D Device Simulator and Monotonie Piecewise Cubic Interpolation," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. CAD-
2, no. 2, Apr. 1983, pp. 121-126.

[5] G. Bischoff and J. P. Krusius, "Technology Independent Device Modeling for Simula-
tion of Integrated Circuits for FET Technologies," IEEE Transactions on Computer-Aid-
ed Design, vol. CAD-4, no. 1, Jan. 1985, pp. 99-110.

[6] K. Doganis and D. E. Scharfetter, "General Optimization and Extraction of IC Device
Model Parameters," IEEE Transactions on Electron Devices, vol. ED-30, no. 9, Sep.
1983, pp. 1219-1229.

[7] P. Ojala, K. Kankaala, H. Tenhunen, and K. Kaski, "Advanced Techniques for Circuit
Parameter Extraction", Report 5-88, Tampere University of Technology, Department of
Electrical Engineering, Laboratory of Microelectronics, July 1988.

[8] P. O. A. Yang and P. Chatterjee, "An Optimal Parameter Extraction Program for MOS-
FET Models," IEEE Transactions on Electron Devices, vol. ED-30, no. 9, Sep. 1983, pp.
1214-1219.

[9] C. Cybenko, "Approximations by Superpositions of a Sigmoidal Function," Math. Con-
tr., Signal, Syst., vol. 2, 1989, pp. 303-314.

649

[10] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, "Accelerating the
Convergence of the Back-propagation Method," Biological Cybernetics, 59, 1988, pp.

257-263
[11] W. H. Press, B. P. Flanncring, S. A. Teukolsky and W. T. Wetterling, Numerical Recipes

in C, New York: Cambridge University Press, 1988.
[12] F~S Shoucair and P. K. Ojala, "High-Temperature Electrical Charactenst.es of GaAs

MESFET* s (25-400°C)," IEEE Transactions on Electron Devices, vol. 39, no. 7, Jul.

fl31 N Schcinbcrg and E. Chisholm, "A Capacitance model for GaAs MESFET," IEEE Jour-
nal of Solid-Slate Circuits, vol. SC-26, no. 10, Oct. 1991, pp. 1467-1470.

Figure 1:
GaAs MESFET gate to source capacitance wrt gate to source bias with
neural network. Solid lines as measured data [13], V: data recalled by

network. *um x 4um. Vbs=0

O

c o
t
o
c
"a
D

Drain bias, Vds [V]
Figure 8:

Neural network device modelling with device geometry dependent input
vector. Recalling of device data W/L=4u.m/4nm, with no body bias.

650

ENCODING PYRAMIDS BY
LABELING RAAM

Stefano Lonardi Alessandro Sperduti Antonina Starita
Dipartimento di Informatica

Universitä di Pisa
Corso Italia 40, 56125 Pisa, Italy
e-mail: perso@di.unipi.it

Abstract

In this paper we present preliminary results on the applica-
tion of Labeling RAAM for encoding pyramids. The LRAAM
is a neural network able to develop reduced representations
of labeled directed graphs. The capability of such representa-
tions to preserve structural similarities is demonstrated on a
pyramid. We suggest to exploit this skill in data compression
and/or to discover scale affine autosimilarities.

INTRODUCTION

A model frequently used in image analysis is the quadtree, a hierarchical da-
ta structure based on the principle of recursive decomposition of space [10].
Different instances of quadtree can be obtained depending on the type of
data represented, the decomposition principle, and the resolution (variable
or not). In this paper, we discuss how a new type of neural network, the
Labeling RAAM, seems specially suited to code it. Specifically, we consider a
complete quadtree implementing a pyramid, a data structure used to repre-
sent a multiresolution version of an image using nonoverlapping 2 by 2 blocks
of pixels (see Fig. 1). The aim is twofold: to get a compressed representation
and/or to discover scale affine redundancy in the image represented by the
pyramid. Firstly, we introduce the LRAAM model. Then, preliminary results
obtained on pyramids are presented and discussed.

LABELING RAAM

The Labeling RAAM (LRAAM) [12, 15, 16, 17] is an extension of the RAAM
model [9] which allows one to encode labeled structures. The general structure
of the network for an LRAAM is shown in Figure 2.

0-7803-2026-3/94 $4.00 © 1994 IEEE 651

Figure 1: A pyramid implemented by a quadtree.

The network is trained by backpropagation to learn the identity function.
The idea is to obtain a compressed representation (hidden layer activation) of
a node of a labeled directed graph by allocating a part of the input (output)
of the network to represent the label (Ni units) and the rest to represent one
or more pointers. This representation is then used as pointer to the node. To
allow the recursive use of these compressed representations, the part of the
input (output) layer which represents a pointer must be of the same dimension
as the hidden layer (NH units). Thus, a general LRAAM is implemented by
a N] — NJJ — N[feed-forward network, where N[= NL + TINH, and n is the
number of pointer fields.

Labeled directed graphs can be easily encoded using an LRAAM. Each
node of the graph only needs to be represented as a record, with one field for
the label and one field for each pointer to a connected node. The pointers only
need to be logical pointers, since their actual values will be the patterns of
hidden activation of the network. At the beginning of learning, their values
are set at random. A graph is represented by a list of these records, and

Output | NL I NH I NH 1 • • • • | NH

Hidden

Input I NL I NH 1 NH I • • • • 1 NH

Decoder

Encoder

Figure 2: The network for a general Labeling RAAM.

Figure 3: An example of a labeled directed graph.

this list constitutes the initial training set for the LRAAM. During training
the representations of the pointers are consistently updated according to the
hidden activations. Consequently, the training set is dynamic. For example,
the network for the graph shown in figure 3 can be trained as follows:

input

(Li Pn2(t) P„3(t)) -»•
(L2 Pns(t) Pni(t)) -)•
(Ls Pni(t) Pns(t)) -»
(Li nily(t) nih(t)) —¥
(Ls Pn4(t) nil3(t)) -»•

hidden

P'nM

->

-»■

output

(L'{(t) PXa{t) P^(t))
(LUt) P^(t) P»4(t))
(L'i{t) PnM PnM)
(L'l(t) nil['(t) nil2\t))
(LUt) Pn4(t) mim))

where Li and Pm- are the label of and the pointer to the ith node, respec-
tively, and t represents the time, or epoch, of training. At the beginning of
training (t = 1) the representations for the non-void pointers (Pn,(l)) and
void pointers (nik (1)) in the training set are set at random. After each epoch,
the representations for the non-void pointers in the training set are updated
depending on the hidden activation obtained in the previous epoch for each
pattern: Vi Pni[t + \) = P„ (t). The void representations are, on the other
hand, copied from the output: niUit + 1) = nil'^t).

If the backpropagation algorithm converges to zero error, it can be stated
that:

U = L'{ L2 = L2 L3 = L3 Li — L4

Ls = L&

P — P"
p - p"
nili = nil"

P - P" 1 713 — L 713

nil'i = nil"
P - P"
nils — nils

Once the training is complete, the patterns of activation representing
pointers can be used to retrieve information. Thus, for example, if the ac-
tivity of the hidden units of the network is clamped to Pni, the output of
the network becomes (Li,Pn2,Pn3), enabling further retrieval of information
by decoding P„2 or Pn3, and so on. In order to decide whether a pointer is
void or not, one bit of the label is allocated for each pointer field to repre-
sent the void condition. This convention allows us to avoid a commitment
to any predefined representation for the void pointer. Consequently, copying

653

..-I... ...|... •I- •••$••••

-4- ••■i™ ■--«---- •7-

...*-••$.... -i-p- -1J3-

•tjo- -if»-- 1J4 ...l£~.

 4 R. i ?

 4 b. .1 3

•2&

Figure 4: An example of label encoding of a pyramid for an 8 x 8 image.

the representations for the void pointers from the output of the network to
the training set results in a faster training, where multiple representations for
the void pointer are developed by the network itself. For more details on this
issue the reader is reffered to [15]. Note that multiple labeled directed graphs
can be encoded in the same LRAAM.

ENCODING PYRAMIDS

Since a pyramid can be represented as a labeled tree, it can be easily encoded
by an LRAAM. The aim in using an LRAAM is to obtain a compact represen-
tation of the pyramid where the same pattern at different scales is uniquely
represented, i.e., without affine redundancy [1]. The definition of the label
for a pattern in the training set of the LRAAM can proceed from the leaf
level to the root of the pyramid (see Fig. 4). One drawback of this approach
is that the number of patterns in the training set grows exponentially in the
dimension of the image. Given a 2" x 2" image, if the scale factor is 1/2,

the total number of patterns in the training set is ^"-TQ
1
 ^ ■ Thus, it is clear

that images of large dimensions are difficult to handle with a single LRAAM.
For example, the training set for a 256 x 256 image would be composed by
slightly less than 22,000 patterns. One possible solution to this problem, that
we have to verify, is the use of a modular LRAAM, where every module is
responsible for the encoding of a given subtree. Another solution is to start
learning with a training set representing the lower resolution levels of the
pyramid and, after convergence, augmenting the training set to the complete
one.

Once the training set has been generated, the LRAAM is trained until
it can decode successfully the pyramid. We have observed that, with this
stopping criterion, and under the condition of affine redundancy in the image,
learning converges rather early. For example, using the encoding scheme
shown in figure 5 on an 8 x 8 version of the Sierpinski triangle, the mean
number of epochs employed by the corresponding 12 — 2—12 LRAAM was
slightly more than 100.

We verified faster learning using the descending-epsilon heuristic tech-
nique [18]: during the learning phase we maintain a list of the patterns hav-

654

ing a decoding error higher than a specified value. The backpropagation
is performed only on the patterns of the list: when all patterns are below
the threshold, we lower the threshold and resume the backpropagation. The
procedure stops when we obtain the perfect decoding.

Analysis

An important property of the LRAAM model is the capability to develop sim-
ilar hidden representations for pointers to similar labeled trees. An example
of this capability is given by the hidden activation deviced by the 12 — 2 — 12
LRAAM encoding the Sierpinski triangle. In figure 6 we show, on the left
side, the label map obtained by decoding a set of points sampled from the
pointer space, and on the right side, the vector fields obtained by transform-
ing the same set of points through the children transformations. A vector
field is represented by plotting the sampled points (domain points) and their
transformed results (image points) as vectors starting from the domain (dots)
and arriving to the image points. Note how the network exploits the same
pointer transformation for pointer fields encoding the same set of subtrees.
This allows the LRAAM to decode correctly this image at a resolution higher
than the one used in the training set. This property, however, must be verified
on images which are not so regular.

The pointers' dynamics is the subject of figure 7: in this representation the
application of the same pointer transformation is repeated until convergence
to a fixed point. The gray scale denotes the number of steps to reach the fixed
point where darker areas mean a higher number of iterations. Note that the
network places the fixed points in the vertices of the [—1,1]^ space. This
property can be explained by probabilistic arguments concerning the stability
of the decoding (for a discussion on stability properties of the LRAAM see
[16]).

Another example of pyramid (Fig. 8) with the corresponding label map,
children vector fields and pointers' dynamics maps are shown in figures 9 and
10.

From our analysis of the decoding of the label and the pointers' dynamics,
the fractal approximation developed by the LRAAM seems to have a close
relationship with the hierarchical iterated function system model [3, 4], where
a graph of hierarchical IFS generates the image. In our case, nodes of the
graph represent fixed points of the pointers' dynamics. Each node is labeled
by the label obtained by decoding the corresponding fixed point. Arcs of the
graph represent pointer transformations of the fixed points (see Figure 11).

It must be stressed that the construction of these graphs can be done, in
this case, only because any fixed point is actually transformed in another one
(or in itself) in just one transformational step. In general, however, this may
not be the case. We are currently investigating under which conditions the
graph construction scheme holds.

655

Figure 5: The pyramid coding the Sierpinski triangle.

1.0-

o.e

0.0-

-0.2

■0.4

-0.6

-0.8

-1.1

m

HUU

m

LI WU

hi :H
"*"'

hi
H-

•I! •H
-f!

m
h:i

rid

Figure 6: Representations devised by an LRAAM encoding an 8 x 8 Sierpinski
triangle; left: label map on the pointer space; right: vector fields for the
children transformations.

Figure 7: The pointers' dynamics maps for the Sierpinski triangle.
656

Figure 8: The pyramid coding the simple triangle.

0.2-

0.0-

■02-

-0.4-

-0.6-

-0.8-

-1.0-

3
m

Hs* HS m* s-ss
^aliilLjtll II II II II II II II I
H'lUlp^ll II || || || || || ||
M 88 $

ES

■

EB

B
B
U
H

H

GBtLt
UBKBB

TÜTI kkl
LLI

-1.0"
I

1.0

Figure 9: Representations devised by an LRAAM encoding an 8 x 8 triangle.
left: label map on the pointer space; right: vector fields for the children
transformations.

Figure 10: The pointers' dynamics maps for the simple triangle.

657

y?\d)

MJ

2/

iijji ;M

Figure 11: The graphs, derived by the LRAAM, generating the Sierpinski
triangle pyramid (left) and the triangle pyramid (right). Each node represents
a fixed point in the pointers' dynamics and its label is the label obtained by
decoding the fixed point. Arcs represent pointer transformations. Node x is
connected to node y by an arc labeled i if Ti(x) = y, i.e., if the fixed point
associated to x is transformed to y by the pointer transformation TJ().

Applications

There are two possible applications of encoding pyramids by Labeling RAAM:

• data compression; a set of pyramids can be described by the set of
pointers to the roots plus the decoder part of the LRAAM;

• affine redundancy discovery; the likeness among pointers can be used
to establish similarities among patterns at different scales, so to device
an efficient fractal compression.

Using an LRAAM for data compression requires a careful choice of the
number of units in the hidden layer. More units in the hidden layer guar-
antee a better reconstruction of the image represented by the pyramid, but
the compression factor decrease because the number of parameters (weights)
grows as a quadratic function. Specifically, given pointers of dimension NH

and label of dimension NL, we have

4NJ, + {NL+5)Nn + NL

parameters. In fact, the dimension of the hidden layer affects the number of
different labels that the LRAAM can encode. Having an insufficient number
of hidden units constrains the network to find the minimal approximation
with the most used label present in the image at every scale, which is the
simplest fractal approximation allowed by the pyramidal representation. We
are still working on the evaluation of the best trade-off between quality of

the image and data compression. Note that pruning techniques like OBD [7],
and OBS [6] can be used to reduce the number of weights in the network.

Classification of fractal images by a neural network was explored in the
paper [5]. The feed-forward network used in that work, where the pyramid
is explicitly represented into the topology of the network, can be considered
as a special case of our model. In our case, however, we are not interested in
classification, but in discovering scale affine autosimilarity. The ability of the
LRAAM to represent similar patterns by similar pointers can be exploited to
identify a fractal approximation of the image [1, 2, 11, 8].

CONCLUSIONS

The LRAAM model seems ideal to code a pyramid representing an image
with scale affine redundancy. The hidden representations developed by the
LRAAM seem to capture redundancies present in the image at different s-
cales. The LRAAM can be used either to compress the pyramid or to discover
autosimilarities which can be exploited by a fractal compression method. The
compression rate can also be improved by coding the image into an incomplete
pyramid using a decomposition principle based on statistical regularities. In-
complete pyramids can be encoded without problems by an LRAAM which
can represent every kind of tree.

Besides the present line of research, it is likely that all areas utilizing
quadtrees for different applications could use the interesting characteristics
of the subsymbolic coding developed by the LRAAM.

Acknowledgments

The authors wish to thank Ahmad Zandi for comments and suggestions.

References
[1] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.

[2] M. F. Barnsley, L. P. Hurd, Fractal Image Compression, AK Peters Ltd, 1993.

[3] K. Culik, S. Dube, "Rational and Affine Expressions for Image Description",
Discrete Applied Mathematics, 41, pp. 85-120, 1993.

[4] K. Culik, S. Dube, "Balancing Order and Chaos in Image Generation",
Computer fc Graphics, 17(4), pp.465-486, 1993.

[5] B. Freisleben, J. H. Greve, J. Lober, "Recognition of Fractals Images Using a
Neural Network", Proceedings of Int. Workshop on Artificial Neural Networks,
Lecture notes in Computer Science 686, pp.632-637, Springer Verlag, 1993.

659

[6] B. Hassibi, D.G. Stork, "Second Order Derivatives for Network Pruning: Op-
timal Brain Surgeon", Advances in Neural Information Processing Systems,
San Mateo: Morgan Kaufmann, Vol. 5, pp.164-171, 1993.

[7] Y. Le Cun, J.S. Denker, S.A. Solla, "Optimal Brain Surgeon",
Advances in Neural Information Processing Systems, San Mateo: Morgan
Kaufmann, Vol. 2, pp.598-605, 1990.

[8] S. Lonardi, Analisi e sintesi frattale di immagini, Thesis, Computer Science
Department, University of Pisa, Italy, 1994.

[9] J. B. Pollack, "Recursive distributed representations", Artificial Intelligence,
46(1-2), pp.77-106, 1990.

[10] H. Samet, "The Quad-Tree and Related Hierarchical Data Structures",
ACM Computing Surveys, 16(2), pp.188-260, 1984.

[11] P. Sommaruga, S. Lonardi, "Best Fractal Orthogonal Approximation and
Block Coding of Images", submitted to Signal Processing.

[12] A. Sperduti, A. Starita, "An Example of Neural Code: Neural Trees
Implemented by LRAAMs", Intl. Conf. on Neural Networks and Genetic Alg-
orithms, Innsbruck 1993, pp.33-39.

[13] A. Sperduti, A. Starita, "Modular Neural Codes Implementing Neural Trees",
to appear in 6th Italian Workshop on Parallel Architectures and Neural
Networks, 1993.

[14] A. Sperduti, Optimization and Functional Reduced Descriptors in Neural
Networks, PhD Thesis, Computer Science Department, University of Pisa,
Italy, TD-22/93, 1993.

[15] A. Sperduti, "Labeling RAAM", Technical Report 93-029, International Com-
puter Science Institute, 1993. Accepted for pubblication on Connection Sci-

[16] A. Sperduti, "On Some Stability Properties of the LRAAM Model",
Technical Report 93-031, International Computer Science Institute, 1993.

[17] A. Sperduti, "Encoding of Labeled Graphs by Labeling RAAM", to appear
in Advances in Neural Information Processing Systems, San Mateo: Morgan
Kaufmann,Vol. 6, 1994.

[18] Y. Yu, R. Simmons, "Descending Epsilon in Backpropagation: a Technique for
Better Generalization", Proceedings of IJCNN , San Diego 1990, pp. 167-172.

Reconstructed Dynamics and Chaotic Signal
Modeling

Jyh-Ming Kuo and Jose C. Principe

Computational NeuoEngineering Lab.
University of Florida, Gainesville, FL 32611

kuo@synapse.ee.ufl.edu

ABSTRACT: A nonlinear AR model is derived from the reconstructed
dynamics of a signal. The underlying system is assumed to be nonlinear,
autonomous, and deterministic. In this formulation, the output error scheme
is shown to be more suitable than the equation error scheme in training a
network as a NAR model of the signal. A method to incorporate the
information of the dynamical invariants in signal modeling is proposed.

1. INTRODUCTION

Signal modeling in either time domain or frequency domain has a long history
in the research of science and engineering. But, not until recently has this problem
been studied based upon the underlying dynamics of signals
[Crutchfield][Casdagli]. Under the assumption that the original system is
nonlinear, deterministic, and autonomous, a state-space system trajectory can be
reconstructed from its output signal [Packard][Takens]. Thanks to this
reconstruction, the measurement of two important dynamical properties, namely
dimensionality and Lyapunov exponents of a system attractor, becomes possible.
The "uncertainties" observed in the signals of this class are originated by the
system dynamics rather than some external random sources. A dynamical system
with this unpredictable characteristics has been referred to as a chaotic system
[Eckmann].

According to the assumption of the underlying system, the reconstruction
suggests a nonlinear autoregressive (NAR) model of a signal [Casdagli][Kuo]. This
NAR model can also be used to describe the underlying dynamic of the signal. In
this approach, a nonlinear modeling tool is required. Through training, multilayer
perceptrons (MLPs) can become an accurate nonlinear mapper [Hornik][Hecht-
Nielsen]. In this work we train MLPs as NAR models of some test signals, which
were produced by nonlinear, deterministic systems. We compare the results of two
adaptation schemes in AR modeling, namely equation error and output error
schemes [Shynk]. If the length of training sequences can be properly chosen, the
output error scheme is shown to be more suitable in modeling signal dynamics than
equation error scheme which has been adopted by most research groups
[Lapedes][Casdagli][Mead]. In this paper, we propose a method to determine the
length of training sequences based upon the dynamical measures of the
reconstruction.

In model validation, we show that using the mean squared one-step-

0-7803-2026-3/94 $4.00 © 1994 IEEE 661

prediction error as the criterion, although of practical importance, sometimes is
very misleading about how well the model approximates the underlying dynamics
of a signal. We propose that the validation should include the comparison of the
dynamical measures of the model output and the original signal
[Principe] [Kuo] [Crutchfield].

2. RECONSTRUCTED DYNAMICS

In the study of experimental dynamics, the delay coordinate method was
proposed to reconstruct a state-space trajectory from a signal [Packard] [Takens].
Under certain conditions, the reconstruction is topologically equivalent to the
state-space trajectory of the system that produced the signal. According to this

method, the elements of a reconstructed state vector, y (t) , are signal samples and
delayed versions, or

T
HO = [*(0 ;t(f + x) ... x(t + 2na)\ eq. 1

where x(t) is the data sample at time t, x is a constant delay, and 2m+l is the
dimension of the construction space. Takens showed that the sufficient condition
for the equivalence of the reconstructed and the original system trajectories is

2/n + 1 £ 2d + 1 , where d is the dimension of the original system attractor
[Takens]. For most real-life problems, the dimensions of the underlying dynamics
are usually unknown. Therefore, we need a method to estimate the minimal
reconstruction dimension. Later, we will show that the estimation of
dimensionality can be related to the order estimation of the signal model.

By topological equivalence, we mean that two state-space trajectories have the
same measures of dimension and Lyapunov exponents. The dimension of an
attractor indicates the degrees of freedom of the system, while the Lyapunov
exponents measure the growing or destroying rate of information in system
dynamics [Eckmann][Parker]. To include the fractal case for chaotic dynamics, a
generalized definition of dimensionality is required. In the paper, we adopt the
correlation dimension because of its mediate requirement of computation time and
memory size [Grassberger]. To estimate the correlation dimension of a state-space
trajectory, we first compute the correlation integral, C(r),

N N

„2
c<£) =il X "OHIHO -y 0)||) eq.2

N i = lj=l

where N is the total number of the reconstruction state vectors, H(r) is the

Heaviside function (=1 for r > 0 , and = 0 for r < 0), and e is the radius. For small

e's, C(e) is proportional to e°. Since the dimension of the underlying attractor
is unknown, a common approach is to reconstruct state-space trajectories from a

signal in spaces of different dimensions and plot the curves of log C(e) v.s. log e,
which is referred to as correlation integral map or CIM for short [Principe]. When
we increase the dimension of the reconstruction space to a certain value we may
observe the saturation in the slopes of the CIM curves. The saturation value is the
estimate of the correlation dimension.

A positive (negative) Lyapunov exponent is the measurement of exponentially
divergent (convergent) rate between two nearby trajectories along a specific
direction. For instance, we start trajectories from an initial state and points on a
sphere surrounding this state. The sphere may be deformed into an ellipsoid along

the flow of a dynamical system. We can compute the ith Lyapunov exponent, \.,

as

X. = lim log eq.3

where d (tQ) is the radius of the sphere, and d{ (t) is the ith principal axis

of the ellipsoid as time evolves from tQ to t. In signal modeling, we are more
concerned about how fast the model output will diverge from the original signal.
In other words, positive Lyapunov exponents are of more importance. Because the
largest Lyapunov exponent will eventually dominate the divergence [Sano], we
propose to consider its measurement only. An algorithm proposed by Wolf will be
used to estimate the largest positive Lyapunov exponent [Wolf]. According to this
algorithm, two spatially neighboring segments of a reconstructed trajectory are
treated as two nearby trajectories to compute the exponent. And, we compute the
average of the right-hand-side expression in eq. 3 instead of taking the limit.

3. SIGNAL MODELING

We assume the underlying dynamics of a signal are smooth. Consequently,

there exists a function F:R2m +! -» R2m +1, which maps the current reconstructed
vector to the next one, i.e.

X'+O = F(y(0) eq.4

x(t+\)
f " *(o T

xO + 2) = F x(»+l)

x(t+l+2m) V x(t + 2m) y

Here, we use delay coordinate reconstruction method with x = 1. We note that
the mapping actually includes several trivial filters and a predictor. Let us denote

FL:R2m+1 the predictive mapping as R , which can be expressed by

663

[Kuo][Casdagli]

x(t+l+2m) = FX(jt (»).*(< + 1) x(t + 2m)) eq. 5

or x(i+l) = F^dO))

where *(;) = ^x(t-2m) ... x(i-i) x(t)\ ■ Since t is assumed to be a
nonlinear function, eq. 5 represents a NAR model of the signal x(t). From this point
of view, signal modeling is equivalent to the modeling of the underlying dynamics.
In conventional AR modeling, we construct a model that, in the average, fits only
the local behaviors best. On the other hand, the dynamical measures provide global
information of the signal dynamics. If we are able to incorporate these
measurements into the model design, a better performance can be expected.

The order of an AR model is defined as the number of the past data samples
we use to predict the current data sample. In eq. 5, we note that the model order is
equal to the dimension of the reconstruction space. Once we compute the
correlation dimension of the underlying dynamics, Takens theorem already gives
us a lower-bound estimate of the model order. In other words, the reconstruction
dimension or the order of the AR model, 2m+l, must be equal to or greater than
2D + 1. However, for experimental data we usually find two problems with this
estimate. First, Takens theorem usually overestimates the minimal order of the
model. Second, this estimate is sensitive to the selection of the sampling rate
[Mead]. We have proposed to use CIM curves to estimate the lower bound of the
model order [Kuo]. In the computation of the correlation dimension, we plot the
CIM curves in reconstruction spaces of different dimensions. When we increase
the dimension of the reconstruction space to a certain value, we can observe the
saturation of the slopes of the CIM curves. This gives us a reconstruction space of
the minimal dimension in which a topological equivalence of the original system
dynamics can be established. This estimate of the minimal reconstruction
dimension is also the estimate of the minimal model order. Our experimental
results show that the minimal order estimate derived from this method is consistent
with the minimal input temporal window (= sampling rate x model order)
concluded in the work of Mead et al.[Mead].

In this paper, we would like to concentrate on how to apply the information of
another dynamical measurement, the largest positive Lyapunov exponent, to signal
modeling. Before we do that, we will discuss two possible schemes in training an
MLP as a NAR model.

4. NETWORK TRAINING SCHEMES

For chaotic signal modeling, a common approach is as follows: a memory
device, e.g. a delay line, is used to retain the data samples in the past. The
parameters of the model are determined either analytically or adaptively to
minimize the error between the model output and the current data sample. This
approach is referred to as the equation error scheme in adaptive IIR filtering

[Shynk]. It is well known that this scheme may introduce bias to the solution. This
is because after adaptation we will connect the output back to the input of the
memory device instead of clocking in the data samples of the original signal to
make the next prediction. In this work, we choose the other adaptation scheme —
output error scheme. A schematic diagram of this training is shown in Figure 1.
Here, the input layer of the MLP is replaced with a delay line. This structure is
referred to as Time-Delay Neural Network (TDNN) [Mozer]. We note that the
network is trained as well as operated in the same manner. However, this training
scheme requires a trajectory learning algorithm.

signal .'*V«\e

'
TDNN V •«

G JOOO 0 0 ü If arnin * >
Algoritf

L-E3^Ö*HZKQ-'

Figure 1. Output error training scheme

In a trajectory learning, we need to decide the length of training
sequences. On one hand, training sequences should contain enough information
about the global picture of an attractor to be modeled. On the other hand, the
computation complexity of a trajectory learning algorithm usually increases
dramatically with the length of training sequences. If the signal is periodic, this
decision is quite straightforward. The number of data samples that covers one cycle
is usually the best choice. However, if the signal is chaotic, this decision becomes
very involved.

5. LENGTH OF TRAINING SEQUENCES

In modeling chaotic signals, a long training sequence not only increases
computation time but also induces stability problem. Since the underling system of
a chaotic signal possesses positive Lyapunov exponents, two nearby trajectories of
the system will diverge eventually. In the time domain, this implies that system
output signals with small deviation initially will diverge eventually. Assume the
model already captures the underlying dynamics. A tiny modeling error will be
magnified by the system dynamics such that the output of the model will diverge
from the desired sequence in a long run. If we try to reduce this error by changing
the network parameters, we will not improve modeling accuracy. Instead, we may
deteriorate the modeling result and create oscillations in the adaptation. To present
enough global information of an attractor to the network during training and avoid
using a long training sequence, we propose to train the network with different
segments of the signal. The training procedure is as follows: clock an initial
condition into the network input layer, iterate the network to produce a data
segment, and then adjust the network parameters to minimize the distance between

665

the iterates and the corresponding target sequence. We apply the same procedure
to all of training sequences once in each training epoch.

The problem becomes how to choose the length of training sequences such that
we can avoid the oscillation problem during training. To analyze this problem, let
us assume we train a network with two data segments whose initial conditions are
very close. They can be considered as two different segments of a reconstructed
trajectory, say segment A and B, starting from the same neighborhood. When the
network starts capturing the dynamics through training, the iterates of the model
corresponding to these two training sequences can be used to reconstruct two
trajectories around segment A and segment B respectively. This is illustrated in
Figure 2. Instead of specifying the trajectories reconstructed from the outputs of
the model, two uncertainty regions are delimited. They represent the possible
divergence range between the model output and the signal due to the existence of
the positive Lyapunov exponents. As time evolves, both uncertainty regions will
grow and eventually overlap. When this overlap occurs, the training may become
unstable. This is due to the fact that if the output of the model falls into the overlap
region the model may be required to develop a map to follow the evolution of both
segment A and segment B during training. Since segment A and segment B will
diverge from each other eventually, it is not possible for the model to meet this
conflicting requirement.

uncertainty regions
at i-th iteration

segment A

segment B

Figure 2. State space representation in training
a model with two sequences whose initial
conditions are close.

We assume the divergence occurs mainly along the direction corresponding
to the largest Lyapunov exponent. The smallest number of iterations, / , before the
overlap happens can be calculated according to the following inequality

c. <2e. = 2V
X iAt

max s eq. 6

where q. is the distance between the f^th points on both training segments, e. is the
estimate bf the largest principal axis after i iterations, e0 is the mean square foot of
one-step prediction errors, and Af is the sampling period. This estimation is based on
the assumption that the largest principal axes of both uncertainty regions are in the
same line but in opposite directions. To avoid training the model with a conflicting

requirement, both training sequences should be smaller than i^. Therefore, we pro-
pose to use the average of i 's computed from all pairs of neighboring training
sequences as the length of the training sequences.

6. EXPERIMENTAL RESULTS
The test signal was obtained by integrating the Mackey-Glass equation [Mack-

ey](with a = 0.2, b = 0.1, c = 10, and D = 30) with 4-th order Runge-Kutta method at a
step size of 1. Then, the signal was downsampled by 6 and normalized to the range of
[-1,1] for training. The resulting signal is given in Figure 3. This signal will be
referred to as mg30.

First, we train a TDNN with 8-14-1 (8 input units, 14 nonlinear hidden units,
and 1 linear output unit) architecture using equation error scheme. In other words,
the network is trained to be a one-step predictor of the mg30 signal. The training
signal has 500 data samples. The learning rate is set to 0.001. The training was
stopped after 500 epochs. We will refer to the network with the resulting weights
as TDNN#1. The learning curve is given in Figure 4. We note that the change of
the mean square error can almost be ignored after first 200 epochs. The final mean

square error is 2.88xl0-4 . After training, we clock in the first 8 data samples as
the initial condition and iterate the network to produce 3000 data samples. The
waveform of the first 500 data samples is shown in Figure 3(b). Compared with th
original signal, these iterates seem much more regular.

Next, we train another TDNN of the same size using output error scheme.
We compute the average of the i'5's for all pairs of nearby training sequences. The
result is given in Figure 5. The average of these ig 's is 14, and this average is chosen
as the length of the training sequences. Once we determine the length of the training
sequences, each training pair, including an initial condition and a desired output
sequence, is prepared from the signal every 3 points. In other words, two consecutive
training sequences overlap 9 data samples. We use the Backpropagation Through
Time algorithm to train the network [Werbos]. The learning curve is also given in Fig-
ure 3. We note that the final mean square error (m.s.e.) of the equation error training is
about half of the m.s.e. of the output error training. After training, the network,
referred to as TDNN#2, is also used to reproduce a sequence of 3000 data samples.
The waveform of the first 500 points is shown in Figure 3(c). We note that although
the final mean squared one-step-prediction error of TDNN#1 is much smaller than
that of TDNN#2, the output of TDNN#2 for this given initial condition looks much
closer to the mg30 signal. To illustrate the oscillation problem, we increase the length
of training sequences to 20 samples. The learning curve is shown in Figure 6. We note
that after the m.s.e. drops to 0.06 the performance can not be improved any longer,
and oscillations occur.

To further compare the performances of TDNN#1 and TDNN#2, we com-
pute the mean squared multi-step-prediction errors. The error curves are shown in
Figure 7. We also plot Casdagli's conjecture curve, which indicates the divergence
between the model output and the original signal due to the system dynamics [Casda-

667

gli]. We note that the error curve of TDNN#2 is very close to Casdagli's conjecture
curve. This corroborates the fact that the TDNN trained by using output error scheme
is a better dynamic model for the mg30 signal.

mo 100 1*0 aoo ±ha *cc 4«C SCO

(c)

Figure 3. Waveforms of (a) mg30, (b)
resulting signal with equation error training, and
(c) resulting signal with output error training.

We also compute the dynamical invariants for the original signal and the out-
puts of both networks, the results are listed in Table 1. Based on these results we con-
clude that the output error training method can yield a better model if we are able to
select the training length properly. And, the mean squared one-step prediction error is
not a reliable indicator about how well a model can approximate the underlying
dynamics.

Figure 4. Learning curves
mse

Figure 5. Estimates of i 's

no

epo#

mse
ox»

B «J IDS 1*0 400 400

TDNN#2

«»fCasdagli's curve
IS -

1DNN#1

Figure 6 Learning curve
for long training sequences

steps
Figurre 7 Multi-step prediction errors

TABLE 1. Measurement of Dynamical Invariants

dimension Xroa^nats/sec)

mg30 2.70±0.05 0.0073 ± 0.0005

iterates of TDNN#1 1.60±0.10 0.0062 ± 0.0005

iterates of TDNN#2 2.65 ± 0.03 0.007410.0004

7. CONCLUSIONS

In this work, we assume the underlying system of a signal is autonomous,
nonlinear, and deterministic. The uncertainty in the signal waveforms is created by
system dynamics. In this framework, we propose to use the measures of dynamical
invariants in signal modeling. The preliminary results show that this approach can
really improve the model accuracy. And, the oscillation problem in modeling
chaotic signals can be avoided. The output error scheme is also shown to be more
suitable than the equation error in this framework.

For some chaotic signals, the positive Lyapunov exponents may be very large

such that the length estimate of training sequences may become very short (= 1).
In this case, the training sequences can barely provide the global information about

669

the signal dynamics. We have proposed another method to prepare the training
sequences [Kuo]. The method yields some promising results in modeling Lorenz
attractor.

ACKNOWLEDGEMENTS: This work has been partially supported by NSF
grant ECS #920878.

REFERENCES
[Cas89] Casdagli, M., "Nonlinear prediction of chaotic time series," Physica D 35,

pp.335-356, 1989.
[Cru87] Crutchfield, J. P., and B. S. McNamara, "Equations of motion from a data

series," Complex Systems 1, pp. 417-452, 1987.
[Eck85] Eckmann, J. P., and D. Ruelle, "Ergodic theory of chaos and strange

attractors," Reviews of Modern Physics, vol. 57, no. 3, part 1, pp.617-656, 1985.
[Eis91] Eisenhammer, T., A. Hubler, N. Packard, and J. A. S. Kelso, "Modeling

experimental time series with ordinary differential equations," Biological Cybernetics, vol.
65, pp. 107-112, 1991.

[Gra83b] Grassberger, P. and I. Procaccia, "Characterization of strange attractors,"
Physical Review Letters, vol. 50, no. 5, pp.346-349, 1983.

[Kuo93] Kuo, J.M., Nonlinear dynamic modeling with artificial neural networks, Ph.D.
dissertation, University of Florida, 1993.

[Lap87] Lapedes, R., and R. Färber, "Nonlinear signal processing using neural
networks: prediction and system modelling," Technical Report LA-UR87-2662, Los
Alamos National Laboratory, Los Alamos, New Mexico, 1987.

[Mac77] Mackey, M. C, and L. Glass, "Oscillation and chaos in physiological control
systems," Science, vol. 197, pp. 287-289,1977.

[Mea91] Mead, W. C, R. D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, L. A Lee,
and M. K. O'rourke, "Prediction of chaotic time series using CNLS-NET - example: the
Mackey-Glass equation," Technical Report: LA-UR-91-720, Los Alamos National
Laboratory, Los Alamos, New Mexico, 1991.

[Mor89] Mozer, M.C., "A focused back-propagation algorithm for temporal pattern
recognition," Complex Systems 3, pp. 349-381, 1989.

[Pac80] Packard, N. H., J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, "Geometry from
a time series," Physical Review Letters, vol. 45, no. 9, pp. 712-716, 1980.

[Par87] Parker, T. S. and L. O. Chua, "Chaos: a tutorial for engineers," Proceedings of
the IEEE, vol. 75, no. 8, pp. 982-1008, 1987.

[Pri92b] Principe, J. C, A. Rathie, and J. -M. Kuo, "Prediction of chaotic time series
with neural networks and the issue of dynamic modeling," International Journal of
Biburcation and Chaos, vol. 2, no. 4, pp. 989-996, 1992.

[San85] Sano, M., and Y. Sawada, "Measurement of the Lyapunov spectrum from a
chaotic time series," Physical Review Letters, vol. 55, no. 10, pp. 1082-1085, 1985.

[Shy89] Shynk, J. J., "Adaptive IIR filtering," IEEE ASSP Magazine, pp. 4-21, April,
1989.

[Tak81] Takens, F., "Detecting strange attractors in turbulence," In: Dynamical
systems and turbulence, ed. D. A. Rand and L. S. Yang, Lecture Notes in Mathematics, vol.
898, pp. 365-381, Springer, Berlin, 1981.

[Wei90] Wcigend, A. S., B. A. Huberman, and D. E. Rumelhart, "Predicting the future:
a connectionist approach," International Journal of Neural Systems, vol. 1, pp. 193-209,
1990.

[Wol85] Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, "Determining
lyapunov exponents from a time series," Physica 4D, pp. 285-317, 1985.

EEG Signal Analysis Using a Multi-Layer
Perceptron with Linear Preprocessing

S. A. Mylonas R.A. Comley
City University, Centre for Information Engineering

Northampton Square, London, ECIV OHB, UK
e-mail za300@uk.ac.city

Abstract

A system for the detection of epileptic spikes and other tran-
sients in the EEG will be described. It consists of a number of
adaptive linear filters combined with a non-linear detection unit
to control their operation. This has been implemented as a multi-
layer perceptron. Configurations using different input preprocess-
ing, initialization and network sizes will be presented along with
a discussion on their corresponding results.

1 Introduction
The generation of feeble electrical signals by the brain was known since
the end of last century, although their study with the primitive equip-
ment of that time was not easy and the restricted understanding of their
origins made interpretation difficult. With the establishment of neuro-
physiology on a scientific basis and the advances in electronics in the
1950's it became possible to record these time-varying signals on paper
by attaching electrodes on the surface of the scalp. Nowadays, such a
recording, called the electroencephalogram (EEG) can be taken in many
hospitals following a harmless as well as inexpensive procedure. Features
that relate to the age and level of consciousness and general indications of
the mental activity are registered in the EEG, giving a profile of mental
health.

Despite recent advances in medical imaging, the EEG is still of great
value in monitoring and screening patients suffering from neurological
conditions or idiopalhic epilepsy, where the abnormality is only func-
tional and transient[17].

In epilepsy the abnormal EEG patterns that characterize seizures of-
ten occur isolated in "larval" form and are registered in the interictal
clinical EEG. Spikes, so called because of their shape on a conventional
recording are among the commonest patterns. Their presence, absense
and frequency of occurrence are valuable clues in the diagnosis and the
treatment of this condition[2]. Conventional EEG recordings are some-
times too brief to be trusted for the assessment of patients in order to
prescribe some effective therapy. Hence prolonged recording has been
suggested as a more reliable alternative[6, 16]. Human interpretation,
however, is hindered by the enormous volume of data and the difficulty
in their collection from several ambulatory patients. On-line analysis by

0-7803-2026-3/94 $4.00 © 1994 IEEE 671

a portable microcomputer-based unit was considered as a feasible solu-
tion. Early methods were simple because of the limited capabilities of
the computers of the timefl]. Despite the sophistication and speed of
modern processors no method has been developed as yet to analyze the
EEG with total success. This is mainly because the only reference for
comparison are human experts, who learn by experience how to perform
the highly qualitative and often subjective task of EEG analysis. No for-
mal criteria seem to be followed and even the definitions of the various
patterns[5] act as mere guidelines. Intra and inter-reader variability is
not uncommon.

The method for automatic EEG analysis described here attempts to
combine some attributes of human decision making with the formalism
of conventional signal processing tools to form a flexible, but consistent
automatic system.

2 Signal modelling and analysis

2.1 A simplified model for the signal

The behaviour of the EEG signal, varies with the level of consciousness,
eye opening and closure, mental activity etc. Experts usually separate
the EEG into background activity, which is the signal present at all times
and on which transients are superimposed. These have been discrimi-
nated into epileptic spikes, which are of medical interest, and other tran-
sients. Noise is often present also. Therefore the recorded EEG may be
represented as a composite signal:

e(n)=b(n) + s(n) + t(n) + v(n) (1)

where b(n) is the background activity, s(n) and t(n) are spikes and other
transients, respectively, and v(n) is the noise component. Each one of
these components was modelled as the output of an an all-pole sys-
tem excited with either a sequence of impulses or a white uncorrelated
sequence[12, 13, 14]. The components of the generating model of the
EEG signal are shown in Figure 1.

2.2 EEG signal analysis

The analysis of the EEG signal was based on the inverse of the model
The inverses of H(z), related to the background activity and G{z), re-
lated to spike generation, are both transversal "linear predictor" filters[12,
13] with transfer functions of the form P(z) = 1 + £L_ /i,z-\ H~l(z)
was estimated using on-line linear optimization (adaptive filtering)[19].
It can also track slow changes in the signal behaviour[12, 13] as ex-
plained in [18]. G~l{z) was estimated off-line from available spikes but
on-line adaptation of G(z), in the neighbourhood of the optimal was
carried out for better modelling of individual spikes[13].

Other transients may be treated in a similar way. Only one transient
was considered this, having the form of an exponential decay with arbi-
trary polarity, imitating interference potentials from movements of the
recording electrodes on the scalp or of ocular origin.

672

When H~1(z) is applied to the (recorded) EEG signal e(n) the out-
put, r(n), contains the white sequence, u(n), transients due to s(n) and
t(n) and additive distorted noise. Similarly, the application of G~l(z)
on e(n) would reproduce the sequence of impulses d(n), and other com-
ponents in the output y(n). Likewise, application of the inverse transfer
function of any other transient would produce its generating sequence in
yi(n), among other components.

Spikes are registered in r(n) a fact used by earlier systems for their
detection[3, 4, 9, 11]. When other transients are present, they are also
registered and the results are inconclusive. Impulses present in y(n) and
in any of the y,(n) are not very reliable indications, because they are
burried in non-random signals, caused by b{n).

The proposed method[12, 13], depicted in Figure 2, detected tran-
sients in r(n). Making an initial assumption about the origin of the
transient, by inspecting t/(n) and j/,-(n) for all modelled transients and
deciding which one is the most likely to have occurred it was possible
to generate an excitation impulse to the appropriate generating trans-
fer function (G(z) for spikes) whose output was subtracted from the
recorded EEG signal, e(n) to produce a supposedly transient-free signal,
e'(n). Processing this through H~1(z) and observing no disturbance in
its output r'(n) confirmed the presence of the suspected transient.

3 The need for decisions in signal classi-
fication

The reliability of the above scheme, is linked to the accuracy of the
detection of transients in r(n) and r'(n) and the discrimination of their
origin in either y(n) or one of the yi(n).

Initially, simple statistical significance testing was employed for the
detection of transients. Both r(n) and r'(n) are essentially random se-
quences, consisting mainly of u(n) if the noise level is low. This follows a
normal distribution with zero mean. Transients have amplitudes that are
atypically large and may be detected with a certain degree of certainty,
p% using the assumed probability distribution to derive a corresponding
level of significance v. Usually the standard normal distribution is em-
ployed, and hence the sample is normalized by the standard deviation of
the signal.

This method, however, did not discriminate between isolated atyp-
ical samples, which are genuine transients and longer bursts which are
related to certain extracerebral phenomena, like muscle artifacts. To
overcome this problem, every time a new sample became available, a
linear combination of the N most recent sample values was formed.

/<->=s:*$3 (2)
i--N/2 *K '

where x(n) is either r(n) or r'(n) and al(n) is an on-line estimate the
power (variance) of x(n), making f(n) independent of the signal level.
The weights, {u>,} were positive for i £ [— M/2,M/2] where M is a small

673

number of samples (1,3 or 5) and negative otherwise. The statistical
significance level, £ is implicitly included in the weights. By applying a
threshold 9 on f(n), a binary detection, z(n) is formed.

Z{n> ~ \ 0 f(n) < 9 (3)

Two such elements applied on r(n) and r'(n) verified whether transients
were present (zi(n) and z2(n)). Similar units were introduced to detect
transients in y(n) and y^n) (z3(n) and z4(n)). The outputs of these
units were combined to produce activation signals for the spike (zs(n) =
zi(n)ANDz3(7i)) and for the other transient (zt(n) = zi(n)ANDz4(n))
as well as the "spike detected" output, z0(n) = 2](n)AND NOTz2(n).
z,(n) and zt(n) were used as windows on y(n) and t/i(n) to generate the
(presumed) impulse activation function of the spike or transient generat-
ing filters, for example d(n) = z,(n)y(n). The logical operations required
may also be implemented as weighted sums (e.g. f,(n) = Zi(n) + z2(n)
and f0(n) = zi(n) - z2(n)) followed by thresholding (9, = 1.5 and
S0 — —0.5). This scheme is an extension of an earlier method which
considered only spikes[12]. Unlike its predecessor, which was quite suc-
cessful, the performance of the extended system was only moderate.
The problems associated with the generalized structure are believed to
be associated with the selection of an appropriate set of weights for the
elements that act on the inputs, rather than with the structure itself.

4 A Multi-Layer Perceptron structure as
a decision unit

The layered fixed-weight structure of the decision unit had a logical
interpretation. The function of any of its elements may be described
in terms of a linear combination of its inputs (equation 2) followed by
thresholding (equation 3).

This bears a strong resemblance to the Multi-Layer Perceptron (MLP)
neural network, originally described by Rumelhart and McClelland[15],
as every layer receives inputs from the previous layer only. The only
difference is that the intuitive system does not have all outputs of one
layer connected to the next, but with the introduction of these with zero
weights the two became equivalent.

Because all the inputs to the MLP are all treated in the same man-
ner, they loose their individual significance and they may be grouped to
form a single input vector: x(n) = [\r(n + N/2) ...r(n- N/2)r'(n +
N/2)... r'(n - N/2)y(n + N/2) ...y(n- N/2)yi{n + N/2) ...yi(n-
N/2) ...]T. Describing the weights of the Jbth element of the /th layer in a
similar way vrlk = [wlkowiki ■ ■]T the weighting operation may be defined
as an inner product, fik(n) = v/Jkx(n). The bias weight, wljt0 is multi-
plied by unity and plays the role of the threshold in the earlier system.
The output of the element, ylk(n) = <r[flk(n)] is produced by applying
a limiting function (non-linearity), <r[] on the linear output fik(n). The
operation of the element of any layer may be described in terms of the

674

inner product fik(n) = w^y(_i(n) as described above, using the vector
of the outputs of the previous layer, y/_i(n) = [ly;_i,i(«)j/f-i,2(n)...] .

The function of the MLP description of the system is defined as a
relation between its inputs and its desired output rather than by the
behaviour of its individual elements, which was the basis of the ear-
lier system. This is specified as a set of examples, consisting of pairs
[x(n),d(n)], the training set, where d(n) is the desired output vector.
An optimal weight vector may be found by minimizing the mean-squared
error between the desired and the actual output vectors of the output
layer £ = E{[d(n) - yz,(n)]2} according to the well-known generalized
delta rule (backpropagation algorithm) [15]. Many variants of the basic
algorithm exist [10, 7]. The one used in this application has a momentum
term and updates the weight vector on every sample, according to the
following recursive relation, where for notational convenience, yo(n) has
been used to denote the input vector:

wjt(n + 1) = aw,fc(n) + (1 - a)w,fc(n - 1) + 2/i«/t(n)y,_i(n) (4)

where

yik(n) Hl = L ,g>
)]HjM + lJ(n)w'+ijAn) otherwise <- >

_ J dk(n) -
~ \ <r'[fik(n

where a'(f) = y(l-y) is the derivative of the non-linear logistic function
y = sigma(f) — '_y , a is a filtering factor defining the "momentum"
and \i is the learning rate of the algorithm.

5 Implementation and other issues
Although the structure and the learning algorithm for the MLP are well-
defined several details and problems in the implementation needed to be
resolved. The main ones are discussed here.

5.1 Forming a training set

A training set consisting of input-output examples needed to be defined.
This is not directly possible from the real EEG records available, because
spikes and other transients considered are fairly rare and the exact lo-
cation of their occurrence unknown. Some spikes that were identified
by an earlier system were used but the training set consisted mainly of
artificial data, generated according to the described model (section 2.1).
For these the location of the excitation functions for the various tran-
sients is known exactly. These were used to derive the desired output
signals indicating the points of application of the excitation impulses for
spikes, zs(n) and the other type of transients, zt(n), as well as a separate
indication for the occurrence of spikes z0{n) (Figure 3). The real EEG
training patterns were used as well, but their effect on the final weights
was not visible.

675

5.2 Implementation of the MLP
One of the problems encountered during the implementation was the fact
that the MLP is embedded in the rest of the system and that its spike
detection output depends indirectly on the spike excitation signal, which
is also an output. In other words, there is feedback. Hence training
the network cannot be done independently and as a result it was not
possible to use many of the available tools for developing and training
the network.

It was therefore necessary to develop a library of functions that deal
with the construction of networks of different configurations as well as the
implementation of the backpropagation algorithm. The library, which
was realized in the C programming language, like the rest of the system,
also provides the means to read a network configuration and learning
parameters from a file and save them in a format that is easily read by
computers and humans alike.

5.3 Preprocessing of the inputs to the MLP
An important issue when using neural networks with natural signals like
the EEG is the format of the inputs to the network. Although it is
sometimes claimed that there is no need for preprocessing, it is obvious
that performance may be affected by changes in the dynamic range of the
inputs. To ensure that the input levels to the network are not affected
much by such fluctuations, they were normalized in a way similar to
the one described for the earlier system (equation 2). All inputs to the
network were divided by the RMS value of r(n). This is a convenient
measure, because it is also representative of r (n) and is not affected by
modifications to the system by the extension or restriction of the number
of transients considered.

Preprocessing of the inputs using other operations to assist the net-
work to learn or to simplify its structure were also considered. The latter
is important if the system is to be implemented on a small portable mi-
crocomputer with limited processing capabilities and resources.

Two types of preprocessing were considered. The first consists of
simply scaling all the elements in the input vector by <rr, as already ex-
plained in the previous paragraph. The inputs to the network, Xi(n) are
related to the corresponding "raw" inputs, Xi(n) by the simple relation
Xi{n) = x'\n>. No information is lost during this operation, but the size
of the network may be larger than other alternatives.

Squaring the elements of the input vector prior to their application to

the MLP, so that £,-(«) = g|
gv

was another simple form of processing.
This resembles the operation performed by equation 2, which has an
intuitive interpretation (section 3).

5.4 Initial conditions of the learning algorithm
When training the MLP using the backpropagation algorithm the weights
of the processing elements are usually initialized to small random val-
ues. In this application the weights of the intuitive system of section 3

676

for which the performance was not perfect, but not unreasonable, were
considered as a possible alternative, as they may be closer to an optimal
solution than a random weight vector. Strictly speaking, these are only
valid if the inputs are squared and normalized.

The elements on the first (hidden) layer were made to detect whether
a sample at a specific position in the sequences of the input signals,
{r(n)}, {r'(n)}, {y(n)} and {j/i(n)} has an atypically large amplitude
compared to the ones in its neighbourhood. The result was then fed into
one more (hidden) layer, implementing logical AND operations between
the outputs of the first layer, before they are combined by the logical
OR elements of the output layer for the producton of z,(n), zt(n) and
z„{n).

6 Results
The system was tested for a number of combinations of input preprocess-
ing and weight initialization methods. Training was primarily carried out
using synthetic data, because the available EEG signals did not contain
substantial numbers of other transients. Tests, however, were carried
out on real EEG records as well.

Different MLP configurations were tested, either with normalized
or with normalized-squared inputs, as explained in section 5.3. The
convergence of the backpropagation algorithm for random and preset
initial weight vectors (section 5.4) was also investigated.

Tests were carried out on a simulated EEG record containing 25
spikes and 20 other transients and a real EEG record containing 52
spikes. The number of successful spike detections was noted for every
network configuration, as well as the number of iterations required for
the network performance to stop improving. Some networks were also
tested with a different number of elements in the first hidden layer. The
results are shown in Table 1.

Net
Config.

Iterations
to

Converge

60000
80000
60000
10000

*

30000

Detections
Simulated EEG

Spikes
(25)

25 (0)
25 (0)
25 (2)
25 (2)

25 (2)

Transients
(20)

20 (0)
20 (0)
20 (0)
20 (0)

*
20 (0)

Real EEG
Spikes
(72)

71 (5)
70(5)
70(5)

*

70 (12)

Note: * indicates complete failure of the system
Table 1: Results

All tested configurations had 44 inputs (11 samples from each input
signal) and 3 outputs. The first four had two hidden layers with 8 and
5 elements respectively, and the other two had two hidden layers with 5
elements each. Configurations 1, 2 and 5 were for normalized inputs and

677

3, 4 and 6 for squared and normalized inputs. 1, 3, 5 and 6 had random
initial weights, whereas 2 and 4 had preset weights.

Figure 4 shows a typical set of waveforms from the simulated EEG
data records. The indications of spike detections under the input signal
show the proper operation of the system, whereas the estimated spikes
and transients in the third set demonstrate that zs(n) and zt{n) are
generated correctly as well.

7 Comments, observations and conclusions
All but one of the configurations presented in Table 1 performed reason-
ably well with both simulated and real EEG data. In spite of training the
network mainly with synthetic data, its behaviour with real EEG signals
was still quite good. Although the number of data records considered
in this study was limited, results show that the MLP-based system is
capable of performing well even when its inputs deviate from those used
for its training.

The number of iterations to obtain a satisfactory performance was
considerably smaller for squared-normalized inputs, when the weights
were initialized to those of the earlier system than when random ini-
tial values were used. This indicated that the former were closer to an
optimal, which was also apparent from the small distance between the
initial and the final weight vectors. The final weight sets for the two dif-
ferent initialization procedures were different, but this is not surprising,
as there are many combinations of weights that give an optimal per-
formance for a given network architecture[8]. For the normalized only
input vector, this was not the case. It appears that starting from random
weights produces faster convergence than when the weights of the earlier
system were used. This is not surprising, because the latter corresponds
to the weights for squared inputs, which is a completely different case
with the preset initialization being perhaps far from the optimal.

The loss of the polarity of the input signal with squaring as prepro-
cessing was evidenced in the form of the two false spike detections, in-
dicated in brackets for the simulated EEG record. These corresponded
to spikes with negative polarity which were intentionally introduced.
Real epileptic spikes always have positive polarity. These have not been
detected by the systems 1 and 2, which maintain the polarity of their
inputs.

Finally, for configuration 6 with a reduced number of elements and
the inputs squared, the system was still quite successful. This structure
required a simpler network to produce a satisfactory output, because
some of the burden of preprocessing was shifted to the the input. This
was not the case in configuration 5, where the lack of an adequate num-
ber of elements led to a poor performance of the MLP leading to the
degradation of the performance of the system.

The main advantage in using the MLP in this application lies in
its ability to learn by example. This permits the inclusion of medical
expertise which cannot be expressed in a set of rules. Hence the EEG
analysis system presented may be trained by an individual expert to
reflect his/her experience or by a group of analysts to act like a less

678

subjective analysis tool combining both medical experience and formal
engineering methodology.

References
[1] J. H. Barlow: Computerized Clinical Electroencephalography in Perspec-

tive, IEEE Trans. Biomed. Eng., vol. BME-26, No. 7, pp. 377-391 (Jul.
1979).

[2] C. D. Binnie: What's the use of EEG in epilepsy? British Journal of
Hospital Medicine, February 1988, p. 98, 1978, pp. 575-585.

[3] W. P. Birkemeier, et al.: Pattern Recognition Techniques for the Detection
of Epileptic Transients in the EEG, IEEE Trans. Biomed. Eng., vol.
BME-25, No. 3, pp. 213-216 (Jul. 1978).

[4] G. Bodenstein and M. Praetorius: Feature Extraction from the EEG by
Adaptive Segmentation, Proc. IEEE, vol. 65, No. 5, pp. 642-657 (May.
1977).

[5] G. E. Chatrian et al.: (IFSECN International Assembly) A Glossary of
Terms Most Commonly Used By Clinical Electroencephalographers Elec-
troenceph. Clin. Neurophysiol., 37, (1974), pp. 538-548.

[6] R. A. Comley and J. E. Brignell: Real-Time Detection of the Epileptic
Precursor, J. Phys. E: Sei. Instrum., vol. 14, pp. 963-967 (1981).

[7] R. Hecht-Nielsen: Neurocomputing, Addison-Wesley (1990).
[8] A. M. Chen and R. Hecht-Nielsen: On the Geometry of Feedforward Neu-

ral Network Weight Spaces, Proceedings, Second International Confer-
ence on Artificial Neural Networks, Bournemouth, (Nov. 1992), pp. 1-4.

[9] A. Isaksson, et al.: Computer Analysis of EEG Signals with Parametric
Models, Proc. IEEE, vol. 69, No. 4, pp. 4151-4161 (Apr. 1981).

[10] R. P. Lippmann: An Introduction to Computing with Neural Nets, IEEE
ASSP magazine, Apr. 1987, pp. 4-22.

[11] F. H. Lopes Da Silva, et al.: Automatic Detection and Localization of
Epileptic Foci, Electroenceph. Clin. Neurophys., No. 43, pp. 1-13 (1977).

[12] S. A. Mylonas and R. A. Comley: Detection of Epileptic Spikes in the
EEG Using Adaptive Filters, I Forum Nacional de Ciencia e Tecnologia
em Saude - XIII Congresso Brasileiro de Engenharia Biomedica, Cax-
ambu (MG), Brazil (Nov. 1992)

[13] S. A. Mylonas and R. A. Comley: Adaptive Predictive Modelling for the
Analysis of the Epileptic EEG, Singapore ICCS/ISITA'92, vol. 3, pp.
1214-1218 (Nov. 1992)

[14] S. A. Mylonas and R. A. Comley: Linear Prediction, Neural Networks and
the Analysis of EEG Signals, Cyprus, Int. Conf. on DSP/II Int. Conf. on
Comput. Appl. to Eng. Sys. (Jul. 1993)

[15] D. E. Rumelhart et al.: Learning internal representations by error prop-
agation, in D. E. Rumelhart and J. L. McCLelland (Eds.) Parallel Dis-
tributed Processing: Explorations in the microstructure of Cognition, 1,
pp. 318-362, (1986), MIT Press.

[16] A. L. Stelle and R. A. Comley: Portable Analyser for Real-Time Detection
of the Epileptic Precursor, Proc, XI Brazilian Conf. in Biomed. Eng.,
pp. 101-107 (Sep. 1989).

[17] J. N. Walton: Brain Diseases of the Nervous System (8th Ed.): Chapter
22, pp. 1093-1132, Oxford Medical Publications.

[18] B. Widrow, et al.: Stationary and Nonstationary Learning Characteristics
of the LMS Adaptive filter, Proc. IEEE, vol. 64, No. 8, pp. 1151-1162
(Aug. 1976).

[19] B. Widrow and S. D. Stearns: Adaptive Signal Processing, Prentice-Hall
Inc., NJ (1985).

679

r(n) r'(n) y(n) yl(n)

while noise, u(n'

i
impulses, d(n)

f

impulses

ill
noise v(n)

Shaping
AR filler

H(z)

Spike
generating

filler

G(z)

T(z)

Wn) s(n),

.(■

M

-r. 'k
tin)

* 1 t
Whilening

filter

P<7.)

Inverse
Spike model

filler

Q(z)

Inverse

Transient
System (i)

f rtn)
1 fv(n» t v!< n>

: osI-processing and decisions)

1 J \ \
spike indications estimated estimated

background EEC spike activity Zo Zs Zt

Figure 1: EEC modelling pro- Figure 3: The MLP decision unit
cesses for synthesis and analysis

BEG Predictor
(whitening fihcr)

Spice

Detect«

[nvcf K Spake lnVTT*e TriniieM

ANN
Sple

Initiator

Adaptive PredicK*

(whitening fiber)

P'M

M*f*rveSple

GcncrMcr
O(i)

' Mn|.nn|

dift>y

Adaptive Treniicnt

Geoerutrtil

■pike Wkfpowd enimMed

ndkunni EEG tpikei

Figure 2: Block diagram of the
proposed system

(a) frif**l £EG nj>W and tpike dtrecTu

3O0
2OO.0Q_
lOO.OQ.

(rj EstirrtnTtd background and transitnt aerii*ry

-100.00.
-2O0.0Q_
-300.00.

*"^-V-^-'^

YZ
^r

Figure 4: Waveforms at the vari-
ous stages of the system

A Neural Network Scheme For Earthquake
Prediction Based On The Seismic Electric

Signals

Spiros Lakkos1, Andreas Hadjiprocopis2,
Richard Comley1, Peter Smith2

City University,
Centre for Information Engineering^,
Department of Computer Sc\ence(2),

Northampton Square, London, EC1V OHB, UK

Abstract

Earthquake prediction based on the Seismic Electric
Signals usually employs statistical linear models. In this
paper, an alternative scheme for earthquake prediction
and modelling of the geophysical characteristics based
on Artificial Neural Networks, is presented. Several net-
work configurations are investigated and the results are
discussed and interpreted in various ways.

Introduction

It has been reported that transient variations of the electrotel-
luric field- called Seismic Electric Signals(SF,S) - are observed
before an earthquake. The study of the physical properties of
these signals is used for the determination of the parameters
(epicentre and magnitude) of an impending event[l].

The occurrence of these precursors varies from a few hours
to a few days before the earthquake and have a duration of
one minute to a few hours. These signals appear as a tran-
sient change of the potential difference measured between two
electrodes (up to a few tens of/iV/m) (Figure 1) depending on
the earthquake magnitude, Ms, the epicentre, local geophysical
inhomogeneities, source characteristics and travel path. The

0-7803-2026-3/94 $4.00 © 1994 IEEE 681

components of the electric field are measured in two perpen-
dicular directions (East-West and North-South) using dipoles
with lengths varying from a few tenths of meters to a couple
of kilometers.

Very often, noise obstructs the clarity of SES. It can be
classified into three categories depending on the nature of the
cause: electrochemical, magnetotelluric and cultural.

By using various techniques[9], [10] to eliminate the noise
from the electrotelluric field measurements and by applying
certain, well defined, criteria[2], the detection of SES is achieved.

The study of the physical properties of SES and their corre-
lation to the impending seismic activity leads to the construc-
tion of an empirical selectivity map for a monitoring station.
Selectivity is defined as the sensitivity of a station to signals
from a restricted number of seismic areas while remaining in-
sensitive to SES from other areas[3].

In this paper an alternative approach is suggested for the
construction of the selectivity maps based on the use of Arti-
ficial Neural Networks.

Artificial Neural Networks

The most basic function of Artificial Neural Networks (ANN)
is the mapping of an N-Dimensional space to M Dimensions.
By adjusting the weights of the internal connections of the net-
work, through training, a transformation function is approxi-
mated.

The accuracy of the resultant mapping depends on the
amount of output error at the end of the training process, as
well as, whether the training set is a representative sample of
the domain of the application.

The problem was to find a suitable transformation which
would map the two dimensional input data (the relative SES
components [mV/m] in the directions East-West and North-
South) collected by the monitoring station, into a three dimen-
sional representation (the geographical location - longitude and
lattitude - and the magnitude of the impending event), (Figure
2).

The XER.ION software package[16] was used to simulate a

feed-forward Network. Several combinations of network archi-
tectures and training algorithms were tested. The configura-
tion that gave the most satisfactory results comprised of:

• Two input nodes corresponding to the two components
of the SES,

• Fourty five hidden layer nodes,

• Three output nodes corresponding to longitude, lattitude
and magnitude information.

The Delta-Bar-Delta[16] training algorithm was employed.
The training data was collected by a monitoring station

based at Ioannina (western Greece) and presented in [1 to 8].
Due to its small size, expansion of the original set was necessary
by addition of a small amount of Gaussian noise to each of the
training vectors. The size of the data set has been increased
by a factor of five, (Figure 3).

The mapping produced with the expanded data set works
well since the network now has a better idea of what the in-
put surface looks like and any misinterpretations due to re-
stricted input data are avoided. Although the overall output
error in this case increases, a continuous and smooth output is
obtained, moreover, meaningless output values are avoided.

After convergence, the network can be used to predict im-
pending earthquakes and construct the selectivity map for a
monitoring station.

Interpretation of the Results

The network has been tested using a small subset of the avail-
able data which has not been presented to the network dur-
ing the training process. The majority of the training vectors
were associated with earthquakes from the geographical area
20.0°£ - 21.50£,37.5°iV - 40.0°N. As a result the network
prediction accuracy was higher in that area. The epicentre lo-
cation can be predicted with an error of less than 0.3°, and the
magnitude with an error of less than 0.5 Ms. The most success-
ful of the methods used so far for the same purpose, based on

683

traditional statistical linear models have approximately twice
as much error.

Furthermore, by feeding the network with a data set occu-
pying the whole input space, a surface related directly to the
sensitivity properties of the station is obtained, thus, approxi-
mating its selectivity map, (Figure 4).

A possible way of investigating the travel paths of the SES
and certain geophysical characteristics of the monitoring area
is to present the network with a set of data as above and plot
only the epicentre information, discarding the magnitude. The
obtained curves or family of curves indicate paths where SES,
sensitive to that station, possibly propagate, (Figure 5). Simi-
larly, by discarding the epicentre information and plotting only
the earthquake magnitude versus one component of the input
vectors, while the other is kept constant, the correlation be-
tween the magnitude of the earthquake and the SES may be
obtained, (Figure 6).

Comments and Conclusions

The method presented here is superior to the classical statis-
tical method for the prediction of earthquakes based on the
SES. The construction of the selectivity map has become a
relatively easy and accurate task. Once the network is trained
with a large data set, the results can be considered sufficiently
accurate for practical purposes. Furthermore the trained net-
work can be used as a model for geophysical research.

More work can be done to further investigate the behaviour
of the Neural Net under unconventional conditions. Other net-
work topologies, such as Self Organised Maps, could be em-
ployed. It is also worth considering the idea of a network with
inputs from more than one monitoring station.

Despite the fact that so far a single network was employed
assuming a strong correlation between the magnitude and epi-
centre of the earthquake, it could be possible to use two sepa-
rate networks.

We would like to acknowlegde the help and advice of Mr.
J.Makris, University of Athens.

if"

 r~~v.
>»j-JI. JLJ—^»"

Figure 1: Typical forms of Seismic Electric Signals.

Figure 2: Input to Output Space transformation by
means of ANN.

685

£ oor
i

%

i * r

.tf

Figure 3: The input training vectors.

Figure 4: Sensitivity map of a monitoring station.

Figure 5: Epicentral location as a function of E/vs with
Eßw constant.

Figure 6: Earthquake magnitude as a function of E;vs
with ~EIEW constant.

687

References

[1] Varotsos P. and Alexopoulos K.: Physical Properties of
the Variation of the Electric Field of the Earth Preceding
Earthquakes I and II, Techtonophysics, vol 110, (1984).

[2] Varotsos P. and Lazaridou M.: Latest Aspects of Earth-
quake Prediction in Greece based on Seismic Electric Sig-
nals, Techtonophysics, vol.188 (1991).

[3] Varotsos P., Alexopoulos K. and Lazaridou M.: Latest As-
pects of Earthquake Prediction in Greece based on Seismic
Electric Signals II, Techtonophysics (1993).

[4] Varotsos P., Alexopoulos K., Lazaridou M., Nagao T.:
Earthquake predictions issued in Greece by seismic electric

signals since February 6, 1990, Techtonophysics (1993).

[5] Varotsos P., Alexopoulos K., Lazaridou M.: Recent earth-

quake predictions issued by the VAN-nctwork in Greece.
Period: Feb. 6, 1990 - May 31, 1991, submitted in
Techtonophysics.

[6] Shnirman M., Schreider S., Dmitrieva 0.: Statistical eval-
uation of the VAN predictions issued during the period
1987-1989, Techtonophysics (1993).

[7] Dologlou E.: A three year continuous sample of officially
documented predictions issued in Greece using the VAN
method: 1987-1989 Techtonophysics (1993).

[8] Eftaxias K., Hadjicontis: Information material on earth-

quake prediction in Greece by means of seismic electric sig-
nals, Int. Conf. Measurement and Theoretical Models of
the earth's electric, field variations related to earthquakes,
Feb. 6-8 Athens).

[9] Chouliaras G. and Rasmussen T.M.: The Application
of the Magnetotelluric Impedance Tensors to Earthquake
Prediction Research in Greece, Techtonophysics, vol. 152
(1988).

[10] Lakkos S. and Comley R.A.: An Adaptive System for
the Estimation of the Magnetotelluric Impedance Tensor
and its Application in Earthquake Prediction, Interna-
tional Proceedings of the International Symposium of In-
formation Theory and Applications, ISITA '92, Singapore
(1992).

[11] McCullough W.S. and Pitts W.: A Logical Calculus of the
Ideas Immanent in Nervous Activity, Bull. Math. Bio-
phys. 5, 115-133 (1943).

[12] Rosenblatt F.: Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms, Spartan Books,
New York (1962).

[13] Widrow B. and HoffM.E.: Adaptive Switching Networks,
IRE Wescon Convention Record (1961).

[14] Freeman J.: Neural Networks: Theory and Practice,
Addison-Wesley (1991).

[15] Hecht-Nielsen R.: Neurocomputing, Addison-Wesley
(1990).

[16] Drew Van Camp: The XERION Neural Network Simula-
tor Users Guide, University of Toronto (1993).

689

6

Priming Recurrent Neural Networks
for Improved Generalization Performance

Christian W. Omlin a<\ C. Lee Giles a-c

a NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180

c UMIACS, U. of Maryland, College Park, MD 20742
Phone: (609) 951-2678/2642 FAX: (609) 951-2482

E-mail: {omlinc,giles}©research.nj.nec.com

Abstract

The experimental results in this paper demonstrate that a simple
pruning/retraining method effectively improves the generalization per-
formance of recurrent neural networks trained to recognize regular lan-
guages. The technique also permits the extraction of symbolic knowl-
edge in the form of deterministic finite-state automata (DFA's) which
are more consistent with the rules to be learned. Weight decay has also
been shown to improve a network's generalization performance. Simu-
lations with two small DFA's (< 10 states) and a large finite-memory
machine (64 states) demonstrate that the performance improvement
due to pruning/retraining is generally superior to the improvement due
to training with weight decay. In addition, there is no need to guess a
'good' decay rate.

1 MOTIVATION

We propose a simple, destructive training method for improving the general-
ization performance of recurrent neural networks trained to recognize regular
languages. To our knowledge, no such techniques for recurrent networks has
been previously published. In addition to improved generalization perfor-
mance, we also demonstrate that the rules extracted in the form of determin-
istic finite-state automata is superior to those extracted from larger networks.
Good generalization results have also be reported using weight decay ([9, 11]).
We will compare our pruning method with weight decay for different decay
rates.

2 PRUNING A RECURRENT NETWORK

We incrementally trained discrete-time, recurrent networks with second-order
weights Wijk to learn regular languages [2, 5, 12, 14]. The weights Wijk were
updated according to a second-order form of the RTRL learning algorithm for
recurrent neural networks ([15]). For more details see [5]. The heuristic we use
for extracting rules from recurrent networks in the form of deterministic finite-
state automata (DFA's) is described in detail in [5]. Different approaches are
discussed in [2, 14]. The quality of the extracted rules has been discussed in

Our goal is to train networks of small size with improved generalization
performance and also to improve the quality of the extracted rules. We start
by training a large network for a known regular grammar and apply our
network pruning and retraining strategy to the trained network. Whenever
the training is successful, the state neuron with the smallest weight vector
is removed and the network is retrained using the same training set. This
process is repeated until either a network with satisfactory generalization
performance is obtained or until the retraining fails to converge within a
certain number of epochs. When the current network fails to converge, we
choose the network trained in the previous prune/retrain cycle as our solution
network.

3 SIMULATION RESULTS

3.1 Experiments

We trained recurrent networks on two different training sets: The first set
was obtained from the randomly generated 10-state DFA shown in figure
la. It consists of the first 500 positive and 500 negative example strings in
alphabetical order with alternating positive and negative strings. Since this
a second-order modification of RTRL, training can occur at the end of each
presented string. The second training set was generated by, the DFA shown
in figure lb. It accepts only strings which have an even number of 0's, l's and
2's in it (triple parity). The initial training set consisted of 30 strings; the
learning rate and the momentum were set to 0.5. We started training with
a network with 15 state neurons and the weights were initialized to random
values in the interval [-1.0, 1.0].

All networks were trained on the same training set. However, using an
incremental training heuristic, none of the networks needed to be trained on
all strings. The learning of the DFA states from short strings allowed the
network to correctly classify longer strings without explicit training on these
strings.

691

(a) (b)

Figure 1: Inferred DFA's. (a) randomly generated DFA with 10 states and
two input symbols, (b) the DFA for triple parity accepts only strings with
an even number of 0's, l's and 2's.

3.2 Generalization Performance

For each (re)training/pruning cycle, we show in table 1 the number of state
neurons, the (re)training time, the size of the training set necessary for suc-
cessful training, the generalization performance of the trained network, the
quantization level q used for DFA extraction, the size of a good minimized
DFA extracted from the network and its generalization performance.

The results for the randomly generated 10-state DFA are shown in table
1. A network with 15 state neurons learned the training set relatively eas-
ily (197 epochs) and only a fraction of the entire training set was necessary
(142 strings). The generalization performance of the trained network on all
strings of length up to 20 (2,097,150 strings) is fairly good with only 6.75%
of all strings misclassified. For DFA extraction, we only considered DFA's
that were consistent with the training set, i.e. the DFA's correctly classified
all strings of the training set. As a good model of the regular language, we
chose the consistent DFA extracted with the smallest quantization level q
([6]). For the trained 15-neuron network, we were able to extract a consistent
DFA for q=2; however, the minimized DFA had 382 states as compared to
10 states for the DFA that generated the training set. The extracted DFA's
generalization performance is impressive with only 0.41% of all test strings
misclassified, thus outperforming the trained network (this is often the case,
see for example [6]).

After pruning the first state neuron of the network, the retraining time
was negligible (7 epochs), indicating that the pruned state neuron did not
contribute significantly to the internal representation of the learned DFA.
The generalization performance of the pruned and retrained network and the
extracted DFA were comparable to the performance of the larger network.

The retraining got harder with fewer state neurons while the network gen-

692

eralization performance improved by an order of magnitude (0.14% for the
7-neuron network). This improvement would come as no surprise if the max-
imum size of the training set were also increasing; with more training strings
used, one would certainly expect the network to perform better. However,
the generalization improvement was achieved in most cases without additional
new training strings. At each stage of the pruning/retraining process, the size
of the training set was smaller than the size of the training set used to train
the 15-neuron network. This clearly shows that the performance improve-
ment is due to the reduced size of the network.

Neurons | Time | Size | NN Performance | q-level | DFA States | DFA Performance

15 197 142 6.75% 2 382 0.41%
14 7 46 6.89% 2 484 1.57%
13 98 99 2.61% 2 314 0.35%
12 11 62 1.51% 2 10 0.00%
11 14 67 0.97% 2 10 0.00%
10 22 63 1.26% 2 135 0.05%

9 111 157 2.95% 2 151 0.62%
8 102 140 2.44% 4 505 1.21%
7 104 118 0.14% 2 10 0.00%

Table 1: Random DFA: Network performance after each pruning cycle;
epochs; maximal size of the maximal training set; NN classification errors on
test set; quantization level; size of extracted DFA; DFA classification errors.

After retraining the 7-neuron network, we attempted to further reduce the
size of the network. However, the 6-neuron network failed to converge within
50,000 epochs. Thus, the 7-neuron network was our final network. Trained
recurrent networks make generalization errors because the internal represen-
tation of DFA states is unstable, i.e. with increasing string length, well-
separated neuron activation clusters formed during training begin to merge
together ([16]). The extracted DFA's do not share this problem and thus show
consistently better generalization performance. The DFA extracted from the
smallest network (7 neurons) was identical with the original DFA. The quality
of the extracted rules also tends to improve with decreasing network size.

The results shown for triple parity (table 2) confirm our findings that
our pruning/retraining algorithm is an effective tool for improving the gen-
eralization performance of both the trained network as well as the extracted
DFA. Note that in this case the resultant 3-state neural network is the least
size neural network for "representing" the 8-state DFA if the internal state
representations of the network are confined to the rails of the sigmoid ([16]).

Neurons | Time | Size | NN Performance | q-level | DFA States | DFA Performance J

15 183 209 13.64% 3 3105 8.42%
14 3 42 13.85% 3 2560 4.17%
13 17 84 10.08% 2 128 0.00%
12 22 99 9.62% 2 81 0.00%
11 12 65 5.45% 2 6 0.00%
10 23 92 3.87% 2 46 0.00%

9 20 83 3.27% 3 124 0.00%
8 23 91 4.07% 2 8 0.00%
7 36 93 3.16% 2 S 0.00%
6 29 96 3.98% 3 8 0.00%
5 39 87 0.58% 2 8 0.00%
4 29 85 2.08% 2 8 0.00%
3 179 92 0.75% 3 8 0.00%

693

Table 2: DFA for Triple-Parity: Network performance after each pruning
cycle; epochs; maximal size of the maximal training set; NN classification er-
rors on test set; quantization level; size of extracted DFA; DFA classification

errors.

3.3 Comparison with Weight Decay-

It has been observed in simulations that weight decay can improve the gener-
alization performance of feed-forward networks ([9, 11]). Weight decay sup-
presses irrelevant components of weight vectors by choosing a small vector
that solves the learning problem.

For networks trained using weight decay, the error function is expanded
to include an error term which penalizes large weights: The weight update
then becomes

dE° ^
dwijk

The results in table 3 show a comparison of the performances of pruned
networks with the generalization of networks trained with weight decay for
varying decay rates A. The training set was the same as the one used above
to learn the random 10-state machine. In all but one case, the pruned net-
works outperformed the networks with weight decay. The training time for
pruned networks includes the initial time necessary to train a 15-neuron net-
work and the retraining time for each pruning step. The pruning always
resulted in networks with 7 state neurons. The training times for pruned
networks and networks with weight decay were comparable, although prun-
ing causes fewer weight updates after each pruning/retraining cycle. The
methods refer to plain training (none), training with pruning (pruning), and
training with weight decay (A = 0.0001, A = 0.0005, A = 0.001). The pruning
heuristic always improved both the network generalization performance and
the extracted DFA, especially when the ideal DFA with 10 states was not

already extracted in the original 15-neuron network. The convergence time
for training with weight decay increases with increasing decay rate. None of
the runs converged for values of A larger than the ones shown. In cases where
the original network was not well trained (table 3a), weight decay improved
network generalization and the extracted rules. However, in all other cases
(tables 3b-d), networks trained with weight decay can show worse general-
ization performance and DFA's were extracted that were consistent with the
training data, but not identical with the ideal 10-state DFA. We can con-
clude that our pruning heuristic generally results in better trained networks
and smaller DFA's that explain the training data than weight decay methods.
In addition we did not have the weight decay disadvantage of possible failure
to converge to a good solution or the need to set the decay rate A prior to
training.

Method 1 Time | NN Performance | DFA States || Method | Time [NN Performance | DFA States |

none 197 6.75% 382 none 175 2.76% 81

pruning 666 0.14% 10 pruning 437 0.21% 10

A = 0.0001 199 4.18% 10 A = 0.0001 141 1.32% 13

A s 0.0005 257 3.18% 30 A = 0.0005 166 1.03% 10

A = 0.001 401 2.20% 10 A = 0.001 362 2.92% 10

(a) (b)

Method | Time | NN Performance | DFA States || Method | Time | NN Performance | DFA States

none 151 0.90% 10 none 161 2.14% 10

pruning 375 0.00% 10 pruning 262 1.12% 10

A = 0.0001 154 1.93% 87 A = 0.0001 172 0.61% 10

A = 0.0005 169 0.97% 10 A = 0.0005 200 3.28% 72

A = 0.001 305 1.74% 10 A = 0.001 351 2.49% 13

(c) (d)
Table 3: Comparison Pruning vs. Weight Decay for DFA: The meth-
ods refer to plain training (none), training with pruning (pruning), and train-
ing with weight decay rates (A = 0.0001, A = 0.0005, A = 0.001).

4 FINITE-MEMORY MACHINES

The example DFA's in the previous sections were small (< 10 states). Cur-
rent learning algorithms based on gradient descent searches are useful tools
for learning these small DFA's because they converge fast; however, they are
currently inappropriate for learning larger DFA's because of problems with
the propagation of error information - and thus state information - over long
strings [1].

Method Time NN Performance DFA States |{ Method Time NN Performance DFA States |

none 189 1.10% 334 none 281 1.59 % 296

pruning 641 1.45% 73 pruning 956 1.03 % 67

A = 0.0001 200 0.29% 230 A = 0.0001 199 3.78 % 745

A = 0.0005 309 0.76% 376 A = 0.0005 274 1.98 % 316

A = 0.001 769 3.16% 65 A = 0.001 818 1.30 % 65

(a) (b)

Method Time NN Performance DFA States Method Time NN Performance DFA States |

none 257 1.69% 110 none 205 1.71% 409

pruning 512 0.60% 71 pruning 536 0.33% 190

A = 0.0001 234 1.97% 316 A = 0.0001 226 1.96% 197

A = 0.0005 356 2.60% 78 A = 0.0005 387 1.07% 173

A = 0.001 - - - A = 0.001 - - -

(c) (d)
Table 4: Comparison Pruning vs. Weight Decay for FMM: The meth-
ods refer to plain training (none), training with pruning (pruning), and train-
ing with weight decay rates (A = 0.0001, A = 0.0005, A = 0.001). Training
with weight decay factor A = 0.001 did not converge within 5000 epochs in
all cases.

There exists a subclass of DFA's called finite-memory machines [10]. For-
mally, a finite-memory machine (FMM) is a DFA with finite memory input-

695

Figure 2: Inferred Finite-Memory Machine. This FMM with 64 states
was generated with parameters m = n = 3.

order m and output-order /,n i.e. m and n are the least integers such that the
present state of a DFA can always be uniquely determined from the knowledge
of the last m inputs and the last n outputs. We suspect that large FMM's can
be learned more easily than large DFA's because the interval over which state
information has to be propagated is fixed and small compared to the length
of the training strings. A FMM with 64 states (m=n=3) is shown in figure 2
We trained networks with 15 state neurons on the first 1000 strings (positive
and negative strings) whose labels were determined by the FMM of figure 2
We compared the training time, the network generalization performance and
the quality of the rules extracted from trained networks for plain training
training with pruning and training with weight decay for 4 networks with dif-
ferent initial conditions. The results are shown in table 4. We observed that
smallest network which for which the pruning/retraining method converged
always had 7 state neurons. The results confirm the observation we made
earlier for the random DFA and the triple-parity DFA.
The results in the above table show that network pruning can be an effec-

tive tool for improving the performance of the network generalization and for
reducing the size of the extracted FMM. We observe that the perfect FMM
with 64 states was not extracted for any training method in any of the runs
shown and one might thus conclude that the 64 state machine cannot be

696

successfully learned; however, this is not the case. When we chose all strings
of length up to 11 (4096 strings) as the training set, we were able to extract
the perfect DFA in all cases, regardless of the training method; since no sig-
nificant differences in network generalization performance was found for the
different methods when the larger training set was used, we chose to train
with a smaller training set.

5 CONCLUSIONS

We have presented a destructive method for improving the generalization
performance of recurrent neural networks, trained to recognize strings of reg-
ular languages. Our simulation results demonstrate that pruning combined
with retraining can significantly improve the performance of the networks
themselves and also of the extracted symbolic rules. The pruning procedure
is a repetitive cycle of reducing the size of the architecture and retraining
the network. Our method is based on a simple heuristic which assesses the
relevance of recurrent state neurons according to the magnitude of the in-
coming weights. State neurons with small weights tend to contribute less
to the overall computation and thus are promising pruning candidates. The
pruned network needs to be retrained to achieve its performance prior to the
pruning step. As to be expected, the retraining becomes harder as the size of
the network decreases; the performance improves while generally using fewer
strings than were necessary to train the original network. Our preliminary
results where the generalization performance improves by an order of mag-
nitude using a simple pruning heuristic are encouraging. The performance
improvements of pruned networks are generally superior to networks trained
with weight decay; training is faster due to the shrinking network size and
there is no need for determining a decay rate prior to training. We found
that these improvements also hold true for large finite-memory machines (64
states) [10]. It would be interesting to compare our method with other weight
pruning methods ([3, 8]).

An open question is whether this pruning method produces the smallest
network necessary to learn (or represent) the deterministic finite automata
(DFA) to be learned. Certainly for the triple parity DFA, a 3-state neural
network is the smallest possible if the neuron state activations are confined
to the rails of the sigmoid. But the 10-state random DFA should have had
a 4 state recurrent network. However, that did not occur; training failed to
converge. It would be interesting to see if knowledge inserted into the network
before or during training [4, 7, 13] aids or impedes the pruning process.

References

[1] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependen-
cies with gradient-descent is difficult," IEEE Transactions on Neural

697

Networks, vol. 5, no. 3, pp. 157-166, 1994.

[2] A. Cleeremans, D. Servan-Schreiber, and J. McClelland, "Finite state au-
tomata and simple recurrent recurrent networks," Neural Computation,
vol. 1, no. 3, pp. 372-381, 1989.

[3] Y. L. Cun, J. Denker, and S. Solla, "Optimal brain damage," in Advances
in Neural Information Processing Systems 2 (D. Touretzky, ed.), (San
Mateo, CA), pp. 598-605, Morgan Kaufmann Publishers, 1990.

[4] P. Frasco'ni, M. Gori, M. Maggini, and G. Soda, "A unified approach for
integrating explicit knowledge and learning by example in recurrent net-
works," in Proceedings of the International Joint Conference on Neural
Networks, vol. 1, p. 811, IEEE 91CH3049-4, 1991.

[5] C. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee, "Learning
and extracting finite state automata with second-order recurrent neural
networks." Neural Computation, vol. 4, no. 3, p. 380, 1992.

[6] C. Giles and C. Omlin, "Extraction, insertion and refinement of symbolic
rules in dynamically-driven recurrent neural networks," Connection Sci-
ence, vol. 5, no. 3-4, pp. 307-337, 1993.

[7] C. Giles and C. Omlin, "Inserting rules into recurrent neural networks,"
in Neural Networks for Signal Processing II, Proceedings of The 1992
IEEE Workshop (S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm,
eds.), PP- 13-22, IEEE Press, 1992.

[8] B. Hassibi and D. Stork, "Second order derivatives for network pruning:
Optimal brain surgeon," in Advances in Netiral Information Processing
Systems 5 (S. Hanson, J. Cowan, and C. Giles, eds.), (San Mateo, CA),
pp. 164-171, Morgan Kaufmann Publishers, 1993.

[9] G. Hinton, "Learning translation invariant recognition in a massively
parallel network," in PARLE: Parallel Architectures and Languages Eu-
rope, pp. 1-13, Berlin: Springer Verlag, 1987. Lecture Notes in Computer
Science.

[10] Z. Kohavi, Switching and Finite Automata Theory. New York, NY:
McGraw-Hill, Inc., second ed., 1978.

[11] A. Krogh and J. Hertz, "A simple weight decay can improve gener-
alization," in Advances in Neural Information Processing Systems 4
(J. Moody, S. Hanson, and R. Lippmann, eds.), (San Mateo, CA),
pp. 950-957, Morgan Kaufmann Publishers, 1992.

[12] J. Pollack, "The induction of dynamical recognizers," Machine Learning,
vol. 7, pp. 227-252, 1991.

[13] J. W. Shavlik, "A framework of combining symbolic and neural learning,"
Tech. Rep. TR 1123, Computer Sciences Dept., Computer Sciences Dept,
U of Wisconson - Madison, 1992.

[14] R. Watrous and G. Kuhn, "Induction of finite-state languages using
second-order recurrent networks," Neural Computation, vol. 4, no. 3,
p. 406, 1992.

[15] R. Williams and D. Zipser, "A learning algorithm for continually running
fully recurrent neural networks," Neural Computation, vol. 1, pp. 270-
280, 1989.

[16] Z. Zeng, R. Goodman, and P. Smyth, "Learning finite state machines
with self-clustering recurrent networks," Neural Computation, vol. 5,
no. 6, pp. 976-990, 1993.

699

Analysis of Satellite Imagery Using
a Neural Network Based Terrain Classifier*

Michael P. Perrone and Michael J. Larkin
Institute for Brain and Neural Systems

Campus Box 1843
Brown University

Providence, RI 02912
(401)863-3920

Fax:(401)863-3494
mpp@cns.brown.edu

and
Prometheus Inc.
21 Arnold Ave.

Newport, RI 02810
(401)819-5389

Fax:(401)848-7293
larkin@dam.brotvn.edu

Abstract
We present a novel method of detecting changes, such as erosion

or deforestation, from time sequential pairs of remote images. After
preprocessing the images and obtaining a difference image, we use a
neural network-based system to adaptively threshold the difference im-
age and resolve areas of pixel intensity with a terrain classifier which
combines information in the original images. The result is that we de-
tect precisely the types of changes in which we are interested, without
being "distracted" by changes due to noise or natural within-terrain
variability of pixel intensity.

1 Introduction

The objective of our research has been to design an automated system for
detecting changes in the environment, based upon time sequential remote

'This work was supported in pail by Army Contract No. I)AC'A7t>-93-C-0005, under
subcontract to SEA CORP and by the Office of Naval Research, ihe Army Research Office,
and the National Science Foundal ion.

sensor images of the same area. Our approach was to apply image processing
techniques to the original digital images in order to compensate as much
as possible for errors due to registration (i.e., a given pixel in the second
image does not necessarily correspond to the pixel in the identical position
in the first image), as well as variations in pixel intensity due to illumination
changes, clouds, and certain natural variabilities inherent in certain types of
terrain that are not of importance for analysis purposes. At the same time, it
is recognized that preprocessing will not necessarily correct all of these errors,
so the system was designed to be robust to errors due to registration or pixel
intensity variability, as well as other types of noise.
The basic premise is to take the two images and subtract one from the other,
creating a difference image. Ideally, any non-zero pixel intensities in the dif-
ference image would indicate that a change in the environment had occurred.
Of course, the problems of registration and other types of noise will also result
in contributions to the difference image. Also, there will be certain types of
changes in the image that are characteristic of certain types of textural ter-
rain (trees or grasses, for instance) that are not of much interest. Thus, the
problem is to determine what features in the difference image are representa-
tive of meaningful changes in the environment, such as deforestation, erosion
or pollution; and which features are due to noise or various pixel intensity
variabilities.
Our system runs a window over the difference image and computes the average
pixel intensity within the window. If the pixel intensity exceeds a given
threshold, the corresponding windows in the two preprocessed original images
are compared, through the use of a neural network based terrain classifier.
As described in the following sections, this system determines if any change
has occurred in the window based on the results of the terrain classifier.

2 Overview of Algorithm

This section outlines the basic steps of our algorithm. These steps are detailed
in subsequent sections.

• Preprocessing - image registration and normalization

• Generate smoothed difference image

• For each pixel above a fixed threshold, classify the texture in the cor-
responding regions from both preprocessed images.

• A pixel is interesting if the texture classifications differ.

• If the ratio of interesting to uninteresting pixels in a given region is
greater than some threshold, then the region is interesting.

701

3 Image Preprocessing

This section describes the image preprocessing required to prepare the images
for input into our classification algorithm. The goal of preprocessing is to
bring the images into registration and to match local pixel intensities. We
achieve this with the methods outlined below.

3.1 Registration Algorithm

Without registration, there may be little of no relation between the pixels of
a one image and the corresponding pixels of another image. In particular,
this will be the case when the camera is not in exactly the same location and
orientation when each image is taken. One possible registration algorithm is
outlined below.

•

•

•

Select several regions from one image to be used as fiducial marks.
Ideally, 3 fiducial marks are sufficient for to adjust for any translation,
rotation and linear scaling but more may be used to increase accuracy
in noise environments.

Find the best match in the second image for each fiducial region. It
may be necessary to locally normalize the intensity of the image regions
for an appropriate match to be found.

Use the fiducial mark matches to determine the appropriate scale, rota-
tion and offsets between the two images such that the following linear
transformation holds between the pixel locations in each image.

x' \ _ (a 0 W cos(? sinfl W x \ (Ax
V)~ V 0 0 A -si»" cos0) [y)+{ Ay

3.2 Normalization Algorithm

In general, images will have varying degrees of illumination. If one image
is taken at noon and another is taken at dusk, image subregions which are
identical may have widely varying pixel intensities. Similar problems may
arise from snow, ice, leaves, etc. To avoid these problems, we normalize
each image such that they both have pixel intensities with zero mean and
unit variance. In certain terrains where average illumination may vary over
the image (e.g. shadows produced by mountains or tall bindings) it will be
necessary to perform local normalization.

4 Difference Image

One fundamental aspect of our algorithm is the difference image which, in its
simplest form, is the difference between pixel intensities in the overlapping

regions of the two images. If the images are identical, the difference image
should be all zeroes. We impose the constraint that the algorithm should be
insensitive to the order in which the two images are presented; therefore we
define the difference image as

Dij = \Atj - Bij\ (1)

where Ajj and Bij are the pixel intensities in the ith row and jth column of
images A and B respectively. Note that it is necessary to map the images
onto the same grid if any rotation or scale transform is used for registration..

4.1 Image Smoothing

Difference images tend to be very noisy due to natural variations from image
to image and "ghosting" that can occur due to poor registration. In order to
ameliorate these problems, we convolve our difference images with a square
indicator function. Thus the pixel value in the smoothed image is given by

^smoothed = J2 k(i -l,j- m)D,m (2)

/m

where k(l,m) — 1 when |/| < r and |??j| <r and k(l,m) = 0 otherwise. We
can adjust the amount of smoothing by varying the radius, r, of k. We can
also approximate Gaussian smoothing by repeated convolution with k. Note
also that this smoothing can be applied to the classifications given by the
texture classifiers.

4.2 Pixel Intensity Histograms

The amounts of smoothing and thresholding needed for accurate detection of
variations within an image can be suggested by examining histograms of the
pixel values of a given image. We consider several histograms in our work,
including histograms of the preprocessed, differenced, and smoothed images.
In the preprocessed images, one typically has a smooth distribution of pixel '
values which are nearly identical for both images while difference images typ-
ically have a bimodal distribution. Smoothing over difference images results
in a main peak in the pixel histogram corresponding to zero difference and mi-
nor peaks in the tails corresponding to more interesting pixels (See Figure 1).

5 Adaptive Thresholding

At the heart of our environmental change detection algorithm is an adaptive
threshold which uses information from both the difference image and the
texture classifier to filter out uninteresting regions of the images.

703

Figure 1: The left graph shows the pixel histogram of the difference image.
The right graph shows the pixel histogram of the smoothed difference image.
Useful information is contained in the tails of the histogram on the right.

5.1 Algorithm for Detecting Differences Between Im-
ages

Heuristically, the decision criterion for flagging a windowed region as being
interesting can be stated as follows:

• If the average pixel intensity (API) of the difference image is very low,
the difference is not significant/interesting.

• If the API is high and the classifications from the different images are
different, the difference is significant/interesting.

• If the API is high but the classifications are identical, the difference is
not significant.

We can improve on the algorithm by including a sensor fusion center (neural
net based) that will learn when the three inputs are significant and when they
are not. Thus we can make our thresholding nonlinear and more robust.
Ideally, we could say that for all pixels d{i e D, a level of intensity greater than
zero indicates a change in the scene being imaged. However, due to natural
variations in the imaged objects or terrain a certain level of pixel variability
is expected. It is therefore necessary to identify an optimal threshold to
determine whether a pixel value in the difference image is significant. We
determine these values from images where known changes have been located
and quantified.

Because it is unlikely that every region of the image will have the same opti-
mal threshold, we use a neural network approach to identify various classes
of regions from a given corpus of images for which different optimal thresh-
olds can be determined. The neural networks were used to determine which
"terrains" in the difference image are interesting and which are not. Once the
neural networks are trained, they are used to determine what terrain class

704

a particular region belongs to. With this information, we can use a special-
ized threshold to determine whether an observed variation in the images is
of significance. The advantage to this approach is that the system is more
sensitive where small variations are important and less sensitive where they
are not, resulting in more changes being detected and less "false alarms", or
changes that are detected which have no importance.

5.2 Pattern Classifiers
In this section, we consider two image classifiers designed to identify ter-
rain/texture class in subregions of the images: The KNN algorithm and the
RCE algorithm. The training input to these algorithms are hand-labelled
subimages of a fixed size. We refer to these subimages as data vectors.
We note here that there exist other neural network algorithms which could
also be applied to the task of terrain classification.

5.2.1 The KNN Algorithm

The K Nearest Neighbor (KNN) algorithm [Duda and Hart, 1973] functions
by finding the nearest A" vectors from our previously labelled data vectors to a
new data vector for which the terrain class is unknown. The classification for
the new data vector is given by the majority class of the A' nearest neighbors.
The distance metric that is used in this algorithm is not essential and for high
dimensional spaces an /i-norm is generally sufficient as well as being faster to
calculate than most other norms.

5.2.2 The RCE Algorithm

The Reduced Coulomb Energy (RCE) algorithm [Reilly et a!., 1982] creates
networks of neurons with bounded activity function given by

n,-(£)=l-e(||£-nii||2-ti) (3)

where 0(-) is a step function. Thus the activity of RCE neuron i is 1 if the
input is within a distance U of m,- and 0 otherwise. Classification of a given
input is determined by choosing the class of memories which has the largest
total output. In its simplest version, the RCE algorithm builds a network in
the following manner. For each memory in the data set:

1) If the classification is correct, make no changes.

2) If the network activity is zero (no classification), add a new
neuron to the network using the new memory as the center and
set the neuron's threshold equal to the distance to the nearest
memory of a different class.

3) If the classification is incorrect or confused,

705

a) Shrink the thresholds of the neurons which were re-
sponsible for the error.

b) Pass the memory through the network again.

This process is repeated until the network stops changing. Given enough
resources, this algorithm can cover arbitrarily complex boundaries between
classes for a deterministic classification problem.

6 Application

A version of the algorithm described in the preceding sections was imple-
mented on real satellite images and the results are presented below. From
Figures 2, 3, 4 and 5, it can be see that our algorithm can correctly select the
regions of a photographed area which have changed.
This research is continuing. Further results will be presented at the conference
on different images and more elaborate classification algorithms.

M^x.x<w:.:y:-:^^«sssftss

™.,-,„,„„,.

Figure 2: A small region of a real satellite photograph.

References

[Dudaand Hart, 1973] Duda, R. 0. and Hart, P. E. (1973). Pattern Classi-
fication and Scene Analysis. John Wiley, New York.

Figure 3: This image shows the same as the previous figure slightly offset
to simulate registration error and with an orchard and field "planted" where
houses and streets exist in the original image.

[Reilly et ah, 1982] Reilly, D. L., Cooper, L. N., and Elbaum, C. (1982). A
neural model for category learning. Biological Cybernetics, 45:35-41.

707

' t I
*■•■$

■mm
: L

'■{':.

Figure 5: The regions labelled "interesting" by our algorithm.

NEURAL-NETWORK BASED CLASSIFICATION
OF LASER-DOPPLER FLOWMETRY SIGNALS

N. G. Panagiotidis, A. Delopoulos and S. D. Kollias
National Technical University of Athens

Department of Electrical and Computer Engineering
Computer Science Division

Zografou 15773, Athens, Greece

Abstract: Laser Doppler flowmetry is a most advantageous
technique for non-invasive patient monitoring. Based on
the Doppler principle, signals corresponding to blood flow
are generated, and metrics corresponding to healthy vs.
patient samples are extracted. A neural-network based
classifier for these metrics is proposed. The signals are
initially filtered, and transformed into the frequency
domain through third-order correlation and bispectrum
estimation. The pictorial representation of the correlations
is subsequently routed into a neural network based MLP
classifier, which is described in detail. Finally,
experimental results demonstrating the efficiency of the
proposed scheme are presented.

INTRODUCTION

Laser-Doppler flowmetry (LDF) is a noninvasive method for semi-
quantitative assessment of microcirculation currently applied in the
fields of angiology, cardiology, vascular surgery neurology and
physiology [1]. Its easy handling lead to its widespread clinical use
in acquiring relevant information on the microcirculation. LDF
appears to offer substantial advantages over other methods in the
measurement of cutaneous blood flow. Studies have shown that it is
not only highly sensitive and responsive to regional blood perfusion,

0-7803-2026-3/94 $4.00 © 1994 IEEE 709

but also versatile and easy to use for continuous noninvasive patient
monitoring.

In principle, LDF is an optical technique for estimation of micro-
circulation, based on the Doppler principle. When the laser beam is
directed toward the issue, reflection transmission and absorption
occur. Laser light backscattered from moving particles, such as red
cells, is shifted in frequency according to the Doppler principle,
while radiation backscattered from non-moving structures remains at
the same frequency. Even though Laser-Doppler flowmeters are
easy to use, sources of variation need to be known and taken into
consideration.

An interesting aspect in the processing of LD signals is the
extraction of appropriate parameters and the classification of signals
to categories, e.g. corresponding to healthy and patient samples. In
this paper, we propose a classification scheme with bispectrum
analysis for extracting useful features of the LDF signal, and neural
networks for classification of the extracted information.

BISPECTRUM ANALYSIS

As an initial step for the LDF biomedical signals are subjected to the
following preprocessing :

First, the original signal is decomposed into three components,
consisting of the trend (<20mH), component 2
(«20m//-800m//) and component 3 (> 800m//). This step has
proved more useful for the preprocessing of the signals and
particularly bispectral analysis. A FIR low-pass Hamming filter
(25-taps) was used for the detection of the trend, which allows
attenuation of the artifacts or abrupt and brief changes in the signals.
The second component is obtained through subtraction of the trend
from the original signal and additional low-pass filtering. The effect
of linear phase delay is subtracted from the resulting signal.

Let x(t) be a real two-dimensional signal with support
S, = [0...A7r-l]x[0...N-l]. Its triple correlation is defined as ,

X3(Tl,T2)=—2JLx(t)x(t + T1)x(t + T2)
Nz s

where T\>T2 are defined in

S> = [_(AT- l),...,(N-1)] x [-(N- l),...,(N-1)]

In general, we can move indistinguishably from the signal domain to
the triple correlation domain without loss of information or, in other
words, we can distinguish two signals by comparing their triple
correlations.

Third-order signal correlations and their Fourier transforms i.e. the
corresponding bispectra are higher-order statistics with two
important properties [2].

-> In contrast to second order correlations, triple correlations of
deterministic signals have a one-to-one correspondence with the
original signal (except of a shift ambiguity).

-> Third-order-correlations of zero-mean non-skewed noise (such as
Gaussian or linear and symmetrically distributed) are zero in the
mean, and furthermore, they tend to zero w.p. 1 as the size of
the available data record tends to infinity.

The first property generally yields a complete description of the
signal, based on its triple-correlation. On the other hand, the second
property can be used under certain conditions, to improve SNR in
applications where the signal under consideration is corrupted by
non-skewed additive noise. Based on their properties, third-order
correlations can be very advantageous for image recognition, leading
to invariant representation of the input images with respect to scale,
rotation and translation.

The bispectrum X^(u,v) of a signal x(t) is computed as

X3 (u,v) = X(u)X(v)X(-u - v)

711

where X(u,v) is the Fourier transform of x(t). As a consequence,
X3(w,v) can be computed as the triple product of FFTs using fast
software or hardware implementations.

The final step of pre-processing consists of computing the absolute
values of the resulting bispectra. Sample plots of these values are
shown in (Figure 1, Figure 2, Figure 3). The first one corresponds
to a signal obtained from a healthy volunteer, whereas the other two
to signals obtained from patients suffering from arterial occlusion.

The volunteers bispectra appear to have frequency components
coupled to a certain pair of frequencies. On the contrary, the
patients bispectra do not include such regular structures and tend to
have several mutually coupled frequencies. In this paper, we use a
neural network architecture to classify the LD-images, based on the
aforementioned observations.

PROPOSED NEURAL CLASSIFIER

Multilayer perceptrons have been widely examined in the neural
network field, as a tool for signal classification, based on the
extraction of appropriate features from signals [4]. Error-feedback
supervised learning algorithms, such as backpropagation, are
generally used to train a multilayer feed-forward neural network. A
crucial aspect concerning the network performance is generalisation
i.e. the ability of a network to classify correctly input data which
were not included in its training set. Good generalisation is a result
of appropriate network design; a small number of interconnection
weights (i.e. free parameters during training) should generally be
used for this purpose, and any a-priori knowledge about the problem
should be included in the network architecture. Consequently,
structured networks of small size are likely to have better
generalisation. Our architecture consists of a multilayer feed-forward
perceptron, whose inputs are described below.

The LD signals bi-spectra are processed as grayscale images. Since
the size of the images is quite large, we chose to decompose them
into images of lower size, using a multiresolution decomposition
scheme described below.

Let XQ denote an NxN image representation. Using appropriate

reconstruction FIR filters /^(n) and h/,(ri), where fy(«) generally is

a low-pass and ly^ri) a high-pass filter, we can split the image into

four [N/2 x N/2) images. Applying for example the low-pass filter

Iy(n) in the horizontal and then vertical direction of the original

image (we consider the separable case for simplicity) we get the

approximation image at the lower resolution level j = —\ denoted as

N N
xff (m, n) = £ Yk (2m - k)}y {In- l)x0 (k,l)

k=V=l

By applying all other possible combinations of the above FIR filters,
we get three lower resolution detail images, denoted as

J TJ TIT ////
x_i ,x_i ,x_i . Moreover, if the above procedure is successively
applied to the approximation images, we have a multiresolution
approximation of the original image, providing images of
continuously decreasing size.

The resulting low-resolution (LR) approximation image is used as
input to the classifier. Furthermore, in order to exploit useful
information included in the detail images, we extract from them
several features, especially the number of pixels with non-zero
values at each detail level. These pixels generally correspond to non-
zero frequency couples in the original image content.

The LR images are fed to the first hidden layer MLP, which is of a
receptive field type, while the extracted features as well as the
output of the first layer are subsequently fed to a second hidden

713

layer. The output of the second layer is fed to the final layer, the
output of which constitutes the result of our classifier.

After training with data obtained both from signals corresponding to
healthy persons and patients, our classifier was fed with bispectra
obtained by LD-signals. The results were most satisfactory,including
a correct classification rate of 93%. Sample bispectra that were
successfully classified are shown in (Figure 4, Figure 5).

Further research and experiments are currently performed using
extended data sets, as well as refinements to the pre-processing
methodology and fine-tuning of the proposed neural network
classifier architecture.

ACKNOWLEDGEMENTS

Part of the research presented in this paper was done for the
BIOMED-1 project "Laser Doppler Flowmetry for Microcirculation
Monitoring", 1993-1995.

REFERENCES

[l]Oberg, P.A. , "Laser Doppler Flowmetry", Biomed Eng. ,
18:125-163, 1990.

[2]Delopoulos A., Tirakis A., Kollias S., "Invariant Image
Classification using Triple Correlation Based Neural Networks ",
IEEE Trans. Neural Networks, May 1994.

[3]Mallat S. "A theory for multi-resolution signal decomposition :
the wavelets representation ", IEEE Trans PAMI vol 11, pp 674-
692, 1989.

[4] Mendel J. " Tutorial in higher-order statistics (spectra) in signal
processing and systems theory : theoretical results and some
applications ", IEEE proc. vol. 79, pp. 278-305, 1991.

[5] Tirakis A. "Optimal Filter Banks for Multiresolution Image
Analysis ", Ph. D. Thesis, N.T.U.A. , 1994.

[6]Pao Y. H., "Adaptive Pattern Recognition and Neural Networks
", Addison-Wesley, 1989.

715

SAMPLE LD-plots

-2 0 2
Figure 1 (Volunteer/Healthy)

Figure 2 (Volunteer/Patient)

-2 0 2
Figure 3 (Volunteer/Patient)

717

Figure 5

Conference Author Index

D

Akita, R. M. 451
Alberti, M. 555
Albesano, D. 241
Alder, M. 375
Anderson, J. S. 596
Andreano, K. J. 394
Andrews, M. 441
Attikiouzel, Y. 375
Autret, Y. 384

B

Bachmann, C. M. 394
Back, A. 146
Back, A. D. 565
Beet, S. W. 319
Bellesi, G. 309
Benidir, M. 573
Birgmeier, M. 527
Birkett, A. N. 249
Blekas, K. 163
Bors, A. G. 105
Bouras, D. P. 535
Bourlard, H. 289
Bracco, C. 573
Burrows, T. L. 117
Busch, C. 461

Cancelliere, R. 241
Castellanos, J. 587
Celebi 155
Charokopos, N. 482
Chiu, M. Y. 413
Clothiaux, E. E. 394
Comley, R. 681
Comley, R. A. 671
Constantinides, A. G.

431, 473
Cook, G. D. 269

Delopoulos, A. 709
Desai, U. B. 88
deSilva, C. J. S. 375
Dorffner, G. 499
Dreyfus, G. 229
Dumitras, A. 606

Economopoulos, N.
M. 482

Economou, G. -P. K.
482

Farrell, K. 279
Fechner, T. 187
Finton, D. J. 52
Fog, T. 616

G

Gemello, R. 241
Giles, C. L. 690
Goodman, R. M. 219
Gori, M. 309
Goubran, R. A. 249
Goutis, C. E. 482
Grumstup, P. 490

H

Hadjiagapis, S. 204
Hadjiprocopis, A. 681
Hansen, L. K. 42, 78,

490, 509, 616
Haralambopulu, E.

482
Hochberg, M. M. 269
Holm, S. 616
Hu, Y. H. 52
Hwang, J. N. 22

Johnsen, J. 490

K

Kadirkamanathan, V.
12

Kaski, K. 641
Kasper, K. 335
Katagiri, S. 259, 352
Kechriotis, G. I. 545
Kevrekidis, I. G. 596
Kitsonas, M. 204
Koller, H. 499
Kollias, S. D. 709
Komori, T. 352
Kosonocky, S. 279
Kung, S. Y. 413
Kuo, J. M. 661
Kurimo, M. 362

Laddad, R. R. 88
Lakkos, S. 681
Larkin, M. J. 700
Larsen, J. 42, 78
Lastrucci, L. 309
Law, I. 616
Lawrence, S. 146
Lazarescu, V. 606
Leitgeb, E. 499
Lendaris, G. G. 451
Likas, A. 163
Lim, G. 375
Lin, J. N. 126
Linneberg, C. 509
Liu, C. C. 423
Lonardi, S. 651
Luong, D. Q. 394
Lymberopoulos, D.

482

721

M

Madiraju, S. V. R.
423

Maglavcras, N. 518
Makrakis, D. 535
Mammonc, R. 279
Mana, F. 241
Manolakos, E. S. 545
Marcos, S. 573
Marlinelli, G. 32
Mascioli, F. M. F. 32
Mathiopoulos, P. T.

535
Matsuura, Y. 329
McDcrmott, E. 259
Meyrowitsch, J. 509
Mirghafori, N. 289
Miyazawa, H. 329
Moakcs, P. A. 319
Moore, J. W. 394
Morgan, N. 289
Murgan, A. T. 606
Mylonas, S. A. 671

N

Nakano, R. 69
Nielsen, L. H. 616
Niranjan, M. 117
Nummonda, T. 441

o

Ojala, P. 641
Omlin, C. W, 690

Panagiotidis, N. G.
709

Pap, R. M. 451
Papagcorgiou, C. 204
Pappas, C. 518
Parente, E. 98
Pattichis, C. S. 431
Paulson, O. 616
Pazos, A. 587
Pedreira, C. E. 98

Perrone, M. P. 700
Personnaz, L. 229
Pitas, I. 105
Poonacha, P. G. 88
Poopalasingam, S.

633
Prakash, S. R. 345
Principe, J. 155
Principe, J. C. 661
Prochazka, A. 195

R

Rabavilas, A. 204
Rasmussen, C. E. 78
Reeves, C. R. 633
Reininger, H. 335
Renals, S. J. 269
Rico-Martfnez, R. 596
Rios, J. 587
Robinson, A. J. 177,

269
Roussel-Ragot, P. 229

Saarinen, J. 641
Saeks, R. E. 451
Salamon, P. 509
Seibert, F. 461
Sekhar, C. C. 345
Skinner, T. E. 329
Smith, P. 681
Soda, G. 309
Solaiman, B. 384
S0rensen, J. A. 171
Sperduti, A. 651
Spiliopoulou, M. 482
Spriopoulos, C. 482
Stafylopatis, A. 163
Stamkopoulos, T. 518
Starita, A. 651
Stathaki, T. 473
Steele, N. C. 633
Stefanis, C. 204
Strintzis, M. 518
Svarer, C. 78, 509,

616
Sys, V. 195

Tanger, R. 187
Taur, J. S. 413
Terman, D, 136
Thomas, C. R. 451
Torkkola, K. 299
Tsoi, A. C. 146, 565
Tufts, D. W. 61

U

Ueda, N. 69
Unbehauen, R. 126
Urbani, D. 229
Uzunoglu, N. 204

Van Hulle, M. M. 3
Ventouras, E. 204
von Spreckelsen, S.

490

w

Wan, E. A. 146
Wang, C. J. 22
Wang, D. 136,624
Waterhouse, S. R. 177
Wen, W. 209
Wille«, D. 461
Wilson, E. 61
Wolf, D. 335
Wong, Y. F. 404
Wüst, H. 335

Yegnanarayana, B.
345

Yokoo, M. 209

Zafra, J. L. 587
Zeng, Z. 219

